Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability
For the supersymmetric Boussinesq hierarchy, related with the Lax type flows on the space dual to the Lie algebra of superintegro-differential operators of one anticommuting variable for some non-self-adjoint superdifferential operator, the method of the Bargmann type finite-dimensional reductions i...
Gespeichert in:
Datum: | 2015 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2015
|
Schriftenreihe: | Нелінійні коливання |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/177227 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability / O.E. Hentosh // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 454-474 — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-177227 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1772272021-02-13T01:25:55Z Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability Hentosh, O.E. For the supersymmetric Boussinesq hierarchy, related with the Lax type flows on the space dual to the Lie algebra of superintegro-differential operators of one anticommuting variable for some non-self-adjoint superdifferential operator, the method of the Bargmann type finite-dimensional reductions is developed. We prove existence of an even exact supersymplectic structure on the corresponding invariant finite-dimensional supersubspace of the supersymmetric Boussinesq hierarchy as well as the Lax – Liouville integrability of commuting vector fields, generated by the hierarchy and reduced to this supersubspace. Для суперсиметричної iєрархiї Буссiнеска, пов’язаної з потоками типу Лакса на спряженому просторi до алгебри Лi суперiнтегро-диференцiальних операторiв однiєї антикомутативної змiнної для несамоспряженого супердиференцiального оператора, розвинено метод скiнченновимiрних редукцiй типу Баргмана. Доведено iснування парної точної суперсимплектичної структури на вiдповiдному iнварiантному скiнченновимiрному суперпiдпросторi суперсиметричної iєрархiї Буссiнеска та iнтегровнiсть за Лаксом – Лiувiллем редукованих на цей суперпiдпростiр комутуючих векторних полiв, породжених iєрархiєю. 2015 Article Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability / O.E. Hentosh // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 454-474 — Бібліогр.: 30 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/177227 517.9 en Нелінійні коливання Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For the supersymmetric Boussinesq hierarchy, related with the Lax type flows on the space dual to the Lie algebra of superintegro-differential operators of one anticommuting variable for some non-self-adjoint superdifferential operator, the method of the Bargmann type finite-dimensional reductions is developed. We prove existence of an even exact supersymplectic structure on the corresponding invariant finite-dimensional supersubspace of the supersymmetric Boussinesq hierarchy as well as the Lax – Liouville integrability of commuting vector fields, generated by the hierarchy and reduced to this supersubspace. |
format |
Article |
author |
Hentosh, O.E. |
spellingShingle |
Hentosh, O.E. Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability Нелінійні коливання |
author_facet |
Hentosh, O.E. |
author_sort |
Hentosh, O.E. |
title |
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability |
title_short |
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability |
title_full |
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability |
title_fullStr |
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability |
title_full_unstemmed |
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability |
title_sort |
bargmann type finite-dimensional reductions of the lax integrable supersymmetric boussinesq hierarchy and their integrability |
publisher |
Інститут математики НАН України |
publishDate |
2015 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/177227 |
citation_txt |
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability / O.E. Hentosh // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 454-474 — Бібліогр.: 30 назв. — англ. |
series |
Нелінійні коливання |
work_keys_str_mv |
AT hentoshoe bargmanntypefinitedimensionalreductionsofthelaxintegrablesupersymmetricboussinesqhierarchyandtheirintegrability |
first_indexed |
2025-07-15T15:15:52Z |
last_indexed |
2025-07-15T15:15:52Z |
_version_ |
1837726488868159488 |
fulltext |
УДК 517.9
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS
OF THE LAX INTEGRABLE SUPERSYMMETRIC
BOUSSINESQ HIERARCHY AND THEIR INTEGRABILITY
СКIНЧЕННОВИМIРНI РЕДУКЦIЇ ТИПУ БАРГМАНА
IНТЕГРОВНОЇ ЗА ЛАКСОМ СУПЕРСИМЕТРИЧНОЇ IЄРАРХIЇ
БУССIНЕСКА ТА ЇХ IНТЕГРОВНIСТЬ
O. Ye. Hentosh
Pidstryhach Inst. Appl. Probl. Mech. and Math. Nat. Acad. Sci. Ukraine
Naukova Str., 3B, Lviv, 79060, Ukraine
e-mail: ohen@ua.fm
For the supersymmetric Boussinesq hierarchy, related with the Lax type flows on the space dual to the Lie
algebra of superintegro-differential operators of one anticommuting variable for some non-self-adjoint
superdifferential operator, the method of the Bargmann type finite-dimensional reductions is developed.
We prove existence of an even exact supersymplectic structure on the corresponding invariant finite-dimen-
sional supersubspace of the supersymmetric Boussinesq hierarchy as well as the Lax – Liouville integrabi-
lity of commuting vector fields, generated by the hierarchy and reduced to this supersubspace.
Для суперсиметричної iєрархiї Буссiнеска, пов’язаної з потоками типу Лакса на спряженому
просторi до алгебри Лi суперiнтегро-диференцiальних операторiв однiєї антикомутативної
змiнної для несамоспряженого супердиференцiального оператора, розвинено метод скiнченно-
вимiрних редукцiй типу Баргмана. Доведено iснування парної точної суперсимплектичної струк-
тури на вiдповiдному iнварiантному скiнченновимiрному суперпiдпросторi суперсиметричної
iєрархiї Буссiнеска та iнтегровнiсть за Лаксом – Лiувiллем редукованих на цей суперпiдпростiр
комутуючих векторних полiв, породжених iєрархiєю.
1. Introduction. In the framework of the different Lie-algebraic approaches, a wide class of
supersymmetric nonlinear dynamical systems, possessing matrix Lax type representations [1 –
4] and infinite sequences of local conservation laws, has been constructed in [5 – 10] and many
others. For such nonlinear dynamical systems, defined on suitable functional manifolds, a me-
thod of reducing the system to the invariant subspaces, generated by critical points of the related
conservation laws has been developed in [4, 11 – 14]. In particular, in [4, 12, 13] it has been shown
that the exact symplectic structure on the corresponding invariant space can be obtained by
means of the Gelfand – Dikii relationship [15, 16] for the differential of the Lagrangian functi-
onal on a suitably extended phase space [11], and the corresponding Hamiltonian functions of
the reduced vector fields generated by the systems have been constructed.
In [13, 17, 18] the reduction method has been further developed for superconformal nonli-
near dynamical systems as well as for supersymmetric ones defined on supermanifolds of one
commuting and one anticommuting independent variables. In particular, in the paper [18] this
method has been used for investigating Neumann type invariant reductions [19] of the Laberge –
Mathieu supersymmetric hierarchy, related to the Lax type flows on the space dual to the Lie
algebra of superintegro-differential operators of two anticommuting variables for some self-
adjoint superdifferential operator.
c© O. Ye. Hentosh, 2015
454 ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 455
In this article, the reduction method is applied to the supersymmetric Boussinesq hierarchy
[6] associated with a non-self-adjoint superdifferential operator depending on one anticommu-
ting variable.
The second section contains a preliminary description of Lie-algebraic and differential-
geometric properties, being important for a better understanding of the used techniques and
the obtained results.
