The discrete nonlinear Schrödinger type hierarchy, its finite dimensional reduction analysis and numerical integrability scheme

We investigate discretizations of the integrable nonlinear Schrodinger dynamical system, well known as the ¨ Ablowitz – Ladik equation, the related symplectic structures and its finite dimensional invariant reductions. An effective scheme of invariant reducing the corresponding infinite system of or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Prykarpatsky, A.K., Cieśliński, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2017
Schriftenreihe:Нелінійні коливання
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/177304
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The discrete nonlinear Schrödinger type hierarchy, its finite dimensional reduction analysis and numerical integrability scheme / A.K. Prykarpatsky, J. Cieśliński // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 228-266 — Бібліогр.: 61 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We investigate discretizations of the integrable nonlinear Schrodinger dynamical system, well known as the ¨ Ablowitz – Ladik equation, the related symplectic structures and its finite dimensional invariant reductions. An effective scheme of invariant reducing the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter is developed. A finite set of recurrent algebraic regular relations, allowing to generate solutions of the discrete nonlinear Schrodinger dynamical system, is constructed, the related functional spaces of ¨ solutions is discussed. Finally, the Fourier transform approach to studying the solution set of the discrete nonlinear Schrodinger dynamical system and its functional-analytical aspects is analyzed.