Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation

The paper deals with nonlinear one-dimensional Dirac equation. We describe its invariants set by means of the deformed linear Dirac equation, using the fact that two ordinary differential equations are equivalent if their sets of invariants coincide.

Збережено в:
Бібліографічні деталі
Дата:2017
Автор: Prykarpatsky, Y.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2017
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/177305
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation / Y.A. Prykarpatsky // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 267-273 — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-177305
record_format dspace
spelling irk-123456789-1773052021-02-15T01:26:54Z Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation Prykarpatsky, Y.A. The paper deals with nonlinear one-dimensional Dirac equation. We describe its invariants set by means of the deformed linear Dirac equation, using the fact that two ordinary differential equations are equivalent if their sets of invariants coincide. Розглянуто одновимiрне нелiнiйне рiвняння Дiрака та описано множину його iнварiантiв за допомогою деформованого лiнiйного рiвняння Дiрака з використанням того факту, що два звичайних диференцiальних рiвняння є еквiвалентними, якщо множини їх iнварiантiв збiгаються мiж собою. 2017 Article Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation / Y.A. Prykarpatsky // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 267-273 — Бібліогр.: 11 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/177305 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper deals with nonlinear one-dimensional Dirac equation. We describe its invariants set by means of the deformed linear Dirac equation, using the fact that two ordinary differential equations are equivalent if their sets of invariants coincide.
format Article
author Prykarpatsky, Y.A.
spellingShingle Prykarpatsky, Y.A.
Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation
Нелінійні коливання
author_facet Prykarpatsky, Y.A.
author_sort Prykarpatsky, Y.A.
title Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation
title_short Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation
title_full Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation
title_fullStr Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation
title_full_unstemmed Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation
title_sort steen – ermakov – pinney equation and integrable nonlinear deformation of one-dimensional dirac equation
publisher Інститут математики НАН України
publishDate 2017
url http://dspace.nbuv.gov.ua/handle/123456789/177305
citation_txt Steen – Ermakov – Pinney equation and integrable nonlinear deformation of one-dimensional Dirac equation / Y.A. Prykarpatsky // Нелінійні коливання. — 2017. — Т. 20, № 2. — С. 267-273 — Бібліогр.: 11 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT prykarpatskyya steenermakovpinneyequationandintegrablenonlineardeformationofonedimensionaldiracequation
first_indexed 2025-07-15T15:21:03Z
last_indexed 2025-07-15T15:21:03Z
_version_ 1837726814948032512
fulltext UDC 517.9 STEEN – ERMAKOV – PINNEY EQUATION AND INTEGRABLE NONLINEAR DEFORMATION OF ONE-DIMENSIONAL DIRAC EQUATION РIВНЯННЯ СТIНА – ЄРМАКОВА – ПIННЕЯ ТА IНТЕГРОВНI НЕЛIНIЙНI ДЕФОРМАЦIЇ ОДНОВИМIРНОГО РIВНЯННЯ ДIРАКА Ya. Prykarpatskyy Agricultural Univ. Krakow, Poland Inst. Math. Nat. Acad. Sci. Ukraine and Drohobych Ivan Franko State Ped. Univ. e-mail: yarpry@gmail.com The paper deals with nonlinear one-dimensional Dirac equation. We describe its invariants set by means of the deformed linear Dirac equation, using the fact that two ordinary differential equations are equivalent if their sets of invariants coincide. Розглянуто одновимiрне нелiнiйне рiвняння Дiрака та описано множину його iнварiантiв за до- помогою деформованого лiнiйного рiвняння Дiрака з використанням того факту, що два зви- чайних диференцiальних рiвняння є еквiвалентними, якщо множини їх iнварiантiв збiгаються мiж собою. 