In the third section, we establish existence of an even exact supersymplectic structure on
the invariant supersubspace determined by the Bargmann type constraints [14] by means of the
superanalog of the Gelfand – Dikii relationship [18, 20] and the Hamiltonian functions for the
reduced commuting vector fields, generated by the hierarchy.
In the fourth section making use of the differential-geometric properties of the supertrace
gradient for the monodromy supermatrix of the related periodic matrix linear spectral problem,
we obtain the Lax representations for these reduced vector fields. The algorithm for redu-
cing of monodromy supermatrix upon the invariant supersubspace is described. A complete
set of functionally independent conservation laws, being involutive with respect to the Poisson
bracket related with the obtained even supersymplectic structure, is also found. It ensures the
complete Liouville integrability [21] of the reduced vector fields.
2. The Lax integrability of the supersymmetric Boussinesq hierarchy. The supersymmetric
Boussinesq hierarchy [6] can be represented in the form of the Lax type flows
dl
dtj
=
[
(l(3j+1)/3)+, l
]
,
dl
dt̃j
=
[
(l(3j+2)/3)+, l
]
,
(1)
where l = ∂3 + φDθ∂ + a∂ − χDθ − b ∈ G∗, w = (a, b, φ, χ)> ∈ M2|2 ⊂ C∞(S1|1;R2|2),
(x, θ) ∈ S1|1, S1|1 ' S × Λ1, S ' R/2πZ, Λ1 is a subalgebra of anticommuting elements of
the Grassmann algebra Λ := Λ0 ⊕ Λ1 over the field R ⊂ Λ0, R2|2 := Λ2
0 × Λ2
1, ∂ :=
∂
∂x
,
Dθ :=
∂
∂θ
+ θ
∂
∂x
is a superderivative and tj , t̃j ∈ R, j ∈ Z+ are evolution parameters. Here
the lower index "+" denotes the pure differential part of a superintegro-differential operator
from the space G∗ ' G being the dual space to the Lie algebra G of superintegro-differential
operators
A := ∂q +
∑
p<2q−1
apD
p
θ ∈ G, p ∈ Z, q ∈ N,
with coefficients ap := ap(x, θ) = a0p(x) + θa1p(x), ap ∈ C∞(S1|1; Λ0) if p = 2r and ap :=
:= ap(x, θ) = a1p(x) + θa0p(x), ap ∈ C∞(S1|1; Λ1) if p = 2r − 1, r < q, q ∈ N, subject to the
scalar product
(A,B) :=
2π∫
0
dx
∫
dθ resAB, A,B ∈ G,
where the symbol "res" designates the coefficient at the operator D−1θ . The evolution with
respect to the parameter t̃1 is given by the supersymmetric nonlinear dynamical system [6] such
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
456 O. YE. HENTOSH
as
da
dt̃1
=
1
3
(4φχ+ 2φφx − 6bx − 3axx),
db
dt̃1
=
1
3
(2(Dθa)χ+ 2φ(Dθb) + 2aax − 2(Dθax)φ+ 3bxx + 2axxx),
dφ
dt̃1
= −2χx − φxx,
dχ
dt̃1
=
1
3
(2φ(Dθχ)− 2(Dθφ)χ+ 2(aφ)x + 2φ(Dθφx) + 3χxx + 2φxxx),
which entails the Boussinesq system [22] at a = b = 0, φ = θu, χ = θv and (u, v)> ∈
∈ C∞(S;R2).
The evolution equations (1) can be considered as a compatibility condition for the spectral
relationship
ly = λy, (2)
where λ ∈ Λ0 ⊃ C is a spectral parameter, being invariant with respect to the evolution flows
(1), y ∈ L2(S1|1;C1|0), and the evolution equations
dy
dtj
= (l(3j+1)/3)+y,
and
dy
dt̃j
= (l(3j+2)/3)+y.
The corresponding adjoint spectral relationship and the adjoint evolutions take the form
l∗z = λz,
dz
dtj
= −(l(3j+1)/3)∗+z, (3)
dz
dt̃j
= −(l(3j+2)/3)∗+z,
where l∗ = −∂3 −Dθ∂φ − ∂a −Dθχ − b is the operator adjoint to l and defined by means of
the integral relationship
2π∫
0
dx
∫
dθz(ly) =
2π∫
0
dx
∫
dθ(l∗z)y,
for all y ∈ L2(S1|1;C1|0) and z ∈ L2(S1|1;C0|1).
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 457
The mentioned above spectral problems can be suitably rewritten in the equivalent matrix
forms [6],
DθY = AY, (4)
DθZ = −A>sZ, (5)
where A ∈ C∞(S1|1; gl (3|3)), A := A[w;λ], Y := Y (x, θ;λ) ∈ W := L2(S1|1;C3|3), Z :=
:= Z(x, θ;λ) ∈ W, Y = (y0, y2, y4, y1, y3, y5)
>, y0 := y, Z = (z0, z2, z4, z1, z3, z5)
>, z5 := z
and
A :=
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 −1 0 0 0 0
0 0 −1 0 0 0
b+ λ a 0 χ φ 0
.
Here the upper index ">s" denotes the supermatrix supertransposition acting by the rule
W>s =
(
W11 W12
W21 W22
)>s
=
(
W>11 W>21
−W>12 W>22
)
for any supermatrix W ∈ gl(m|n).
The associated evolutions are written as
dY
dtj
= BjY = (λjS)+Y, (6)
dY
dt̃j
= B̃jY = (λjS2)+Y, (7)
and
dZ
dtj
= −IB>s
j IZ, (8)
dZ
dt̃j
= −IB̃>s
j IZ, (9)
where I := diag (1, 1, 1,−1,−1,−1), Bj := Bj [w;λ]Y = (λjS)+Y, B̃j := B̃j [w;λ]Y =
= (λjS2)+Y, S '
∑
j∈Z+
Šj−1λ
−j+1 is an asymptotical expansion of the monodromy super-
matrix S(x, θ;λ) := Y (x, x+ 2π, θ;λ) for the periodic matrix spectral problem (4) as |λ| → ∞,
Y (x̆, x, θ;λ) is a fundamental solution of the linear equation (4), that is, Y (x, x, θ;λ) = 1,
x̆ ∈ S, 1 ∈ gl (6) is the unit (6× 6)-matrix (see [18]),
Š−1 =
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
,
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
458 O. YE. HENTOSH
the lower index "+" denotes the polynomial part of the corresponding Laurent series. The
hierarchy (1) possesses two sequences of the Casimir type conservation laws
γj :=
2π∫
0
dx
∫
dθγj [w] =
3
3j + 1
2π∫
0
dx
∫
dθres l(3j+1)/3,
γ̃j :=
2π∫
0
dx
∫
dθ γ̃j [w] =
3
3j + 2
2π∫
0
dx
∫
dθres l(3j+2)/3,
(10)
where some four of them are
γ0 = −
2π∫
0
dx
∫
dθφ, γ̃0 =
2π∫
0
dx
∫
dθχ,
γ1 =
1
3
2π∫
0
dx
∫
dθ(aχ+ bφ+ φ(Dθχ)),
γ̃1 =
1
27
2π∫
0
dx
∫
dθ(−18bχ+ 9bxφ+ 3a2φ+ 9aχx + 6aφxx+
+ 3aφ(Dθφ) + φ(Dθφ)2 + 9φ(Dθχx)− 9χ(Dθχ) + 3φ(Dθφxx), etc.
