Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case

The double singular perturbation for boundary-value problem for nonlinear system of ordinary differential equations is considered. For a formal asymptotic solution, constructed by the method of boundary functions and generalized inverse matrices and projectors, we prove an asymptotic property of th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Karandzhulov, L.I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2018
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/177179
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case / L.I. Karandzhulov // Нелінійні коливання. — 2018. — Т. 21, № 1. — С. 36-53. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-177179
record_format dspace
spelling irk-123456789-1771792021-02-12T01:26:23Z Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case Karandzhulov, L.I. The double singular perturbation for boundary-value problem for nonlinear system of ordinary differential equations is considered. For a formal asymptotic solution, constructed by the method of boundary functions and generalized inverse matrices and projectors, we prove an asymptotic property of the formal series. Розглянуто подвiйно сингулярне збурення граничної задачi для нелiнiйної системи звичайних диференцiальних рiвнянь. Для формального асимптотичного розв’язку, який побудовано за методом граничних функцiй та узагальнених обернених матриць i проекторiв, доведено асимптотичну властивiсть формального ряду. 2018 Article Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case / L.I. Karandzhulov // Нелінійні коливання. — 2018. — Т. 21, № 1. — С. 36-53. — Бібліогр.: 14 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/177179 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The double singular perturbation for boundary-value problem for nonlinear system of ordinary differential equations is considered. For a formal asymptotic solution, constructed by the method of boundary functions and generalized inverse matrices and projectors, we prove an asymptotic property of the formal series.
format Article
author Karandzhulov, L.I.
spellingShingle Karandzhulov, L.I.
Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case
Нелінійні коливання
author_facet Karandzhulov, L.I.
author_sort Karandzhulov, L.I.
title Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case
title_short Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case
title_full Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case
title_fullStr Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case
title_full_unstemmed Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case
title_sort asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case
publisher Інститут математики НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/177179
citation_txt Asymptotic behavior of solutions for differential equations with double singularity in conditionally stable case / L.I. Karandzhulov // Нелінійні коливання. — 2018. — Т. 21, № 1. — С. 36-53. — Бібліогр.: 14 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT karandzhulovli asymptoticbehaviorofsolutionsfordifferentialequationswithdoublesingularityinconditionallystablecase
first_indexed 2025-07-15T15:12:43Z
last_indexed 2025-07-15T15:12:43Z
_version_ 1837726290706169856
fulltext UDC 517.9 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS WITH DOUBLE SINGULARITY IN CONDITIONALLY STABLE CASE АСИМПТОТИЧНА ПОВЕДIНКА РОЗВ’ЯЗКIВ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ З ПОДВIЙНОЮ СИНГУЛЯРНIСТЮ В УМОВНО СТIЙКОМУ ВИПАДКУ L. I. Karandzhulov Techn. Univ., Sofia, Bulgaria e-mail: likar@tu-sofia.bg The double singular perturbation for boundary-value problem for nonlinear system of ordinary differenti- al equations is considered. For a formal asymptotic solution, constructed by the method of boundary functions and generalized inverse matrices and projectors, we prove an asymptotic property of the formal series. Розглянуто подвiйно сингулярне збурення граничної задачi для нелiнiйної системи звичайних диференцiальних рiвнянь. Для формального асимптотичного розв’язку, який побудовано за ме- тодом граничних функцiй та узагальнених обернених матриць