Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability
For the supersymmetric Boussinesq hierarchy, related with the Lax type flows on the space dual to the Lie algebra of superintegro-differential operators of one anticommuting variable for some non-self-adjoint superdifferential operator, the method of the Bargmann type finite-dimensional reductions i...
Saved in:
Date: | 2015 |
---|---|
Main Author: | Hentosh, O.E. |
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2015
|
Series: | Нелінійні коливання |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/177227 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability / O.E. Hentosh // Нелінійні коливання. — 2015. — Т. 18, № 4. — С. 454-474 — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Bargmann type finite-dimensional reductions of the Lax integrable supersymmetric Boussinesq hierarchy and their integrability
by: Ye. Hentosh
Published: (2015) -
Lax Integrable Supersymmetric Hierarchies on Extended Phase Spaces
by: Hentosh, O.Ye.
Published: (2006) -
Lie-algebraic structure of the Lax-integrable (2|1+1)-dimensional supersymmetric matrix dynamical systems
by: Ye. Hentosh
Published: (2017) -
Supersymmetric Representations and Integrable Fermionic Extensions of the Burgers and Boussinesq Equations
by: Kiselev, A.V., et al.
Published: (2006) -
The discrete nonlinear Schrödinger type hierarchy, its finite dimensional reduction analysis and numerical integrability scheme
by: Prykarpatsky, A.K., et al.
Published: (2017)