These conservation laws are connected to each other by means of the Magri [23] relationships,
Mϕ(x, θ; λ̄) = λ̄Lϕ(x, θ; λ̄), (11)
M ϕ̃(x, θ; λ̄) = λ̄L ϕ̃(x, θ; λ̄), (12)
where ϕ(x, θ; λ̄) = grad strS(x, θ;λ), ϕ̃(x, θ; λ̄) = grad strS2(x, θ;λ),
ϕ(x, θ; λ̄) '
∑
j∈Z+
ϕj λ̄
−j , ϕj = grad γj [w],
ϕ̃(x, θ; λ̄) '
∑
j∈Z+
ϕ̃j λ̄
−j , ϕ̃j = grad γ̃j [w],
and L : T (M2|2) → T ∗(M2|2) and M : T (M2|2) → T ∗(M2|2), are a pair of compatible
linear Poisson operators [23], constructed before in [6]. Here the symbol "grad" denotes, as
usually, the left gradient of the corresponding functional. The operators L and M generate a
bi-Hamiltonian representation for the hierarchy (1) in the form
dw
dtj
= −L grad γj+1 = −M grad γj ,
dw
dt̃j
= −L grad γ̃j+1 = −M grad γ̃j ,
(13)
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 459
where
L =
0 2φ+ 3Dθ∂ 0 −3∂
2φ+ 3Dθ∂ 2χ+ (Dθa) + φx −3∂ φDθ
0 −3∂ 0 0
−3∂ −(Dθφ) + φDθ 0 0
and M has a more cumbersome form (see [6]). The vector fields
d
dtj1
and
d
dtj2
, j1, j2 ∈ Z+,
commute with each other, i.e.,[
d
dtj1
,
d
dtj2
]
= 0,
[
d
dtj1
,
d
dt̃j2
]
= 0,
[
d
dt̃j1
,
d
dt̃j2
]
= 0. (14)
The existence of conservation laws (10) and matrix Lax type linearizations (4), (6), (7) and (5),
(8), (9) allow us to reduce the hierarchy (1) to its invariant supersubspaces,
M
2|2
N = {w ∈ M2|2 : gradLN [w] = 0},
generated by the Lagrangian functionals
LN :=
2π∫
0
dx
∫
dθLN [w] =
P∑
k1=0
ak1γk1 +
Q∑
k2=0
bk2 γ̃k2 +
N∑
i=1
ciλi,
where ak1 , bk2 , ci ∈ Λ0 ⊃ C are some coefficients and λi ∈ Λ0 ⊃ C, i = 1, N, are different
eigenvalues of the periodic spectral problem (4) for arbitrarily chosen orders P, Q, N ∈ Z+.
3. The supersymplectic structure on some invariant supersubspace. Below we shall study the
reductions of the vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+, on the invariant supersubspace determined
by the Bargmann type constraints [14]
M
2|2
N =
{
w ∈ M2|2 : gradLN [w] = 0
}
,
LN :=
2π∫
0
dx
∫
dθLN [w] = −3γ1 +
N∑
i=1
ciλi,
(15)
where λi ∈ Λ0 ⊃ C, are some different eigenvalues of the periodic spectral problem (2),
being considered as smooth by Frechet functionals on M2|2, i.e., λi ∈ D(M2|2), with the
corresponding eigenvectors Yi = (y0i, y2i, y4i, y1i, y3i, y5i)
> ∈ W and adjoint eigenvectors
Zi = (z0i, z2i, z4i, z1i, z3i, z5i)
> ∈ W, ci ∈ Λ0 ⊃ C, i = 1, N.
First, we shall analyze the differential-geometric structure of the invariant supersubspace
M
2|2
N ⊂ M2|2. To describe this supersubspace, evidently we shall construct the gradients of the
eigenvalues λi ∈ D(M2|2), i = 1, N, making use the relationships
2π∫
0
dx
∫
dθ〈DθYi, Z̄i〉 =
2π∫
0
dx
∫
dθ〈A[w, λi]Yi, Z̄i〉, i = 1, N, (16)
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
460 O. YE. HENTOSH
where the brackets 〈 , 〉 denotes the standard scalar product on C6N |6N and Z̄i = (z̄0i, z̄2i, z̄4i,
z̄1i, z̄3i, z̄5i)
> is complex conjugate to the vector Zi, which follows from the spectral problem
(4). These gradients are written as
gradλi = − 1
µi
(ȳ2iz̄5i, ȳ0iz̄5i, ȳ3iz̄5i, ȳ1iz̄5i)
> ,
where Ȳi = (ȳ0i, ȳ2i, ȳ4i, ȳ1i, ȳ3i, ȳ5i)
> is complex conjugate to the vector Yi,
µi :=
2π∫
0
∫
dθ y0iz5i, i = 1, N,
are normalizing multipliers, being invariant with respect to the vector fields
d
dtj
and
d
dt̃j
for all
j ∈ Z+.
In case of µi = −ci, i = 1, N, the condition (15) takes the form of the Bargmann type
constraints,
M
2|2
N
⋂
Hc =
{
w ∈ M2|2 : a = −
N∑
i=1
y0iz4i, b = −
N∑
i=1
y2iz4i,
φ =
N∑
i=1
y0iz5i, χ=
N∑
i=1
y2iz5i
}
, (17)
where Hc := {(w,Y,Z)> ∈ M̂2|2 : µi = −ci, ci ∈ Λ0, i = 1, N} are common level surfaces of
the invariant functionals µi, i = 1, N, in the phase space M̂2|2 := M2|2×W 2N of the hierarchies
of coupled dynamical systems (13), (6), (7) and (8), (9) with the parameters λi, i = 1, N, and
Y := (Y1, Y2, . . . , YN )>, Z := (Z1, Z2, . . . , ZN )>.
From the relationships (17) it follows that the solutions to the supersymmetric Boussinesq
hierarchy on the invariant supersubspace (17) are expressed by means of the coordinates of the
eigenvectors Yi and Zi, i = 1, N.
The exact supersymplectic structure on the invariant supersubspace M2|2
N ⊂ M2|2 can be
obtained by means of the analog [18, 20] of the Gelfand – Dikii relationship on the functional
supermanifold M2|2 similarly as it was done in the paper [16] for subspaces of critical points of
local conservation laws. To make use this relationship we need the evident forms of the Frechet
smooth functionals λi, i = 1, N, on Hc. From the equalities (16) we have
λ′i =
2π∫
0
dx
∫
dθ
(
−
5∑
s=0
(Dθysi)zsi + y1iz0i + y3iz2i + y5iz4i−
− y2iz1i − y4iz3i + by0iz5i + ay2iz5i + χy1iz5i + φy3iz5i
)
, (18)
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 461
where λ′i := λi|M̂2|2 ⋂Hc
, i = 1, N, on the level surfaces Hc, c := (c1, c2, . . . , cN )> ∈ ΛN0 , in
the phase space M̂2|2.