i проекторiв, доведено асимп- тотичну властивiсть формального ряду. 1. Introduction. In the paper we investigate the asymptotic behavior of the formal solution of the boundary-value problem (BVP) ε dx dt = Ax+ εF (t, x, ε, f(t, ε)) + ϕ(t), t ∈ [a, b], 0 < ε � 1, (1) lx(·) = h, h ∈ Rn, (2) where ε is a small positive parameter. The BVP (1), (2) will be considered under the following conditions: (C1) The (n×n)-matrix A with constant elements has p eigenvalues with negative real part, and the remaining (n − p) eigenvalues have positive real part, i.e., λj ∈ σ(A), Reλj < 0, j = 1, p, and Reλj > 0, j = p+ 1, n. (C2) The vector-function ϕ(t) is an n-dimensional vector-function of the class C∞([a, b]). (C3) The function F (t, x, ε, f(t, ε)) is an n-dimensional vector-function, having arbitrary order continuous partial derivatives with respect to all arguments in the domain G = [a, b] × ×Dx×[0, ε]×Df ,whereDx ∈ Rn is some neighborhood of the solution x0(t) of the degenerate system Ax0(t) +ϕ(t) = 0, Df ∈ Rp is a bounded and closed domain, 0 < ε � 1. The function f(t, ε) is smooth of arbitrary order with respect to all arguments in the domainG1 = [a, b]×(0, ε] and its values belongs to Df . (C4) l is a linear n-dimensional bounded vector functional, l = col ( l1, . . . , ln ) , l ∈ ∈ (C[a, b] → Rn, Rn) . c© L. I. Karandzhulov, 2018 36 ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 37 We assume that the function f from (1) contains singular elements (for example, f = = f(exp(−t/ε), sin(t/ε))). Thus the system (1) has a double singularity. On the one hand, the small parameter ε appears before the derivative, and, on the other hand, it brings in a singularity of the function f. The condition (C1) shows that we consider system (1) in a conditionally stable case [13, 14]. We seek to determine existence and uniqueness of a n-dimensional asymptotic solution x(t, ε) of the BVP (1), (2) such that x(·, ε) ∈ C1([a, b]), x(t, ·) ∈ C((0, ε0]) and limε→0 x(t, ε) = = x0(t). The construction of the asymptotic solution of problem (1), (2) is based on the boundary functions method (see, for example, [13, 14]). The initial research for a Cauchy problem with double singularity is carried out in [9] in the case Reλi < 0 ∀i, λi ∈ σ(A). The BVP in this case are analyzed in the papers [7, 11]. Primary research of the problem (1), (2) with conditions (C1) – (C4) is conducted in [5] and [6]. In the papers [5, 6] the formal asymptotic solutions of the BVP (1), (2) have been constructed in various cases. In [6] we considered the case which uses generalized inverse matri- ces and projectors [1, 3, 10]. 2. Preliminary results and problem formulation. In the paper [6] a formall asymptotic soluti- on of the BVP (1), (2) was obtained after introducing a second parameter µ and studyind the BVP with two parameters ε ∈ [0, ε] and µ ∈ (0, ε], 0 < ε � 1, εż = Az + εF (t, z, ε, f(t, µ)) + ϕ(t), t ∈ [a, b], lz(·) = h, h ∈ Rn. (3) The solution of the BVP (3) be found in a unique formal expression of the form z(t, ε, µ) = ∞∑ k=0 (zk(t, µ) + Πk(τ, µ) +Qk(ν, µ)) εk, τ = t− a ε , ν = t− b ε . (4) After the determination of zk(t, µ), Πk(τ, µ), and Qk(ν, µ), a solution of (1), (2) takes the form x(t, ε) = ∞∑ k=0 (zk(t, ε) + Πk(τ, ε) +Qk(ν, µ)) εk. Using the condition (C1) it is easy to obtain functions zk(t, ε), which are elements of the regular series. Elements of the singular series Πk(τ, ε), τ = t− a ε and Qk(ν, µ), ν = t− b ε , were obtained by solving sequential linear differential systems. We will indicate some of the operations made in the article [6] and necessary for the present work. We substitute series (4) into system (3) and we represent the function F (t, z, ε, f(t, µ)) in the form F ( t, ∞∑ k=0 (zk(t, µ) + Πk(τ, µ) +Qk(ν, µ)) εk, ε, f(t, µ) ) = F (t, ε, µ) + ΠF (τ, ε, µ) +QF (ν, ε, µ), ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 38 L. I. KARANDZHULOV where F (t, ε, µ) = F ( t, ∞∑ k=0 zk(t, µ)εk, ε, f(t, µ) ) , ΠF (τ, ε, µ) = F ( a+ ετ, ∞∑ k=0 (zk(a+ ετ, µ) + Πk(τ, µ)) εk, ε, f(a+ ετ, µ) ) − − F ( a+ ετ, ∞∑ k=0 zk(a+ ετ, µ)εk, ε, f(a+ ετ, µ) ) , (5) QF (ν, ε, µ) = F ( b+ εν, ∞∑ k=0 (zk(b+ εν, µ) +Qk(ν, µ)) εk, ε, f(b+ εν, µ) ) − − F ( b+ εν, ∞∑ k=0 zk(b+ εν, µ)εk, ε, f(b+ εν, µ) ) . We decompose the functions F (t, ε, µ), ΠF (τ, ε, µ), QF (ν, ε, µ) in Taylor series in a neighbor- hood of the points (t, z0(t), 0, f), (a, z0(a) + Π0(τ), 0, f), (b, z0(b) + Q0(ν), 0, f), respectively. We get F (t, ε, µ) = ∞∑ k=0 F k(t, µ)εk, where F k(t, µ) =  F (t, z0(t), 0, f(t, µ)), k = 0, Fz(t, z0(t), 0, f(t, µ))zk(t, µ)+ +gk (z0(t), . . . , zk−1(t, µ), f(t, µ)) , k = 1, 2, . . . . (6) In (6) the functions gk contain derivative up to the (k−1)th order of the functionF (t, z, ε, f(t, µ)) with respect to z and ε, calculated in the point (t, z0(t), 0, f) ΠF (τ, ε, µ) = ∞∑ k=0 ΠFk(τ, µ)εk, where ΠFk(τ, µ) =  F (a, z0(a, µ) + Π0(τ), 0, f(a, µ))− −F (a, z0(a, µ), 0, f(a, µ)), k = 0, Fz(a, z0(a) + Π0(τ), 0, f(a, µ))Πk(τ, µ)+ +Gk (τ,Π0(τ), . . . ,Πk−1(τ, µ), f(a, µ)) , k = 1, 2, . . . . (7) ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 39 The function Gk contain derivatives up to the (k − 1)th order of the function F (t, z, ε, f(t, µ)) with respect to t, z and ε in the point (a, z0(a) + Π0(τ), 0, f(a, µ)), and the derivatives up to the (k − 1)th order of the function zk(t, µ) with respect to t in the point (a, µ), QF (ν, ε, µ) = ∞∑ k=0 QFk(ν, µ)εk, where QFk(ν, µ) =  F (b, z0(b) +Q0(ν), 0, f(b, µ))− −F (b, z0(b), 0, f(b, µ)), k = 0, Fz(b, z0(b) +Q0(ν), 0, f(b, µ))Qk(ν, µ)+ +Rk (ν,Q0(ν), . . . , Qk−1(ν, µ), f(b, µ)) , k = 1, 2, . . . . (8) The functions Rk contain derivatives up to the (k − 1)th order of the function F (t, z, ε, f(t, µ)) with respect to t, z and ε in the point (b, z0(b) +Q0(ν), 0, f(b, µ)), and the derivatives up to the (k − 1)th order of the function zk(t, µ) with respect to t in the point (b, µ). A similar approach is used for the BVP (1), (2), which does not contain the function f(t, ε), in the articles [4, 8]. In these articles and in the article [6] Lemma 1 is essential. The problem connected with condition (C1) for a differential equation in a Banach space is discussed, for example, in [2]. Lemma 1. Let the matrixA satisfy the condition (C1), P be a spectral projection on the left half plane of the matrix A, and functions g(τ) ∈ C(0,+∞), g(ν) ∈ C(−∞, 0) satisfy the inequalities ‖g(τ)‖ ≤ C∗ exp(−α∗τ), C∗ > 0, α∗ > 0, τ ≥ 0, ‖g(ν)‖ ≤ C ∗ exp(α∗ν), C ∗ > 0, α∗ > 0, ν ≤ 0. Then the systems dx dτ = Ax + g(τ), τ ∈ [0,+∞) and dy dν = Ay + g(ν), ν ∈ (−∞, 0], have particular solutions (Lτg)(τ) and (Lνg)(ν), respectively, in the forms (Lτg)(τ) = +∞∫ 0 K(τ, s)g(s)ds and (Lνg)(ν) = 0∫ −∞ K(ν, s)g(s) ds, satisfying the inequalities ‖(Lτg)(τ)‖ ≤ C exp(−γτ), τ ≥ 0; ‖(Lνg)(ν)‖ ≤ C exp(γν), ν ≤ 0, where C, C, γ, γ are certain positive constants, and K(τ, s) =  X(τ)PX−1(s), 0 ≤ s ≤ τ < +∞, −X(τ)(I − P )X−1(s), 0 ≤ τ ≤ s < +∞, K(ν, s) =  −X(ν)(I − P )X−1(s), −∞ < ν ≤ s ≤ 0, X(ν)PX−1(s), −∞ < s ≤ ν < 0. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 40 L. I. KARANDZHULOV Let the linear system dx dt = Ax have a fundamental solution matrix X(t) = exp(At), X(0) = En andB be an (n×n) nonsingular constant matrix such thatB−1AB = diag (A+, A−), where A+ is an (p× p)-matrix having eigenvalues with negative real parts, Reλi < 0, i = 1, p, and A− is ((n − p) × (n − p))-matrix having eigenvalues with positive real parts, Reλi > 0, i = p+ 1, n. The system dx dt = Ax has stable manifold S+ in the form S+ : x = Hx, where H = = B21B −1 11 is an ((n − p) × p)-matrix, and unstable manifold S− in the form S− : x = Hx, where H = B12B −1 22 is an (p × (n − p))-matrix. The cells Bij , i, j = 1, 2, are elements of the block representation of the matrix B = ( B11 B12 B21 B22 ) . Let Xp(τ) = X(τ) ( Ep H ) be a (n× p)-matrix, Xn−p(ν) = X(ν) ( H En−p ) be a (n× (n− −p))-matrix. Let us introduce the following notations: D1(ε) = lXp(·) = lXp ( (·)− a ε ) is a (n× p)-matrix; D2(ε) = lXn−p(·) = lXn−p ( (·)− b ε ) is a (n× (n− p))-matrix; D(ε) = (D1(ε)D2(ε)) is a (n× n)-matrix. Let D(ε) = D0 +O (εq exp(−α/ε)) , D0 be a (n×n)-matrix, with constant elements. In this case rangD0 = r < n and D−1 0 does not exist. But according to [1, 3, 10] we can use unite Mur – Penrous pseudoinverse matrix of D0, which is written as D+ 0 . More details in connection to pseudoinverse matrices can be found in the cited literature. Let PD0 and PD∗ 0 be (n × n)- matrices (orthogonal projections) projecting Rn onto N(D0) = kerD0 and onto N(D∗0) = = kerD∗0, respectively, i.e., PD0 : Rn → kerD0, PD∗ 0 : Rn → kerD∗0, D ∗ 0 = DT 0 , P 2 D0 = PD0 , P 2 D∗ 0 = PD∗ 0 . Having in mind that rangD0 = r < n, then rangPD0 = rangPD∗ 0 = n − −r = q. There exists q linearly independent columns in the (n × n)-matrix PD0 and q linearly independent rows in the (n × n)-matrix PD∗ 0 . By PD0q we denote the (n × q)-matrix consisting of q arbitrary linearly independent columns of PD0 , and by PD∗ 0q we denote the (q × n)-matrix consisting of q arbitrary linearly independent rows of PD∗ 0 . Theorem 1 [6]. Suppose that the following conditions are satisfied: (H1) (C1) – (C4); (H2) the matrix D(ε) has the representation D(ε) = D0 +O (εq exp(−α/ε)) , q ∈ N, α > 0, and rankD0 = r < n; (H3) PD∗ 0 h0 = 0, where h0 = h+ l ( A−1ϕ(·) ) ; (H4) the nonlinear equation PD∗ 0 h1(ε, µ, ξ0) = 0 for all 0 < ε ≤ ε, 0 < µ ≤ ε has a unique bounded solution with respect to ξ0 = ψ0(ε, µ) ∈ Rq, where h1(ε, µ, ξ0) = −lz1(·, µ)− l(LτΠF0)(·, µ, ξ0)− l(LνQF0)(·, µ, ξ0) at ΠF0(τ, µ) = F (a, z0(a, µ) + Π0(τ), 0, f(a, µ)) − F (a, z0(a, µ), 0, f(a, µ)) and QF0(ν, µ) = = F (b, z0(b) +Q0(ν), 0, f(b, µ))− F (b, z0(b), 0, f(b, µ)). ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 41 Then the principal part of the expansion (4) has the forms z0(t, µ) = −A−1ϕ(t), Π0(τ) = Xp(τ)[PD0q ]pψ0(ε, µ) +Xp(τ)[D+ 0 h0]p, (9) Q0(ν) = Xn−p(ν)[PD0q ]n−pψ0(ε, µ) +Xn−p(ν) [ D+ 0 h0 ] n−p , respectively. We introduce the following notations: hk(ε, µ, ξk−1) = D1(ε, µ)ξk−1 + Sk−1(ε, µ), ξk−1 ∈ Rq, k ≥ 2, D1(ε, µ) = −l ( Fz ( a, z0(a) + Π0 ( (·)− a ε ) , 0, f(a, µ) ) Xp(·)[D0q]p + + Fz ( b, z0(b) +Q0 ( (·)− b ε ) , 0, f(b, µ) ) Xn−p(·)[D0q]n−p ) , Sk(ε, µ) = −lzk+1(·, µ)− l ( Fz (a, z0(a) + Π0(·), 0, f(a, µ)) Φk(·, ε, µ)+ +Fz(b, z0(b) +Q0(·), 0, f(b, µ))Φk(·, ε, µ) ) − − l (Gk(·,Π0(·), . . . ,Πk−1(·, µ), f(a, µ))+ +Rk(·, Q0(·), . . . , Qk−1(·, µ), f(b, µ))) , k ≥ 1, (10) Φk(τ, ε, µ) = Xp(τ) [ D+ 0 hk ] p + (LτΠF k)(τ, µ), Φk(ν, ε, µ) = Xn−p(ν) [ D+ 0 hk ] n−p + (LνQF k)(ν, µ), hk = hk(ε, µ, ξk−1) = hk(ε, µ, ψk−1(ε, µ)) = hk(ε, µ), D1(ε, µ) = PD0qD1(ε, µ), Sk(ε, µ) = −PD∗ 0q Sk(ε, µ), k ≥ 1. It should be noted that in (10) D1(ε, µ) is an (n× q)-matrix, Sk(ε, µ) is an n-vector, D1(ε, µ) is a (q × q)-matrix and Sk(ε, µ) is a q-vector. Besides, the functions Gk contain derivative up to the (k − 1)th order of the function a F (t, z, ε, f(t, µ)) with respect to t, z, and ε, in the point (a, z0(a)+Π0(τ), 0, f(a, µ)), and derivative up to the (k−1)th order of the function zk(t, µ) with respect to t in the point (a, µ). The functions Rk contain derivatives up to the (k− 1)th order of the function F (t, z, ε, f(t, µ)) with respect to t, z, and ε, in the point (b, z0(b)+Q0(ν), 0, f(b, µ)), and derivatives up to the (k−1)th order of the function zk(t, µ) with respect t in the point (b, µ). ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 42 L. I. KARANDZHULOV Theorem 2 [6]. Let the conditions (H1) – (H4) of the Theorem 1 and the condition (H5) rankD1(ε, µ) 6= 0 ∀0 < ε ≤ ε, 0 < µ ≤ ε be fulfilled. Then the coefficients zk(t, µ), Πk(τ, µ), and Qk(ν, µ) for k ≥ 1 of the series (4) have the forms zk(t, µ) = − ( A−1 )k+1 dkϕ(t) dtk − 1∑ i=k (A−1)i di−1 dti−1 F k−i(t, µ), Πk(τ, µ) = −Xp(τ)[PD0q ]pD −1 1 (ε, µ)Sk(ε, µ) + Φk(τ, ε, µ), Qk(ν, µ) = −Xn−p(ν)[PD0q ]n−pD −1 1 (ε, µ)Sk(ε, µ) + Φk(ν, ε, µ). Theorem 3 [6]. Let the conditions (H1) – (H5) of the Theorem 2 be fulfilled. Then 1) the functions zk(t, µ), k ≥ 0, are bounded, i. e., ∃Mk > 0: ‖zk(t, µ)‖ ≤ Mk ∀t ∈ [a, b], µ ∈ (0, ε], k ≥ 0; 2) the boundary functions Πk(τ, µ) and Qk(ν, µ), k ≥ 0, decrease exponentially at τ → ∞ and ν → −∞ respectively, µ ∈ (0, ε]. In the next section we will show that the obtained formal series (4) is asymptotic. 2. Main results. In BVP (3) we make a change of variables, u(t, ε, µ) = z(t, ε, µ)− Zn(t, ε, µ), (11) where Zn(t, ε, µ) = ∑n k=0 [zk(t, µ) + Πk(τ, µ) +Qk(ν, µ)] εk is the nth partial sum of the series (4). Keeping in mind the expressions (9) in Theorem 1, the notations (10) and zk,Πk, Qk, k ≥ 1, in Theorem 2 we obtain that the new variable u satisfy the BVP εu̇ = Au+Hn(t, u, ε, µ), lu(·, ε, µ) = 0, (12) where Hn(t, u, ε, µ) = εF (t, u+ Zn, ε, f(t, µ)) + L(t, τ, ν, ε, µ). (13) The expression L(t, τ, ν, ε, µ) have the form L(t, τ, ν, ε, µ) = ∆1 + ∆2 + ∆3, (14) where ∆1 = A n∑ k=1 zk(t, µ)εk − n∑ k=0 d dt zk(t, µ)εk+1, ∆2 = A n∑ k=0 Πk(τ, µ)εk − n∑ k=0 d dτ Πk(τ, µ)εk, (15) ∆3 = A n∑ k=0 Qk(ν, µ)εk − n∑ k=0 d dν Qk(ν, µ)εk. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 43 For the function Hn(t, u, ε, µ) from (13) we will prove three lemmas. Lemma 2. Let u = 0 in (13). Then the function Hn(t, 0, ε, µ) with C > 0, t ∈ [a, b], ε ∈ ∈ (0, ε1], µ ∈ (0, ε1], 0 < ε1 < ε, satisfies the inequality ‖Hn(t, 0, ε, µ)‖ ≤ Cεn+1. Proof. By means of equalities (5) – (8) for the representation of Hn(t, 0, ε, µ) we obtain Hn(t, 0, ε, µ) = εF (t, Zn, ε, f) + L(t, τ, ν, ε, µ) = = εF ( t, n∑ k=0 [zk + Πk +Qk] ε k, ε, f ) + L(t, τ, ν, ε, µ) = = ∆0 + ∆1 + ∆2 + ∆3, (16) where ∆0 = εF + εΠF + εQF, and ∆i, i = 1, 2, 3 it, are given by (15). For a representation of the sums ∆i we use (5) for ∆0, Theorem 2 for ∆1. For representation ∆2 and ∆3 we consider receiving the boundary functions Πk, Qk by linear BVPs, from which result of the boundary function in Theorem 2, dΠk(τ) dτ = AΠk(τ) + ΠF k(τ, µ), τ ∈ [ 0, b− a ε ] , µ ∈ (0, ε], dQk(ν) dν = AQk(ν) +QF k(ν, µ), ν ∈ [ a− b ε , 0 ] , µ ∈ (0, ε], l ( Πk ( (·)− a ε , µ ) +Qk ( (·)− b ε , µ )) = { h− l(z0(·, µ)), k = 0, −l(zk(·, µ)), k = 1, 2, . . . , ΠF k(τ, µ) = { 0, k = 0, ΠFk−1(τ, µ), k = 1, 2, . . . , QF k(ν, µ) = { 0, k = 0, QFk−1(τ, µ), k = 1, 2, . . . . Thus we get ∆0 = εF + εΠF + εQF = n∑ k=0 F kε k+1 + n∑ k=0 ΠFkε k+1 + n∑ k=0 QFkε k+1, ∆1 = A n∑ k=1 zk(t, µ)εk − n∑ k=0 d dt zk(t, µ)εk+1 = − n∑ k=1 F k−1(t, µ)εk − d dt znε n+1, ∆2 = A n∑ k=0 Πkε k − n∑ k=0 d dτ Πkε k = − n∑ k=1 ΠF k−1(τ, µ)εk, ∆3 = A n∑ k=0 Qkε k − n∑ k=0 d dν Qkε k = . . . = − n∑ k=1 ΠQk−1(ν, µ)εk. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 44 L. I. KARANDZHULOV We substitute ∆i, i = 0, 1, 2, 3, in (16) and obtain Hn(t, 0, ε, µ) = (−Azn(t, µ) + ΠFn(τ, µ) +QFn(ν, µ)) εn+1. Let the following inequalities be fulfilled: ‖A‖ ≤ C0, C0 > 0, ‖zn(t, µ)‖ ≤ Mn, Mn > 0. On the other hand Theorem 2 shows that by the equalities (14) and (15) we have ‖ΠFn(τ, µ)‖ ≤ Cn exp(−αnτ), Cn > 0, αn > 0, τ ≥ 0, ‖QFn(ν, µ)‖ ≤ Cn exp(αnν), Cn > 0, αn > 0, ν ≤ 0. Then ‖Hn(t, 0, ε, µ)‖ = ‖ −Azn(t, µ) + ΠFn(τ, µ) +QFn(ν, µ)‖εn+1 ≤ ≤ [‖A‖‖zn(t, µ)‖+ ‖ΠFn(τ, µ)‖+ ‖QFn(ν, µ)‖] εn+1 ≤ ≤ [ C0Mn + Cn exp(−αnτ) + Cn exp(αnν) ] εn+1. Keeping in mind that at t ∈ [a, b], τ = t− a ε ≥ 0, ν = t− b ε ≤ 0, for the upper bound, we finally obtain ‖Hn(t, 0, ε, µ)‖ ≤ [ C0Mn + Cn.1 + Cn.1 ] εn+1 = Cεn+1, where C = C0Mn + Cn + Cn. Let us also estimate the function Hn(t, u, ε, µ). Lemma 3. There exists a constant C∗ > 0 such that ‖Hn(t, u, ε, µ)‖ ≤ C∗ε for ‖u‖ ≤ 2R, R > 0. Proof. From (13) we get Hn(t, u, ε, µ) = εF (t, u+ Zn, ε, f(t, µ)) + L(t, τ, ν, ε, µ). Then Hn(t, u, ε, µ) = εF (t, u+ Zn, ε, f(t, µ))− εF (t, Zn, ε, f(t, µ))+ + εF (t, Zn, ε, f(t, µ)) + L(t, τ, ν, ε, µ) = = ε [F (t, u+ Zn, ε, f(t, µ))− F (t, Zn, ε, f(t, µ))] + + εF (t, Zn, ε, f(t, µ)) + L(t, τ, ν, ε, µ) = = ε 1∫ 0 Fx(t, Zn + θu, ε, f(t, µ))dθu+Hn(t, 0, ε, µ). ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 45 According to the condition (C3) and x = Zn + θu the function Fx is continuous with respect to all arguments in the domain G, i. e., there exists a constant C̃ > 0 such that ‖Fx‖ ≤ C̃. Using the last lemma we obtain the estimate ‖Hn(t, u, ε, µ)‖ ≤ ε 1∫ 0 ‖Fx(t, Zn + θu, ε, f(t, µ))‖dθ‖u‖+ ‖Hn(t, 0, ε, µ)‖ ≤ ≤ εC̃‖u‖+ Cεn+1 ≤ 2RC̃ε+ Cεn+1 ≤ C∗ε, where 2RC̃ ≤ C∗ < 2RC̃ + ˜̃ C, 0 < ˜̃ C � 1. Lemma 4. Let, in the some neighborhood of the degenerate solution ‖z0‖ < δ,we have ‖z‖ ≤ ≤ ρ < δ and t ∈ [a, b], ε ∈ [0, ε1], µ ∈ (0, ε1]. Then there is a positive constant K1 such that in case of ‖u‖ ≤ δ and ‖u‖ ≤ δ, where 0 < δ < δ and δ+ρ < δ, the function Hn(t, u, ε, µ) satisfies the inequality ‖∆Hn‖ = ‖Hn(t, u, ε, µ)−Hn(t, u, ε, µ)‖ ≤ K1ε‖u− u‖. Proof. From (13) we get ∆Hn = ε [ F (t, u+ zn, ε, f(t, µ))− F (t, u+ zn, ε, f(t, µ)) ] . The estimate of the last difference is realized analogously to Lemma 3. Consequently, ‖∆Hn‖ ≤ K1ε‖u− u‖. Let B be a (n × n)-matrix satisfying the condition B−1AB = diag (A+ A−) , where Reλi(A+) < 0, j = 1, p, Reλi(A−) > 0, j = p+ 1, n. In the system (12) we make a change of variables, u(t, ε, µ) = B ( η(t, ε, µ) δ(t, ε, µ) ) , where η(t, ε, µ) = (η1, . . . , ηp) T , δ(t, ε, µ) = (δ1, . . . , δn−p) T . Then (8) take the form εη̇(t, ε, µ) = A+η + [ H̃n(t, η, δ, ε, µ) ] p , (17) εδ̇(t, ε, µ) = A−δ + [ H̃n(t, η, δ, ε, µ) ] n−p , lB ( η(t, ε, µ) δ(t, ε, µ) ) = 0, (18) where H̃n(t, η, δ, ε, µ) = B−1Hn(t, η, δ, ε, µ) = = B−1εF ( t, B ( η δ ) + Zn, ε, f(t, µ) ) +B−1L(t, τ, ν, ε, µ). (19) ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 46 L. I. KARANDZHULOV The notations [ H̃n ] p and [ H̃n ] n−p are used to denote the first p and the later n− p elements of the vector function H̃n, respectively. According to Lemmas 2 and 4 it is possible to assert that for the equality (19) we have the inequalities ‖H̃n(t, η, δ, ε, µ)‖ ≤ C̃1ε n+1, C̃1 > 0, ‖∆H̃n‖ = ‖H̃n(t, η, δ, ε, µ)− H̃n(t, η, δ, ε, µ) ≤ ˜̃ C1ε ( ‖η − η‖+ ‖δ − δ‖ ) , ˜̃ C1 > 0. (20) The system of differential equations (17) transforms to a system of integral equations, η(t, ε, µ) = W (t, s, ε, µ)η(a, ε, µ) + t∫ a W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] p ds, δ(t, ε, µ) = W (t, s, ε, µ)δ(b, ε, µ) + b∫ t W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] n−p ds, (21) where η(a, ε, µ) and δ(b, ε, µ) are arbitrary vectors depending on ε and µ. In (21) the fundamental matrices W (t, s, ε, µ) and W (t, s, ε, µ) are solutions of the systems ε dη dt = A+η, W (s, s, ε, µ) = Ep and ε dδ dt = A−δ, W (s, s, ε, µ) = En−p respectively. If σ > 0 and K0 > 0, then the inequalities ‖W (t, s, ε, µ)‖ ≤ K0 exp ( −σ t− s ε ) , a ≤ s ≤ t ≤ b, ‖W (t, s, ε, µ)‖ ≤ K0 exp ( −σ s− t ε ) , a ≤ t ≤ s ≤ b, (22) are fulfilled. In consequence we will consider the iterative process η0(a, ε, µ) = 0, δ0(b, ε, µ) = 0, ηi(t, ε, µ) = W (t, s, ε, µ)η(a, ε, µ) + t∫ a W (t, s, ε, µ) 1 ε [ H̃n ( t, ηi−1, δi−1, ε, µ )] p ds, (23) δi(t, ε, µ) = W (t, s, ε, µ)δ(b, ε, µ) + b∫ t W (t, s, ε, µ) 1 ε [ H̃n ( t, ηi−1, δi−1, ε, µ )] n−p ds. Our further aim is to show that the integral system (21) has a uniquel and continuous soluti- on. Therefore we introduce a Banach space M [12] which consists of the all continuous n- dimensional functions y(t, ε, µ) = (η1(t, ε, µ), . . . , ηp(t, ε, µ), δ1(t, ε, µ), . . . , δn−p(t, ε, µ))T ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 47 in the domain G2 = [a, b] × (0, ε] × (0, ε] = {(t, ε, µ)|t ∈ [a, b], ε ∈ (0, ε], µ ∈ (0, ε]} with the norm ‖y(t, ε, µ)‖ = p∑ i=1 max G2 |ηi(t, ε, µ)|+ n−p∑ i=1 max G2 |δi(t, ε, µ)| and the distance between the elements ‖y2(t, ε, µ)− y1(t, ε, µ) = p∑ i=1 max G2 ∣∣η2 i (t, ε, µ)− η1 i (t, ε, µ) ∣∣+ n−p∑ i=1 max G2 ∣∣δ2 i (t, ε, µ)− δ1 i (t, ε, µ) ∣∣ . The right-hand side of (21) we consider as an action of the operator L(·) on the vector function y(·, ε, µ) = ( η(·, ε, µ) δ(·, ε, µ) ) , L(y) = [ L1(y) L2(y) ] =  W (t, s, ε, µ)η(a, ε, µ) + t∫ a W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] p ds W (t, s, ε, µ)δ(b, ε, µ) + b∫ t W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] n−p ds  . (24) We will prove that the operator L(y) is a contractive operator. Lemma 5. Let the conditions be fulfilled: 1) ˜̃C1 < σ and C∗ < σ, 2) 0 < K0 < 1 4 , 3) 0 < R < 2K0C ∗ σ(1− 2K0) , 4) 0 < ε ≤ ε < σ 2K0C∗ (1− 2K0)R, 5) ‖η(a, ε, µ)‖ ≤ R, ‖δ(b, ε, µ)‖ ≤ R. Then the operator L(y) is a contraction. Proof. Step 1. Primary we show that the operator L(y) maps the space M into itself, ‖L(y)‖ ≤ max G2 ∥∥∥∥∥∥W (t, s, ε, µ)η(a, ε, µ) + t∫ a W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] p ds ∥∥∥∥∥∥+ + max G2 ∥∥∥∥∥∥W (t, s, ε, µ)δ(b, ε, µ) + b∫ t W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] n−p ds ∥∥∥∥∥∥ ≤ ≤ ∆1 + ∆2, (25) ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 48 L. I. KARANDZHULOV where ∆1 = max G2 [ ‖W (t, s, ε, µ)‖ ‖η(a, ε, µ)‖+ ‖W (t, s, ε, µ)‖ ‖δ(b, ε, µ)‖ ] , ∆2 = max G2  t∫ a ‖W (t, s, ε, µ)‖1 ε ‖[H̃n(s, η, δ, ε, µ)]p‖ds + + max G2  b∫ t ‖W (t, s, ε, µ)‖1 ε ‖[H̃n(s, η, δ, ε, µ)]n−p‖ds  . Keeping in mind (22), the condition 4, 5 of the present lemma and Lemma 3 for estimates of ∆1 and ∆2 we have ∆1 ≤ max G2 [ K0 exp ( −σ t− s ε ) R+K0 exp(−σs− t ε )R ] ≤ K0R(1 + 1) = 2K0R, ∆2 ≤ max G2 t∫ a