1. Introduction. In 1874 Danish mathematician Adolph Steen wrote a paper [1] where he intro- duced the system of two equations r′′ + qr = 1 r3 , (1.1) and g′′ + qg = 0, (1.2) where q = q(u) is a continuous function on a real interval. He discovered that these two equati- ons above are in some sense equivalent, that is the general solution to the second equation (1.2) gives rise to that to the first one (1.1) and vise-versa. Unluckily, the paper was published in Danish and his research was lost. Later many authors have been rediscovering these equations and mentioning too the property above. In 1880 V. Yermakov [2] gave a novel derivation and generalization of the Steen’s equations. This generalization was actively studied and developed by others researches. Later, in 1950 Edmund Pinney [3] showed that the solution of the first equation (1.1) is r(t) = √ Au2 + 2Buv + Cv2, (1.3) c© Ya. Prykarpatskyy, 2017 ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 2 267 268 YA. PRYKARPATSKYY where u(t) and v(t) are two arbitrary linearly independent solutions of the second equation of (1.1), A, B and C are constants which satisfy the equality B2 −AC = 1 W 2 , (1.4) with W being the constant Wronskian of the two independent solutions u, v to (1.2). Nowadays the Steen’s contribution is forgotten too and nobody calls systems of equati- ons (1.1) Steen’s equations. The name of Ermakov is commonly used or they also often called Ermakov – Pinney equations. Raymond Redheffer and Irene Redheffer wrote [4] an historical survey on the Steen’s equations with English translation of the original Steen’s paper. It is worth highlighting the following quite simple fact. Let us take the two equations y′′ = ω(t)y (1.5) and z′′ = ω(t)z + k z3 , (1.6) which are, in fact, rewritten equations from (1.1). These equations can be easily transformed to the more generalized form (py′)′ = ω(t)y and (pz′)′ = ω(t)z + k z3 for some smooth function p(z) by changing the variables on which we will not stop here. Let us denote α := y1y2, where y1 and y2 are two arbitrary solutions to the equation (1.5), and β := z2. After differentiation and substituting into (1.5) and (1.6) one can obtain the following expressions: α′′′ − 2ω′α− 4ωα′ = 0, (1.7) or [ d3 dt3 − ( 2ω d dt + 2 d dt ω )] α = 0, (1.8) and β′′′ − 2ω′β − 4ωβ′ = 0, (1.9) or [ d3 dt3 − ( 2ω d dt + 2 d dt ω )] β = 0. (1.10) It is worth mentioning that the differential expression η = [ d3 dt3 − ( 2ω d dt + 2 d dt ω )] is the second Poisson operator [5, 6] for the KdV equation ut = −uxxx − 6uux = K[u] in its Hamil- tonian form ut = −ηgradH, where H is the corresponding [7] Hamiltonian functional. ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 2 STEEN – ERMAKOV – PINNEY EQUATION AND INTEGRABLE NONLINEAR DEFORMATION . . . 269 Taking into account that the equations (1.8) and (1.10) are linear and the same, one can infer that their sets of the solutions coincide to each other. It means that the solution to the equation (1.10) is the sum of the solutions to the equation (1.8), whereas the expression z2 = Ay21 +By1y2 + Cy22 is the solution of the (1.8), and then the function z = √ Ay21 +By1y2 + Cy22 is the solution of the (1.6). Taking into account that the Wronskian of any two different solutions to (1.5) is constant, one easily obtains the relationship (1.4). In the next section we will use the above mentioned trick in finding solutions to the one-di- mensional Dirac equations [5]. 