Therefore, taking into account the evident dependence (18) of λ′i ∈ D(M2|2), i = 1, N, on
the functions (w,Y,Z)> ∈ M̂2|2 on the level surfacesHc, c ∈ ΛN0 ,we can apply an analog of the
Gelfand – Dikii relationship to the Lagrangian functional L̂N :=
∫ 2π
0
dx
∫
dθL̂N [w,Y,Z] ∈
∈ D(M̂2|2) such as
L̂N = −3γ1 +
N∑
i=1
λ′i +
N∑
i=1
siµi,
where si ∈ Λ0 ⊃ C, i = 1, N, are Lagrangian multipliers.
Owing to the well known Lax theorem [1, 4], the condition grad L̂N [w,Y,Z] = 0 determi-
nes an invariant supersubspace M̃2|2
N ⊂ M̂2|2 of the hierarchy of the coupled dynamical systems
(13), (6), (7) and (8), (9) with the parameters λi, i = 1, N, such as
M̃
2|2
N =
{
(w,Y,Z)> ∈ M2|2 : a = −
N∑
i=1
y0iz4i, b = −
N∑
i=1
y2iz4i,
φ =
N∑
i=1
y0iz5i, χ =
N∑
i=1
y2iz5i,
DθYi = A[w; si]Yi, DθZi = −A>s [w; si]Zi, i = 1, N
}
.
Thus, the supersubspace M2|2
N
⋂
Hc ⊂ M2|2 is diffeomorphic to the supersubspace M̃2|2
N ⊂
⊂ M̂2|2 if si = λi, i = 1, N, for every c ∈ ΛN0 .
By means of the analog of Gelfand – Dikii differential relationship [18, 20] for the Lagrangi-
an functional L̂N ∈ D(M̂2|2),
dL̂N [w,Y,Z] =
〈
(dw, dY, dZ)>, grad L̂N [w,Y,Z]
〉
+Dθα
(1), (19)
where (φ, χ,Y,Z)> are coordinates on a suitably truncated functional supermanifold M̂2|2
N ⊂
⊂ M̂2|2, "d" is a symbol of the exterior differentiation in the Grassmann algebra of differential
forms on C(6N+2)|(6N+2) and the brackets 〈 , 〉 denotes the standard scalar product on
C(6N+2)|(6N+2), we can construct the even exact two-form ω̂(2) = dα(1),
ω̂(2) =
N∑
i=1
5∑
s=0
ysi ∧ zsi + dφ ∧ dχ, (20)
where "∧" is a symbol of the exterior product on the Grassmann algebra of differential forms on
C(6N+2)|(6N+2). The reduced two-form ω(2) := ω̂(2)
∣∣
M̃
2|2
N
defines a supersymplectic structure on
the supersubspace M2|2
N
⋂
Hc ' M̃
2|2
N ⊂ M̂
2|2
N , which is smoothly embedded in the superspace
M̂
2|2
N owing to the relationships (17).
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
462 O. YE. HENTOSH
The expression (19) ensures the invariance of the reduced two-form ω(2) with respect to the
superdifferentiation Dθ, that is,
Dθω
(2) = 0.
Since D2
θ =
d
dx
, the two-form ω(2) is also invariant with respect to the vector field
d
dx
on M̂2|2
N .
Taking into account that the supersubspace M
2|2
N
⋂
Hc ⊂ M2|2 is diffeomorphic to the
finite-dimensional supersubmanifold MF ⊂ R6N |(6N+2), determined by the constraints
F1 := φ−
N∑
i=1
y0iz5i = 0, F2 := χ−
N∑
i=1
y2iz5i, (21)
in the superspace R6N |(6N+2), we can obtain a supersymplectic structure on M
2|2
N
⋂
Hc as a
natural Dirac type reduction of the two-form ω̂(2) on MF .
The two-form ω̂(2) generates the Poisson bracket on the superspace R6N |(6N+2),
{F,G}ω̂(2) =
N∑
i=1
∑
s=0,2,4
(
∂F
∂zsi
∂G
∂ysi
− ∂F
∂ysi
∂G
∂zsi
)
−
−
N∑
i=1
∑
s=1,3,5
(
∂rF
∂ysi
∂lG
∂zsi
+
∂rF
∂zsi
∂lG
∂ysi
)
+
∂rF
∂φ
∂lG
∂χ
+
∂rF
∂χ
∂lG
∂φ
, (22)
where
∂l
∂ζ
and
∂r
∂ζ
denote operators of the left and the right derivatives with respect to the
anticommuting variable ζ ∈ Λ1, for arbitrary smooth functions F ∈ C∞(R6N |(6N+2);R1|0) or
C∞(R6N |(6N+2); R0|1) and G ∈ C∞(R6N |(6N+2);R1|0) or C∞(R6N |(6N+2);R0|1).
Since the matrix of constraints {Fκ1 , Fκ2}ω̂(2) , κ1, κ2 = 1, 2, is nondegenerate, the standard
Dirac type reduction procedure [4, 25] entails the following Poisson bracket:
{F,G}
ω
(2)
F
= {F,G}ω̂(2) − {F, F1}ω̂(2){F2, G}ω̂(2) − {F, F2}ω̂(2){F1, G}ω̂(2) = {F,G}ω̂(2)−
−
(
N∑
i1=1
(
− ∂F
∂z0i1
z5i1 −
∂rF
∂y5i1
y0i1
)
+
∂rF
∂χ
)
×
×
(
N∑
i2=1
(
z5i2
∂G
∂z2i2
− y2i2
∂lG
∂y5i2
)
+
∂lG
∂φ
)
−
−
(
N∑
i1=1
(
− ∂F
∂z2i1
z5i1 −
∂rF
∂y5i1
y2i1
)
+
∂rF
∂φ
)
×
×
(
N∑
i2=1
(
z5i2
∂G
∂z0i2
− y0i2
∂lG
∂y5i2
)
+
∂lG
∂χ
)
, (23)
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 463
related with the supersymplectic structure ω(2)
F := ω(2) on MF ' M
2|2
N .
From the equalities
dLN
dtj
= 0,
dLN
dt̃j
= 0, j ∈ Z+,
it follows that there exist functions ĥ(tj), ĥ(t̃j) ∈ D(M̂2|2), obeying the relationships〈(
dw
dtj
,
dY
dx
,
dZ
dx
)>
, grad L̂N [w,Y,Z]
〉
= Dθĥ
(tj),
〈(
dw
dt̃j
,
dY
dx
,
dZ
dx
)>
, grad L̂N [w,Y,Z]
〉
= Dθĥ
(t̃j),
(24)
where the brackets 〈 , 〉 denotes the standard scalar product on C(6N+2)|(6N+2). The functions
ĥ(tj) and ĥ(t̃j) on M̃2|2
N satisfy the following equalities:
i d
dtj
ω̂(2) = −dĥ(tj), i d
dt̃j
ω̂(2) = −dĥ(t̃j), j ∈ Z+, (25)
where i d
dtj
, i d
dt̃j
are inner differentiations with respect to the vector fields
d
dtj
: M̃
2|2
N →
→ T (M̃
2|2
N ) and
d
dt̃j
: M̃
2|2
N → T (M̃
2|2
N ), j ∈ Z+, in the Grassmann algebra of differential
forms on C(6N+2)|(6N+2).
