The discrete nonlinear Schrödinger type hierarchy, its finite dimensional reduction analysis and numerical integrability scheme
We investigate discretizations of the integrable nonlinear Schrodinger dynamical system, well known as the ¨ Ablowitz – Ladik equation, the related symplectic structures and its finite dimensional invariant reductions. An effective scheme of invariant reducing the corresponding infinite system of or...
Gespeichert in:
Datum: | 2017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут математики НАН України
2017
|
Schriftenreihe: | Нелінійні коливання |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/177304 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The discrete nonlinear Schrödinger type hierarchy, its finite dimensional reduction analysis and numerical integrability scheme / A.K. Prykarpatsky, J. Cieśliński // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 228-266 — Бібліогр.: 61 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | We investigate discretizations of the integrable nonlinear Schrodinger dynamical system, well known as the ¨ Ablowitz – Ladik equation, the related symplectic structures and its finite dimensional invariant reductions. An effective scheme of invariant reducing the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter is developed. A finite set of recurrent algebraic regular relations, allowing to generate solutions of the discrete nonlinear Schrodinger dynamical system, is constructed, the related functional spaces of ¨ solutions is discussed. Finally, the Fourier transform approach to studying the solution set of the discrete nonlinear Schrodinger dynamical system and its functional-analytical aspects is analyzed. |
---|