2. Dirac equation, its invariants and integrable nonlinear deformation. Let us consider the one-dimensional Dirac equation df dx = l(λ; q)f, l(λ; q) := ( λ q1(x) q2(x) −λ ) , (2.1) where x ∈ R, λ ∈ C is a complex parameter, (q1, q2) ᵀ ∈ M ' C∞(R;C2) is a functional vector of potentials, and f ∈ (L∞(R;C2) is found solution to (2.1). The whole solution set to the equation (2.1) is completely described [8] by means of the corresponding fundamental solution F := ( f11 f12 f21 f22 ) ∈ C∞(R× R,EndC2), satisfying the matrix equation d dx F (x, x0) = l(λ; q)F (x, x0), F (x, x0)|x=x0 = 1 (2.2) at any point x0 ∈ R. Then an arbitrary solution f ∈ C∞(R;C2) to (2.2), evidently, can be represented as f(x) = F (x, x0)f(x0), (2.3) where f(x0) ∈ C2 is a suitable Cauchy data vector. It is well known from the general theory of ordinary differential equations [8] that the soluti- on set to the equation (2.1) can be equivalently described by means of its complete set of invari- ants. Moreover, the two ordinary differential equations are then considered to be equivalent if their sets of invariants coincide. From this point of view one can consider a suitable deformed Dirac equation df̃ dx = l(λ; q)f̃ + δf̃ , (2.4) where a vector δf̃ ∈ C∞(RC2) can depend on f̃ ∈ C∞(R;C2) and the vector q ∈ M coincides with that chosen in (2.1). ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 2 270 YA. PRYKARPATSKYY Now a problem consists in determining the vector δf̃ ∈ C∞(R;C2) in such a form which guarantees that the set of invariants of (2.4) will contain or coincide with that of the equati- on (2.1). To approach a solution to this problem we need first to describe the invariants set to the equation (2.1). To do that we assume for simplicity that the functional vector q ∈ M is 2π-periodic in x ∈ R : q(x+ 2π) = q(x) for all x ∈ R. Then one can define [9] the monodromy matrix S(x) ∈ EndC2 as S(x) := F (x+ 2π, x), (2.5) satisfying the well known Novikov commutator equation [10] dS(x) dx = [l(λ; q), S(x)]. (2.6) As a consequence from (2.6) one easily obtains that all functions γj := trSj(x), dγj dx = 0, (2.7) where j ∈ Z+, are invariants for (2.1) and form [11] its complete set. In particular, we can determine only two dependent invariants for (2.1) γ1 = trS(x), γ2 = detS(x) = 1, (2.8) and will now try to search for such a deformation vector δf̃ ∈ C∞(R;C2) which will give rise to the invariants set of (2.4) coinciding with (2.8) of (2.1). For this problem to be solved effectively, we need to find the determining equations for invariants (2.8) as for the independent gradient grad γ1 ∈ T ∗(M), q2D −1 x q2 d dx + λ− q2D−1x q1 d dx − λ− q1D−1x q2 q1D −1 x q1  gradγ1 = 0, (2.9) where, by definition, we put D−1x (·) := 1 2  x∫ x0 (·)dy − x0+2π∫ x (·)dy  , x ∈ R. It is now worth observing that the monodromy matrix S(x) ∈ EndC2 for any x ∈ R allows the following matrix representation: S(x) = F (x, x0)C(x0)F −1(x, x0) (2.10) ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 2 STEEN – ERMAKOV – PINNEY EQUATION AND INTEGRABLE NONLINEAR DEFORMATION . . . 271 for some specially chosen matrix C(x0) ∈ EndC2, x0 ∈ R. As a simple consequence of the representation (2.10) one easily obtains that gradγ1 =  c11f21f22 − c12f221 + c21f 2 22 − c22f22f21 c12f 2 11 − c11f11f12 − c21f212 + c22f12f11  , (2.11) where we used the matrix expression C(x0) = ( c11 c12 c21 c22 ) ∈ EndC2. Taking into account the arbitrariness of the matrix C(x0) ∈ EndC2 entering (2.10), we can easily obtain from (2.9) and (2.11) that the equation q2D −1 x q2 d dx + λ− q2D−1x q1 d dx − λ− q1D−1x q2 q1D −1 x q1   −f221 f211  = 0 (2.12) holds for all x ∈ R and λ ∈ C. Now it is easy to infer that if the vector f̃ := (f̃1, f̃2) τ ∈∞ (C;C2) of the equation (2.4) satisfies the same equation as (2.12) q2D −1 x q2 d dx + λ− q2D−1x q1 d dx − λ− q1D−1x q2 q1D −1 x q1   −f̃22 f̃21  = 0, (2.13) then the corresponding set of invariants of the deformed equation (2.4) will possess that of invariants for (2.1). In particular, from (2.13) it follows that a partial solution to the deformed Dirac equation (2.4) can be represented as f̃ =  ( c12f 2 11 − c21f11f12 − c21f212 + c22f12f11 )1/2 ( c12f 2 21 − c11f21f22 + c22f22f21 − c21f222 )1/2  , (2.14) depending only on the fundamental matrix F (x, x0) ∈ EndC2 of the equation (2.1) and equi- valently, on its set of invariants. It is clear that the deformed Dirac equation (2.4) can generate a new