To state the first equality in (25) we need to calculate the expressions
i d
dtj
〈
(dw, dY, dZ)> , grad L̂N [w,Y,Z]
〉
= Dθĥ
(tj).
Then we have
di d
dtj
〈
(dw, dY, dZ)> , grad L̂N [w,Y,Z]
〉
= −Dθdĥ
(tj).
From (19) we easily obtain that the identities
d
〈
(dw, dY, dZ)> , grad L̂N [w,Y,Z]
〉
= Dθdα
(1)
and
i d
dtj
d
〈
(dw, dY, dZ)> , grad L̂N [w,Y,Z]
〉
= i d
dtj
Dθω̂
(2) (26)
hold owing to the relations
dDθ = −Dθd, i d
dtj
Dθ = −Dθi d
dtj
.
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
464 O. YE. HENTOSH
Since the Lie derivative with respect to the vector field
d
dtj
: M̃
2|2
N → T (M̃
2|2
N ) can be repre-
sented as
d
dtj
= di d
dtj
+ i d
dtj
d
the resulting relationship
d
dtj
〈
(dw, dY, dZ)> , grad L̂N [w,Y,Z]
〉
= −Dθ
(
dĥ(tj) + i d
dtj
ω̂(2)
)
holds on M̃2|2.The latter proves the first equality in (25), which takes place on M̃2|2
N .The second
equality in (25) can be proved analogously.
The obtained relationships (25) lead to important equalities,
d
dtj
ω(2) = 0,
d
dt̃j
ω(2) = 0,
on M2|2
N
⋂
Hc ' M̃
2|2
N . Therefore, the functions h(tj) := ĥ(tj)
∣∣∣
M
2|2
N
⋂
Hc
, h(t̃j) := ĥ(t̃j)
∣∣∣
M
2|2
N
⋂
Hc
are Hamiltonians subject to the vector fields
d
dtj
and
d
dt̃j
on M2|2
N
⋂
Hc ' MF for all j ∈ Z+ if
si = λi, i = 1, N, that is,
i d
dtj
ω
(2)
F = −dh(tj), i d
dt̃j
ω
(2)
F = −dh(t̃j), j ∈ Z+.
For example, the Hamiltonian function of the vector field
d
dx
:=
d
dt0
on the supersubspace
M
2|2
N
⋂
Hc ⊂ M2|2 equals, by definition, h(x) := ĥ(x)
∣∣∣
M
2|2
N
⋂
Hc
, where
ĥ(x) =
N∑
i=1
(
λi(y0iz4i + y1iz5i)− y2iz0i − y4iz2i − y3iz1i − y5iz3i+
+ φ(y4iz5i − y2iz3i)− χ(y2iz5i − y0iz3i)+
+
(
N∑
k=1
y0kz5k
)
(y3iz4i + y2iz3i) +
(
N∑
k=1
y2kz5k
)
(y1iz4i + y0iz3i)+
+
(
N∑
k=1
y1kz5k
)
y3iz5i −
(
N∑
k=1
y2kz4k
)
y0iz4i
)
,
h(x) =
N∑
i=1
(
λi(y0iz4i + y1iz5i)− y2iz0i − y4iz2i − y3iz1i − y5iz3i+
+
(
N∑
k=1
y0kz5k
)
(y3iz4i + y4iz5i) +
(
N∑
k=1
y2kz5k
)
y1iz4i+
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 465
+
(
N∑
k=1
y1kz5k
)
y3iz5i −
(
N∑
k=1
y2kz4k
)
y0iz4i
)
.
Analogously we can find Hamiltonians of the other vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+, on the
supersubspace M2|2
N
⋂
Hc ⊂ M2|2. Therefore, the following theorem holds.
Theorem 1. The vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+, generated by the Boussinesq hierarchy
(1), allow invariant reductions on the finite-dimensional supersubspaces M2|2
N
⋂
Hc ⊂ M2|2 for
each N ∈ N, which are diffeomorphic to the finite-dimensional supermanifold MF , smoothly
embedded into the superspace R6N |(6N+2) and endowed with the even, reduced via the Dirac
scheme, Poisson bracket (23). On these supersubspaces the vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+,
generated by the equations (6), (7) and (8), (9) under λ = λi, i = 1, N, are Hamiltonian with
respect to the Poisson bracket (23). The corresponding Hamiltonians h(tj), h(t̃j) ∈C∞(R6N |(6N+2);
R1|0) are reductions onM2|2
N
⋂
Hc ⊂ M2|2 of suitably constructed functions ĥ(tj), ĥ(t̃j) ∈ D(M̂2|2)
satisfying the equalities (24). The relationships (17) describe all periodic and quasiperiodic soluti-
ons to the Boussinesq hierarchy (1) on the supersubspace M2|2
N
⋂
Hc.
4. The Lax – Liouville integrability of the reduced commuting vector fields. To state the
Liouville integrability of the Hamiltonian vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+, on M̃2|2
N for allN ∈
∈ N we need to construct for these flows the related matrix Lax type representations, depending
on the spectral parameter λ ∈ C, making use of the reduction procedure for the monodromy
supermatrix of the periodic spectral problem (4). We can formulate the following theorem.