K0 exp ( −σ t− s ε ) 1 ε C∗εds+ max G2 b∫ t K0 exp ( −σ s− t ε ) 1 ε C∗ε ds = = K0C ∗max G2  t∫ a exp ( −σ t− s ε ) ds+ b∫ t exp ( −σ s− t ε ) ds  = = K0C ∗max G2 ε σ [ 1− exp ( −σ t− a ε ) − exp ( −σ b− t ε ) + 1 ] ≤ ≤ K0C ∗ ε σ 2 [ 1− exp ( −σb− a ε )] ≤ 2K0C ∗ ε σ . We substitute the estimates for ∆1, ∆2 in (25) and get ‖L(y)‖ ≤ ∆1 + ∆2 ≤ 2K0R+ 2K0C ∗ ε σ . Keeping in mind the condition 4, we get ‖L(y)‖ ≤ R, that is, the operator L(y) maps the space M into itself. Step 2. We will estimate the difference L(y2) − L(y1) (see (24)). According to (22), second ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 49 inequality in (20) and condition 4 we obtain ‖L(y2)− L(y1)‖ = ∥∥∥∥[ L1(y2)− L1(y1) L2(y2)− L2(y1) ]∥∥∥∥ = = ∥∥∥∥∥∥∥∥∥∥∥∥∥∥  t∫ a W (t, s, ε, µ) 1 ε [ H̃n ( η2, δ2, s, ε, µ ) − H̃n ( η1, δ1, s, ε, µ )] p ds b∫ t W (t, s, ε, µ) 1 ε [ H̃n ( η2, δ2, s, ε, µ ) − H̃n ( η1, δ1, s, ε, µ )] n−p ds  ∥∥∥∥∥∥∥∥∥∥∥∥∥∥ ≤ ≤ t∫ a K0 exp ( −σ t− s ε ) 1 ε ˜̃ C1ε (∥∥η2 − η1 ∥∥+ ∥∥δ2 − δ1 ∥∥) ds+ + b∫ t K0 exp ( −σ s− t ε ) 1 ε ˜̃ C1ε (∥∥η2 − η1 ∥∥+ ∥∥δ2 − δ1 ∥∥) ds ≤ ≤ 2K0 ˜̃ C1 σ ε ( 1− exp ( −σ b− a ε )) ‖y2 − y1‖ ≤ 2K0 ˜̃ C1 σ ε‖y2 − y1‖ ≤ ≤ 2K0 ˜̃ C1 σ ε‖y2 − y1‖ < 2K0 ˜̃ C1 σ σ 2K0C∗ (1− 2K0)R‖y2 − y1‖ = = ˜̃ C1 C∗ (1− 2K0)R︸ ︷︷ ︸ Θ ‖y2 − y1‖ = Θ‖y2 − y1‖. The conditions 1 – 3 of the lemma show that 0 < Θ < 1. Consequently, the operator L(y) is a contraction. We introduce the following notations: D(ε) = l ([ B11W (·, a, ε) B12W (·, b, ε) B21W (·, a, ε) B22W (·, b, ε) ]) — (n× n)-matrix, (26) g(ε, µ) = −l  B  (·)∫ a W (·, s, ε) 1 ε [ H̃n(s, η, δ, ε, µ) ] p ds b∫ (·) W (·, s, ε)1 ε [ H̃n(s, η, δ, ε, µ) ] n−p ds   — (n× 1)-vector. (27) Let D(ε) = D0 +O ( εs exp ( −α ε )) , where D0 is a constant (n× n)-matrix. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 50 L. I. KARANDZHULOV Theorem 4. Let the conditions (H1) – (H5) (see Theorems 1 and 2), the conditions of Lemma 5, and the conditions rankD0 = n, K3b1‖B‖ ≤ 2, where ‖D−1 0 ‖ ≤ K3, K3 > 0, ‖l(ψ)‖ ≤ b1‖ψ‖, b1 > 0, be satisfied. Then there exist constants ε∗ > 0, C̃∗ > 0 such that the problem (1), (2) has a unique solution x(t, ε) and it satisfies the inequality ‖x(t, ε)−Xn(t, ε)‖ ≤ C̃∗εn+1 (28) for t ∈ [a, b] and ε ∈ (0, ε∗] . Proof. To prove that (1), (2) has the only solution satisfying (28) means to prove that the boundary problem (3) has a unique solution satisfying ||z(t, ε, µ)− Zn(t, ε, µ)|| ≤ C̃∗εn+1 for t ∈ [a, b], ε ∈ (0, ε∗] and µ ∈ (0, ε∗] . Therefore (3) we make the following replacement (11) and obtain the boundary problem (12). To prove the theorem it is sufficient to show that (12) has a unique solution such that ‖u(t, ε, µ)‖ ≤ C̃∗εn+1. For system (12) we make a change of the variable u(t, ε, µ) = B ( η(t, ε, µ) δ(t, ε, µ) ) , where η(t, ε, µ) = (η1, . . . , ηp) T , δ(t, ε, µ) = (δ1, . . . , δn−p) T , and consider the equivalent integral equation (21). Lemma 5 shows that system (21) has only a solution which does not go out of the area Ω = {(t, η, δ, ε, µ)|t ∈ [a, b], ‖η‖ ≤ R, ‖δ‖ ≤ R, ε ∈ (0, ε], µ ∈ (0, ε]} and depends on arbitrary constant vectors η(a, ε, µ) and δ(b, ε, µ). The determination of the vectors η(a, ε, µ) and δ(b, ε, µ) is performed using the algebraic system (18), lu(·, ε, µ) = lB ( η(·, ε, µ) δ(·, ε, µ) ) = 0. We substitute η and δ of (21) in the last equation, and according to the notations of (26), (27) we find that η(a, ε, µ) and δ(b, ε, µ) satisfy the algebraic system D(ε)  η(a, ε, µ) δ(b, ε, µ)  = g(ε, µ). After dropping exponentially small elements in D(ε), we get the system D0  η(a, ε, µ) δ(b, ε, µ)  = g(ε, µ). (29) ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 51 Under the condition of the theorem, the system (29) has a solution η(a, ε, µ) δ(b, ε, µ)  = D −1 0 g(ε, µ). (30) An estimate of (30), according to the conditions of the theorem and the proof of a Lemma 5, has the form∥∥∥∥[ η(a, ε, µ) δ(b, ε, µ) ]∥∥∥∥ ≤ ∥∥∥D−1 0 ∥∥∥ ‖g(ε, µ)‖ ≤ K3‖g(ε, µ)‖ = K3b1 ‖B‖∆2 ≤ 2R. In the latter inequality we used the estimate for ∆2 (see step 1 of the Lemma 5) and the condi- tion K3b1‖B‖ ≤ 2. Thus for integral equations (21) we find the representation η(t, ε, µ) = W (t, s, ε, µ) [ D −1 0 g(ε, µ) ] p + t∫ a W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] p