solutions to it, yet the problem of describing this set of invariants is much more complicated and will not be herewith discussed. Let us proceed now to describing the deformed Dirac equation (2.4), taking into account that the vector ( −f̃22 , f̃21 ) ∈ C∞(R;C2) satisfies in general the following equation: q2D −1 x q2 d dx + λ− q2D−1x q1 d dx − λ− q1D−1x q2 q1D −1 x q1   −f̃22 f̃21  = =  −δf̃2 f̃2 + q1 d−1 dx ( δf̃1 f̃2 + δf̃2 f̃1 ) δf̃1 f̃1 − q2 d−1 dx ( δf̃1 f̃2 + δf̃2 f̃1 )  , (2.15) ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 2 272 YA. PRYKARPATSKYY which reduces to (2.13) if identically one has δf̃2 f̃2 = q1D −1 x ( δf̃1 f̃2 + δf̃2 f̃1 ) , δf̃1 f̃1 = q2D −1 x ( δf̃1 f̃2 + δf̃2 f̃1 ) . (2.16) As a simple consequence of (2.16) one obtains that there exists some function α ∈ C∞(R;C) for which δf̃2 = α f̃2 q1, δf̃1 = α f̃1 q2. (2.17) Having substituted (2.17) into (2.16) one obtains that dα dx = α ( q1 f̃1 f̃2 + q2 f̃2 f̃1 ) , (2.18) or upon integrating (2.18), one ensues α = ᾱ exp [ D−1x ( q1 f̃1 f̃2 + q2 f̃2 f̃1 )] , where ᾱ ∈ C is an arbitrary constant. Having now summarized the results obtained above one can formulate the following theorem. Theorem 2.1. Consider two Dirac type equations: the first one (2.1) linear and the second one (2.4) nonlinear, where δf̃1 = ᾱ f̃1 q2 exp [ D−1x ( q1 f̃1 f̃2 + q2 f̃2 f̃1 )] , δf̃2 = ᾱ f̃2 q1 exp [ D−1x ( q1 f̃1 f̃2 + q2 f̃2 f̃1 )] (2.19) and ᾱ ∈ C is an arbitrary constant. Then a partial solution to the nonlinear Dirac type equation (2.4) is given by the explicit expression (2.14), represented by means of the fundamental solution F (x, x0) ∈ EndC2 to the Dirac equation (2.1) and the arbitrary constant matrix C ∈ EndC2. Thus, the Dirac equation (2.4), deformed by means of the vector components (2.19), is a nonlinear integro-differential equation depending on the functional element q ∈ M, whose 2π- periodicity assumed before is not essential, as the main inferences, which are presented above, were based strictly on local reasonings. 3. Conclusion. Based on the analogy with the oscillator type equations (2.1) and (2.2) we succeeded in deriving a more general Steen type statement about the relationship between the solution sets to the linear Dirac equation (2.1) and its nonlinear deformation (2.4), specified by the expressions (2.20). ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 2 STEEN – ERMAKOV – PINNEY EQUATION AND INTEGRABLE NONLINEAR DEFORMATION . . . 273 References 1. Steen A. Om Formen for Integralet af den lineaere Differentialligning af an den Orden // Overs. selsk. virksomhed... Kgl. dan. vid. selsk. — 1874. — P. 1 – 12. 2. Ermakov V. Second-order differential equations. Conditions of complete integrability // Univ. Izvestiya. — 1880. — № 9. — P. 1 – 25. 3. Pinney E. The nonlinear differential equation y′′(x)+p(x)y+cy−3 = 0 // Proc. Amer. Math. Soc. — 1950. — 1. 4. Redheffer R., Redheffer I. Steen’s 1847 paper: historical survey and translation // Aequat. Math. — 2001. — 61. — P. 131 – 150. 5. Novikov S. P. (Ed.) Theory of solitons. — Moscow: Nauka, 1980. 6. Prykarpatsky A., Mykytyuk I. Algebraic integrability of nonlinear dynamical systems on manifolds: classical and quantum aspects. — Netherlands: Kluwer Acad. Publ., 1998. 7. Arnold V. I. Mathematical methods of classical mechanics. — New York: Springer, 1978. 8. Coddington E. A., Levinson N. Theory of ordinary differential equations. — New York: McGraw-Hill, 1955. 9. Titchmarsh E. C. Eigenfunction expansions associated with second-order differential equations. Pt One. — Second ed. – Oxford: Oxford Univ. Press, 1962. 10. Novikov S., Manakov S. V., Pitaevskii L. P., Zakharov V. E. Theory of solitons. The inverse scattering methods // Monogr. Contemp. Math. – 1984. 11. Reiman A. G., Semenov-Tyan-Shanskii M. A. Current algebras and nonlinear partial differential equations // Dokl. Akad. Nauk SSSR. — 1980. — 251, № 6. — P. 1310 – 1313. Received 20.02.17 ISSN 1562-3076. Нелiнiйнi коливання, 2017, т . 20, N◦ 2