Theorem 2. On the finite-dimensional supersymplectic superspace M2|2
N
⋂
Hc, c ∈ ΛN0 , there
exist matrix Lax representations
dSN
dtj
= [Bj,N , SN ], (27)
dSN
dt̃j
= [B̃j,N , SN ], (28)
for the Hamiltonian vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+, where
Bj,N := Bj,N (Y,Z;λ) = B[w;λ]|
M
2|2
N
⋂
Hc
,
and
B̃j,N := B̃j,N (Y,Z;λ) = B̃[w;λ]
∣∣∣
M
2|2
N
⋂
Hc
are projections of the corresponding supermatrices on M2|2
N
⋂
Hc and the reduced monodromy
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
466 O. YE. HENTOSH
supermatrix SN := SN (Y,Z;λ) = S(x, θ;λ)‖
M
2|2
N
⋂
Hc
equals
SN :=
N∑
i=1
Si
λ− λi
+ S0 + S−1λ =
=
N∑
i=1
1
λ− λi
y0iz0i y0iz2i y0iz4i −y0iz1i −y0iz3i −y0iz5i
y2iz0i y2iz2i y2iz4i −y2iz1i −y2iz3i −y2iz5i
y4iz0i y4iz2i y4iz4i −y4iz1i −y4iz3i −y4iz5i
y1iz0i y1iz2i y1iz4i −y1iz1i −y1iz3i −y1iz5i
y3iz0i y3iz2i y3iz4i −y3iz1i −y3iz3i −y3iz5i
y0iz0i y5iz2i y5iz4i −y5iz1i −y5iz3i −y5iz5i
+
+
0 3 0 0 0 0
a 0 3 φ 0 0
−b+
N∑
`=1
y0`z2` −2a 0 −χ−
N∑
`=1
y0`z3` −2φ 0
φ 0 0 0 3 0
χ+ (Dθa) φ 0 a+ (Dθφ) 0 3
−2(Dθb)− (Dθax)+ −χ− (Dθa)+ −2φ −b− (Dθχ)− −2a− 2(Dθφ) 0
+
N∑
`=1
y4`z5` +
N∑
`=1
y1`z4` −
N∑
`=1
y1`z3`
+
+
0 0 0 0 0 0
0 0 0 0 0 0
−3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −3 0 0
λ, (29)
with the functions a, b, φ, χ given by the expressions (17) and the differential relationships
Dθa = −
N∑
i=1
y1iz4i −
N∑
i=1
y0iz3i, Dθb = −
N∑
i=1
y3iz4` −
N∑
i=1
y2iz3i,
Dθφ =
N∑
i=1
y1iz5i − a, Dθχ =
N∑
i=1
y3iz5i − b,
Dθax =
N∑
i=1
y3iz4` +
N∑
i=1
y2iz3i −
N∑
i=1
y1iz2i −
N∑
i=1
y0iz1i + aφ,
Proof. Making use of the spectral problem (4) we can express the gradient ϕ(x, θ; λ̄) of the
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 467
supertrace of the corresponding monodromy supermatrix
S :=
S11 S12 S13 S14 S15 S16
S21 S22 S23 S24 S25 S26
S31 S32 S33 S34 S35 S36
S41 S42 S43 S44 S45 S46
S51 S52 S53 S54 S55 S56
S61 S62 S63 S64 S65 S66
(30)
by means of its elements
ϕ(x, θ; λ̄) =
str (IS̄IAa)
str (IS̄IAb)
str (S̄Aφ)
str (S̄Aχ)
= −
S̄26
S̄16
S̄56
S̄46
,
where S̄ is a supermatrix with the elements being complex conjugate to the corresponding ones
of S.
Using the equality
ϕ(x, θ; λ̄i) =
(
d
dλ
strS(x, θ;λ)
∣∣∣∣
λ=λi
)
gradλi,
we can obtain, in particular, the Magri type relationship [23]
M gradλi = λ̄i L gradλi,
for all i = 1, N as well as expansions of the elements S16, S26, S46 and S56 of the reduced on
M
2|2
N monodromy supermatrix SN at their poles.
Another elements of the supermatrix SN can be extracted from the supergeneralization of
Novikov – Lax [2, 3, 18] monodromy supermatrix equation
DθS = AS − (ISI)A. (31)
From this equation we directly obtain the elements S13, S23, S43, S15, S45 and S12. To find
the other monodromy supermatrix elements we can use the relationship
strS := S11 + S22 + S33 − (S44 + S55 + S66) ≡ C(λ), Dθ C(λ) = 0,
where C(λ) is some Laurent series with constant even coefficients, which follows from the
equation (31). Since
Dθ(S14 + S25 + S36) = (S44 + S55 + S66 − S11 + S22 + S33)− χS16 − φS26,
this property of the monodromy supermatrix supertrace allows us to obtain S25 from the equ-
ality
Dθ(3S25 + aS16 + φS46 +Dθ(S45 − S12) +Dθ(S23 − S56)) = −χS16 − φS26 − C(λ).
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
468 O. YE. HENTOSH
It is evident that the function C(λ) can be chosen arbitrarily since the supermatrix YC(λ)Y −1
with Y := Y (x, θ;λ) is some even fundamental supermatrix for the spectral problem (4) and
C(λ) is some even supermatrix with elements in the forms of Laurent series with constant
coeffecients and satisfies the equation (31). If
C(λ) =
N∑
i=1
σi
λ− λi
,
σi =
5∑
s=0
ysizsi,
(32)
the elements S25, S14 and S36 look like
S25 =
N∑
i=1
y2iz3i
λ− λi
+ C1(λ), S14 =
N∑
i=1
y0iz1i
λ− λi
+ C1(λ),
S36 =
N∑
i=1
y4iz5i
λ− λi
+ C1(λ), DθC1(λ) = 0,
where C1(λ) is some Laurent series with odd coefficients.
Then the elements S42, S53, S44 − S11, S55 − S22, S66 − S33, S44 − S22, S55 − S33, S24 and
S35 can be found successfully.
From the evident expressions for the differences S44 − S11, S55 − S22, S66 − S33, S44 − S22
and S55−S33 we further obtain the diagonal elements of the reduced monodromy supermatrix
SN in the forms
S11 =
N∑
i=1
y0iz0i
λ− λi
+ P, S22 =
N∑
i=1
y2iz2i
λ− λi
+ P,
S33 =
N∑
i=1
y4iz4i
λ− λi
+ P, S44 = −
N∑
i=1
y1iz1i
λ− λi
+ P,
S55 = −
N∑
i=1
y3iz3i
λ− λi
+ P, S66 = −
N∑
i=1
y5iz5i
λ− λi
+ P,
where P = P(Y,Z;λ) is some still undefined function on M2|2
N .
From the relationships for the superderivatives of the diagonal elements of SN we look for
the elements S41, S52 and S63, depending on (Dθ P). Moreover, from the similar relationships
for the elements in the first column of SN we obtain expressions for the elements S21, S51, S31,
S61 and the differential relationship
−DθPxx = −aPx + χ(DθP)− φ(DθPx). (33)
Thereby, the elements S54, S32, S65, S34, S62 and S64 can also be found.
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 469
Having calculated now the elements S65, S62 and S64 successfully in other way we obtain
the expressions
Px =
2
3
φC1(λ), (Dθφ)C1(λ) = 0,
3Pxx = −(2χ+ (Dθa))C1(λ) + φxC1(λ)− φ(Dθ P).
From these equations it follows that
DθPx = 0, −2
3
aφC1(λ) + χ(Dθ P) = 0,
−(2χ+ (Dθa))C1(λ)− φ(Dθ P) = 0.
allowing for the vanishing solution for P and C1(λ). The latter entails the reduced monodromy
supermatrix SN expression (29).
In addition, the relationships (27), (28) follow from the compatibility conditions of the
equations (4) and (6),
dA
dtj
− (DθBj) = (IBjI)A−ABj , j ∈ Z+,
as well as from those for the equations (5) and (7)
dA
dt̃j
− (DθB̃j) = (IB̃jI)A−AB̃j , j ∈ Z+.
This finishes the proof.