ds, δ(t, ε, µ) = W (t, s, ε, µ) [ D −1 0 g(ε, µ) ] n−p + b∫ t W (t, s, ε, µ) 1 ε [ H̃n(t, η, δ, ε, µ) ] n−p ds. (31) For the integral equations (31) we apply the iteration process (23). For the first approximation of (23), keeping in mind Lemma 3 and that u = (η1, . . . , ηp, δ1, . . . , δn−p) we find ‖u1 − u0‖ ≤ p∑ i=1 max ∣∣η1 i − η0 i ∣∣+ n−p∑ i=1 max ∣∣δ1 i − δ0 i ∣∣ = = max G2 ∥∥η1 − η0 ∥∥+ max G2 ∥∥δ1 − δ0 ∣∣ ≤ ≤ max G2 [ ‖W (t, a, ε, µ)‖‖η(a, ε, µ)‖+ ‖W (t, b, ε, µ)‖‖δ(b, ε, µ)‖ ] + + max G2 { t∫ a ∥∥∥∥W (t, a, ε, µ) 1 ε ∥∥∥∥∥∥∥∥[H̃n(s, 0, 0, ε, µ) ] p ∥∥∥∥ ds+ + b∫ t ∥∥W (t, b, ε, µ) ∥∥ 1 ε ∥∥∥∥[H̃n(s, 0, 0, ε, µ) ] n−p ∥∥∥∥ ds } = ∆1 + ∆ 0 2, where ∆ 0 2 = max G2  t∫ a ∥∥∥∥W (t, s, ε, µ) 1 ε ∥∥∥∥∥∥∥∥[H̃n(s, 0, 0, ε, µ) ] p ∥∥∥∥ ds+ ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 52 L. I. KARANDZHULOV + b∫ t ∥∥W (t, s, ε, µ) ∥∥ 1 ε ∥∥∥∥[H̃n(s, 0, 0, ε, µ) ] n−p ∥∥∥∥ ds  . It is possible to prove that ∆1 ≤ K1εn+1, K1 > 0, ∆ 0 2 ≤ K2εn+1, K2 > 0. Consequently, ‖u1 − u0‖ ≤ Kεn+1 or ‖u1 − u0‖ ≤ α 2 , α = 2Kεn+1. With the help of the second inequalities in (20) we obtain ∥∥uj − uj−1 ∥∥ ≤ 1 2 ∥∥uj−1 − uj−2 ∥∥ . Therefore we have ‖u1 − u0‖ ≤ α 2 , ‖u2 − u1‖ ≤ α 22 , . . . , ‖uj − uj−1‖ ≤ α 2j . Then, in the domain G2, ‖uj(t, ε, εµ)‖ ≤ j∑ k=1 ‖uk(t, ε, µ)− uk−1(t, ε, µ)‖ ≤ ≤ ( 1 + 1 2 + 1 22 + . . .+ 1 2j−1 + . . . ) α 2 ≤ Kεn+1. Let limj→∞ uj(t, ε, εµ) = u(t, ε, εµ). Then (22) becomes an identify. Then there exist constants C∗ > 0 and ε∗ > 0, ε∗ ≤ ε such that, in the region, Ω1 = {(t, η, δ, ε, µ)|t ∈ [a, b], ‖η‖ ≤ R, ‖δ‖ ≤ R, ε ∈ (0, ε∗] , µ ∈ (0, ε∗]} we have ‖u(t, ε, µ)‖ = ∥∥∥∥[ η(a, ε, µ) δ(b, ε, µ) ]∥∥∥∥ ≤ C̃∗εn+1. Theorem 4 shows that the obtained formal series (4) is asymptotic and limε→0 x(t, ε) = x0(t). References 1. Boichuk A. A., Samoilenko A. M. Generalized inverse operators and Fredholm boundary-value problems. — Utrecht; Boston: VSP, 2004. — 317 p. 2. Daleckii Ju. L., Krein M. G. Stability of solutions of differential equations in Banach space. — Moscow: Nauka, 1970. — 535 p. (in Russian). 3. Generalize inverse and applications / Ed. M. Z. Nached. — New York etc.: Acad. Press, 1967. — 1054 p. 4. Karandzhulov L. I. Conditionally stable case for singularly perturbed Noether boundary-value problems // Nonlinear Oscillations. — 1999. — 2, № 2. — P. 194 – 208. 5. Karandzhulov L. I. Boundary-value problem for ordinary differential equations with double singularity in conditionally stable case // Collect. Sci. Papers. — Ulyanovsk State Techn. Univ., 2017. — P. 72 – 82. ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1 ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS . . . 53 6. Karandzhulov L. I., Sirakova N. D. Conditionally stable case for boundary-value problems with double singularity // AIP Conf. Proc. — 2017. — 1910. — P. 040011-1 – 040011-12. 7. Karandzhulov L. I., Sirakova N. D. Boundary-value problems for nonlinear systems with double singularity // AMEE, Sozopol 2012: Conf. Proc. — Amer. Inst. Phys., 2012. — P. 247 – 256. 8. Karandzhulov L. I., Stoyanova Ya. Two-point boundary-value problem for singularly perturbed almost nonli- near system in the conditionally stable case // AMEE, Sozopol 2009: Conf. Proc. — Amer. Inst. Phys., 2009. — P. 151 – 158. 9. Kuzmina R. P. Asymptotic methods for ordinary differential equations. — Dordrecht; Boston: Kluwer Acad. Publ., 2000. — 364 p. 10. Penrose R. A Generalize inverse for matrices // Proc. Cambridge Phil. Soc. — 1955. — 51. — P. 406 – 413. 11. Sirakova N. D. Asymptotic behavior of the solutions of boundary-value problems for nonlinear systems with double singularity // Math. and Educ. Math.: Proc. Forty Second Spring Conf. Union Bulgar. Math. (Borovetz, April 2 – 6, 2013). — P. 240 – 247. 12. Trenogin V. A. Functional analysis. — Moscow: Nauka, 1980. — 496 p. (in Russian). 13. Vasil’eva A. B., Butuzov V. F. Asymptotic expansions of the solutions of singularly perturbed equations. — Moscow: Nauka, 1973. — 272 p. (in Russian). 14. Vasil’eva A. B., Butuzov V. F., Kalachev L. V. The boundary function method for singular perturbation problems // SIAM Stud. Appl. Math. — 1995. — 14. — 221 p. Received 20.10.17 ISSN 1562-3076. Нелiнiйнi коливання, 2018, т . 21, N◦ 1