Owing to the equations (27), (28) the functionals
1
α
strSαN , α ∈ N, are invariant with respect
to the vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+. Then the coefficients in the expansions of these
functionals at their poles appear to be conservation laws of the reduced on M2|2
N
⋂
Hc vector
fields from the hierarchy (1). Among them the coefficients σi, σ̂i, σ̆i ∈ C∞(R6N |(6N+2);R1|0),
i = 1, N, are given by the expansions of the invariant functionals strSN ,
1
2
strS2
N and
1
3
strS3
N
as follows:
strSN =
N∑
i=1
σi
λ− λi
,
1
2
strS2
N =
1
2
N∑
i=1
σ2i
(λ− λi)2
+
N∑
i=1
σ̂i
λ− λi
, (34)
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
470 O. YE. HENTOSH
σ̂i =
N∑
k=1,k 6=i
str (SiSk)
λi − λk
+ λi str (S−1Si) + str (S0Si) =
=
N∑
k=1,k 6=i
(∑5
s=0 ysizsk
) (∑5
r=0 yrkzri
)
λi − λk
− λigii + fii,
and
1
3
strS3
N =
1
3
N∑
i=1
σ3i
(λ− λi)3
+
N∑
i=1
σiσ̂i
(λ− λi)2
+
N∑
i=1
σ̆i
λ− λi
,
(35)
σ̆i =
N∑
k,`=1,
k, 6̀=i, k 6=`
str (SiSkS`)
(λi − λk)(λi − λ`)
+
N∑
k=1, k 6=i
str (SiSk) (σk − σi)
(λi − λk)2
+
+
N∑
k=1, k 6=i
λi str (S−1(SiSk + SkSi))
λi − λk
+
+
N∑
k=1, k 6=i
str (S0(SiSk + SkSi))
λi − λk
+
+ λi str ((S−1S0 + S0S−1)Si) + str (S2
0Si) =
=
N∑
k,`=1,
k, 6̀=i, k 6=`
(∑5
s=0 ysizs`
) (∑5
κ=0 yκ`zκk
) (∑5
r=0 yrkzri
)
(λi − λk)(λi − λ`)
+
+
N∑
k=1, k 6=i
(∑5
s=0 ysizsk
) (∑5
r=0 yrkzri
) ∑5
κ=0(yκizκi − yκkzκk)
(λi − λk)2
+
+
N∑
k=1, k 6=i
λigik
(∑5
s=0 yskzsi
)
+ λigki
(∑5
s=0 ysizsk
)
λi − λk
+
+
N∑
k=1, k 6=i
fik
(∑5
s=0 yskzsi
)
+ fki
(∑5
s=0 ysizsk
)
λi − λk
− λipii + qii,
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 471
where
gik = 3(y0iz4k + y1iz5k),
fik = 3y2iz0k + ay0iz2k + 3y4iz2k + φy1iz2k +
(
−b+
N∑
`=1
y0`z2`
)
y0iz4k − 2ay2iz4k−
−
(
χ+
N∑
`=1
y0`z3`
)
y1iz4k − 2φy3iz4k + φy0iz1k + 3y3iz1k+
+ (χ+ (Dθa))y0iz3k + φy2iz3k + (a+ (Dθφ))y1iz3k+
+ 3y5iz3k −
(
2(Dθb) + (Dθax)−
N∑
`=1
y4`z5`
)
y5iz0k−
−
(
χ+ (Dθa)−
N∑
`=1
y1`z4`
)
y2iz5k − 2φy4iz5k−
−
(
b+ (Dθχ) +
N∑
`=1
y1`z3`
)
y1iz5k − 2(a+ (Dθφ))y3iz5k,
pik = 9(y0iz2k + y2iz4k + y1iz3k + y3iz5k)− 3φy0iz5k,
qik = 3ay0iz0i + 9y4iz0i + 3φy1iz0i + 3
(
−b+
N∑
`=1
y0`z2`
)
y0iz2k−
− 3ay2iz2k − 3
(
χ+
N∑
`=1
y0`z3`
)
y1iz2k − 3φy3iz2k+
+
(
−2a2 + φ
(
−χ− 2(Dθa) +
N∑
`=1
y0`z3`
))
y0iz4k+
+ 3
(
−b+
N∑
`=1
y0`z2`
)
y2iz4k − 6ay4iz4k − 2φ(2a+ (Dθφ))y1iz4k−
− 3
(
χ+
N∑
`=1
y0`z3`
)
y3iz4k − 6φy5iz4k + 3(χ+ (Dθa))y0iz1k+
+ 6φy2iz1k + 3(a+ (Dθφ))y1iz1k + 9y5iz1k+
+
(
φ(2a+ (Dθφ))− 6(Dθb)− 3(Dθax) + 3
N∑
`=1
y4`z5`
)
y0iz3k+
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
472 O. YE. HENTOSH
+ 3
(
N∑
`=1
y1`z4`
)
y2iz3k − 3φy4iz3k−
− 3
(
b+ (Dθχ) +
N∑
`=1
y1`z3`
)
y1iz3k − 3(a+ (Dθφ))y3iz3k+
+
(
−3a(χ+ (Dθa)) + a
N∑
`=1
y1`z4` − 2(Dθφ)(χ+ (Dθa)) +
+ φ
(
b− (Dθχ)−
N∑
`=1
(y1`z3` + 2y0`z2`)
))
y0iz5k+
+
(
2φ(a− (Dθφ))− 6(Dθb)− 3(Dθax) + 3
N∑
`=1
y4`z5`
)
y2iz5k−
− 3
(
χ+ (Dθa)−
N∑
`=1
y1`z4`
)
y4iz5k+
+
(
−2(a+ (Dθφ))2 + φ
(
3χ+
N∑
`=1
(y0`z3` − 2y1`z4`)
))
y1iz5k−
− 3
(
b+ (Dθχ) +
N∑
`=1
y1`z3`
)
y3iz5k − 6(a+ (Dθφ))y5iz5k,
and are functionally independent on M
2|2
N
⋂
Hc and involutive with respect to the Poisson
bracket {., .}ω(2) on M
2|2
N
⋂
Hc. Thus, owing to the superanalog [29] of Liouville integrabili-
ty theorem the vector fields
d
dtj
and
d
dt̃j
, j ∈ Z+, are superintegrable flows on the finite-
dimensional supersubspace M2|2
N
⋂
Hc ⊂ M2|2.
5. Conclusion. In the present paper the generalized invariant reduction technique, devi-
sed before in [18], for investigating Lax type integrable supersymmetric nonlinear dynamical
systems, has been used to study the Bargmann type reductions of the vector fields generated
by the supersymmetric Boussinesq hierarhy related with a non-self-adjoint superdifferential
operator of one anticommuting variable. It has been established that the corresponding invari-
ant finite-dimensional supersubspace is diffeomorphic to some supersymplectic supermani-
fold, smoothly embedded into superspace R6N |(6N+2), N ∈ N, with an even supersymplectic
structure.
The invariant reduction procedure can be applied to a wide class of other Lax integrable
supersymmetric nonlinear dynamical systems on the functional supermanifolds of one commu-
ting and one anticommuting independent variables, associated with the linear matrix spectral
relationships. The devised technique can also be effectively used for investigating reductions of
(2|1 + 1)- and (2|2 + 1)-dimensional supersymmetric nonlinear dynamical systems with triple
matrix Lax linearizations, described before in the papers [26, 27, 28], upon suitably determi-
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
BARGMANN TYPE FINITE-DIMENSIONAL REDUCTIONS . . . 473
ned invariant finite-dimensional supersubspaces. The latter is planned to be a subject of future
studies.
It is worth to mention here that the reduction method contributes to solving Lax integrable
supersymmetric nonlinear dynamical systems on functional supermanifolds (of one commuting
and one anticommuting independent variables) by means of the integration of the Liouville
integrable systems on suitably determined finite-dimensional supermanifolds with even super-
symplectic structures. Thus, there is a need of developing the devised in [30] integration method,
based on specially constructed Picard – Fuchs type differential-functional equations generating
Hamiltonian – Jacobi transformations, and applying it to the Liouville – Lax integrable dynami-
cal systems on supersymplectic finite-dimensional supermanifods.
1. Lax P. D. Periodic solutions of the KdV equation // Communs Pure and Appl. Math. — 1975. — 28, № 1. —
P. 141 – 188.
2. Faddeev L. D., Takhtadjan L. A. Hamiltonian methods in the theory of solitons // Classics in Mathematics. —
Berlin etc.: Springer-Verlag, 2007. — 592 p.
3. Prykarpatsky A. K., Mykytiuk I. V. Algebraic integrability of nonlinear dynamical systems on manifolds:
classical and quantum aspects. — Dordrecht: Kluwer Acad. Publ., 1998. — 554 p.
4. Hentosh O., Prytula M., Prykarpatsky A., Differential-geometric and Lie – algebraic Backgrounds of studying
integrable nonlinear dynamical systems on functional manifolds (in Ukrainian). — Lviv: Lviv Nat. Univ.
Publ., 2006. — 406 p.
5. Oevel W., Popowicz Z. The bi-Hamiltonian structure of fully supersymmetriс Korteweg – de Vries systems //
Communs Math. Phys. — 1991. — 139, № 3. — P. 441 – 460.
6. Morosi C., Pizzocchero L. osp(3, 2) and gl(3, 3) supersymmetric KdV hierarchies // Phys. Lett. A. — 1994. —
185. — P. 241 – 252.
7. Brunelli J. C., Das A. Supersymmetric two boson equation, its reductions and the nonstandard supersymmetric
KP hierarchy // Int. J. Modern Phys. A. — 1995. — 10, № 32. — P. 4563 – 4599.
8. Brunelli J. C., Das A., Popowicz Z. Supersymmetric extensions of the harry dym hierarchy // J. Math. Phys. —
2003. — 44. — P. 4756 – 4767.
9. Lenells J., Lechtenfeld O. On the N = 2 supersymmetric Camasa – Holm and Hunter – Saxon equations //
J. Math. Phys. — 2009. — 50. — 17 p.
10. Tian K., Popowicz Z., Liu Q. P. A non-standard Lax formulation of the Harry Dym hierarchy and its super-
symmetric extension // J. Phys. A: Math. Theor. — 2012. — 45. — 8 p.
11. Blaszak M. Bi-Hamiltonian formulation for the KdV hierarchу with sources // J. Math. Phys. — 1995. — 36,
№ 9. — P. 4826 – 4831.
12. Prykarpatsky A., Hentosh O., Kopych M., Samuliak R. Neumann – Bogoliubov – Rosochatius oscillatory dy-
namical systems and their integrability via dual moment maps. I // J. Nonlinear Math. Phys. — 1995. — 2,
№ 2. — P. 98 – 113.
13. Prykarpatsky A., Hentosh O., Blackmore D. L. The finite-dimensional Moser type reductions of modified
Boussinesq and super-Korteweg – de Vries Hamiltonian systems via the gradient-holonomic algorithm and
the dual moment maps. I // J. Nonlinear Math. Phys. — 1997. — 4, № 3 – 4. — P. 445 – 469.
14. Ma W. -X., Zhou Z. Binary symmetry constraints of N -wave interaction equations in 1+1 and 2+1 dimensi-
ons // J. Math. Phys. — 2001. — 42, № 9. — P. 4345 – 4382.
15. Bogoyavlensky O. I., Novikov S. P. About the connection of Hamiltonian formalisms of stationary and nonstati-
onary problems // Funct. Anal. and Appl. — 1976. — 10, № 1. — P. 9 – 13.
16. Prykarpatsky A., Blackmore D., Strampp W., Sydorenko Yu., Samuliak R. Some remarks on Lagrangian and
Hamiltonian formalism, related to infinite-dimensional dynamical systems with symmetries // Condensed
Matter Phys. — 1995. — № 6. — P. 79 – 104.
17. Hentosh O. E. Hamiltonian finite-dimensional oscillator-type reductions of Lax integrable superconfomal
hierarchies // Nonlinear Oscillations. — 2006. — 9, № 1. — P. 13 – 27.
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
474 O. YE. HENTOSH
18. Hentosh O. Ye. The Lax integrable Laberge – Mathieu hierarchy of supersymmetric nonlinear dynamical sys-
tems and its finite-dimensional Neumann type reduction // Ukr. Math. J. — 2009. — 61, № 7. — P. 906 – 921.
19. Моser J. Integrable Hamiltonian systems and the spectral theory. — Izhevsk: Izhevsk Republic Publ., 1999. —
296 p.
20. Prykarpatsky A. K., Fil’ B. N. The category of topological jet-manifolds and some applications in the theory
of nonlinear infinite-dimensional dynamical systems // Ukr. Math. J. — 1992. — 44, № 9. — P. 1242 – 1256.
21. Perelomov A. M. Integrable systems of classical mechanics and Lie algebras. – Moscow: Nauka, 1990. —
238 p.
22. McKean H. P. Boussinesq’s equation on the circle // Communs Pure and Appl. Math. — 1981. — 34, № 5. —
P. 599 – 691.
23. Magri F. A simple model of the integrable Hamiltonian equation // J. Math. Phys. — 1978. — 19. — P. 1156 –
1162.
24. Berezin F. A. Introduction to algebra and analysis with anticommuting variables (in Russian). — Moscow:
Moscow Univ. Publ., 1983.
25. Gitman D. M., Tyutin I. V. The canonical quatization of fields with constraints (in Russian). — Moscow:
Nauka, 1986. — 216 p.
26. Nissimov E., Pacheva S. Symmetries of supersymmetric integrable hierarchies of KP type // J. Math. Phys. —
2002. — 43, № 5. — P. 2547 – 2586.
27. Hentosh O. Ye. Lax integrable supersymmetric hierarchies on extended phase spaces // Symmetry, Integrabi-
lity and Geometry: Meth. and Appl. — 2006. — 2. — 11 p.
28. Hentosh O. Ye. Lax integrable supersymmetric hierarchies on extended phase spaces of two anticommuting
variables // Oper. Theory: Adv. and Appl. Modern Anal. and Appl. (The Mark Krein Centenary Conf.). —
Basel: Verlag-Birkhäuser, 2009. — 191. — P. 357 – 371.
29. Shander V. N. About the full integrability of ordinary differential equations on supermanifolds // Funct. Anal.
and Appl. — 1983. — 17, № 1. — P. 89 – 90.
30. Samoilenko A. M., Prykarpatsky Y. A. Algebraic-analitical aspects of fully integrable dynqamical systems and
its perturbations (in Ukrainian). — Kyiv: Inst. Math. Nat. Acad. Sci. Ukraine, 2002. — 237 p.
Received 21.11.14,
after revision — 02.05.15
ISSN 1562-3076. Нелiнiйнi коливання, 2015, т . 18, N◦ 4
|