Positive solutions of linear impulsive differential equations

The paper deals with existence of positive (nonnegative) solutions of linear homogeneous impulsive differential equations. The main result is also applied to investigate the similar problem for higher order linear homogeneous impulsive differential equations. All results are formulated in terms of...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2005
Автори: Akhmet, M.U., Yilmaz, O.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2005
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/178010
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Positive solutions of linear impulsive differential equations / M.U. Akhmet, O. Yilmaz // Нелінійні коливання. — 2005. — Т. 8, № 3. — С. 291-297. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-178010
record_format dspace
spelling irk-123456789-1780102021-02-19T01:26:54Z Positive solutions of linear impulsive differential equations Akhmet, M.U. Yilmaz, O. The paper deals with existence of positive (nonnegative) solutions of linear homogeneous impulsive differential equations. The main result is also applied to investigate the similar problem for higher order linear homogeneous impulsive differential equations. All results are formulated in terms of coefficients of the equations. Розглядається iснування додатних (невiд’ємних) розв’язкiв лiнiйних однорiдних диференцiальних рiвнянь з iмпульсною дiєю. Основний результат також використовується для вивчення подiбної проблеми для лiнiйних однорiдних рiвнянь вищого порядку з iмпульсною дiєю. Всi результати сформульовано в термiнах коефiцiєнтiв рiвнянь. 2005 Article Positive solutions of linear impulsive differential equations / M.U. Akhmet, O. Yilmaz // Нелінійні коливання. — 2005. — Т. 8, № 3. — С. 291-297. — Бібліогр.: 13 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/178010 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The paper deals with existence of positive (nonnegative) solutions of linear homogeneous impulsive differential equations. The main result is also applied to investigate the similar problem for higher order linear homogeneous impulsive differential equations. All results are formulated in terms of coefficients of the equations.
format Article
author Akhmet, M.U.
Yilmaz, O.
spellingShingle Akhmet, M.U.
Yilmaz, O.
Positive solutions of linear impulsive differential equations
Нелінійні коливання
author_facet Akhmet, M.U.
Yilmaz, O.
author_sort Akhmet, M.U.
title Positive solutions of linear impulsive differential equations
title_short Positive solutions of linear impulsive differential equations
title_full Positive solutions of linear impulsive differential equations
title_fullStr Positive solutions of linear impulsive differential equations
title_full_unstemmed Positive solutions of linear impulsive differential equations
title_sort positive solutions of linear impulsive differential equations
publisher Інститут математики НАН України
publishDate 2005
url http://dspace.nbuv.gov.ua/handle/123456789/178010
citation_txt Positive solutions of linear impulsive differential equations / M.U. Akhmet, O. Yilmaz // Нелінійні коливання. — 2005. — Т. 8, № 3. — С. 291-297. — Бібліогр.: 13 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT akhmetmu positivesolutionsoflinearimpulsivedifferentialequations
AT yilmazo positivesolutionsoflinearimpulsivedifferentialequations
first_indexed 2025-07-15T16:18:59Z
last_indexed 2025-07-15T16:18:59Z
_version_ 1837730459886288896
fulltext UDC 517 . 9 POSITIVE SOLUTIONS OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS ДОДАТНI РОЗВ’ЯЗКИ ЛIНIЙНИХ ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ З IМПУЛЬСНОЮ ДIЄЮ M. U. Akhmet Middle East Techn. Univ. 06531 Ankara, Turkey O. Yilmaz Abant Izzet Baysal Univ. Gölköy Kampüsü, 14280, Bolu, Turkey The paper deals with existence of positive (nonnegative) solutions of linear homogeneous impulsive dif- ferential equations. The main result is also applied to investigate the similar problem for higher order linear homogeneous impulsive differential equations. All results are formulated in terms of coefficients of the equations. Розглядається iснування додатних (невiд’ємних) розв’язкiв лiнiйних однорiдних диференцiаль- них рiвнянь з iмпульсною дiєю. Основний результат також використовується для вивчення подiбної проблеми для лiнiйних однорiдних рiвнянь вищого порядку з iмпульсною дiєю. Всi ре- зультати сформульовано в термiнах коефiцiєнтiв рiвнянь. 1. Introduction and preliminaries. The problem of positive solutions for different type of di- fferential equations has attracted the attention of many researchers [1 – 4]. They considered positiveness of solutions defined on the positive half line, whole line, and solutions of boundary- value problems. In the last several decades, theory of impulsive differential equations has been developed very intensively to keep up with demands of disciplines such as biology, mechanics, medicine, etc. Many results of the theory can be found in profoundly written books [5] and [6] and in the references cited in these books. Naturally, the problem of positive solutions for the impulsive differential equations has become important. One can mention the paper [7] in this subject. Our article concerns with existence of positive solutions of linear impulsive homogeneous systems of the first order and of higher order linear equations. Apparently, this work is one of the first in the subject. To obtain the result we shall develop, for impulsive differential equations, a method which was first proposed in [8]. We intent to find conditions on the impulsive part of the systems, which provide, together with conditions on differential equations, existence of nonnegative solutions on positive half line. Let us denote by R, N, the sets of all real numbers and positive integers respectively. Throug- hout the paper, some abbreviations are used to simplify the notation: If x = (x1, . . . , xn) is a vector, then x ≥ 0 means that xk ≥ 0 for k = 1, . . . , n. Similarly, if A = (aik) is an n×n matrix, then A ≥ 0 means that aik ≥ 0 for i, k = 1, . . . , n. c© M. U. Akhmet, O. Yilmaz, 2005 ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 3 291 292 M. U. AKHMET, O. YILMAZ Consider the system of impulsive linear differential equations, x′(t) = −A(t)x, t 6= θi, (1) ∆x |t=θk = −Bkx, (2) where x ∈ Rn, t ∈ R+ = [0,∞), A(t) is an n × n matrix of continuous functions and Bk are constant n× n matrices. We assume that throughout the paper, the following conditions on the system (1), (2) are fulfilled: C1) A(t) ∈ C(R+), A(t) ≥ 0 for t ∈ R+; C2) {θk} ⊂ R+\{0}, k ∈ N, is a strictly ordered sequence such that θk → ∞ as k → ∞; C3) Bk ≥ 0, det(I −Bk)−1 6= 0 and (I −Bk)−1 ≥ 0 for k ∈ N. From the theory of impulsive differential equations [5, 6], it is known that the system (1), (2) satisfies the conditions for existence and uniqueness of solution. Moreover, every solution x(t) of the system can be continued to +∞. We also consider the linear impulsive differential equation of n-th order, a0(t)y(n) + n∑ k=1 (−1)k+1ak(t)y(n−k) = 0, t 6= θi, (3) ∆ŷ |t=θi = Bŷ, (4) where ŷ(t) = [y(t), . . . , y(n−1)(t)]T , y(i) = diy dti and Bk =  bk 11 bk 12 . . . bk 1n bk 21 bk 22 . . . bk 2n . . . . . . . . . . . . bk n1 bk n2 . . . bk nn  . For the n-th order system, following conditions are imposed: D1) the coefficient functions ak(t) ∈ C(R+) for k = 1, . . . , n satisfy the following: a0 > 0, ak ≥ 0, k = 2, . . . , n; D2) {θk} ⊂ R+\{0}, k ∈ N, is a strictly ordered sequence such that θk → ∞ as k → ∞; D3) (−1)i+jbij ≤ 0 for i, j = 1, . . . , n, det(I −Bk)−1 6= 0 and (I −Bk)−1 ≥ 0, k ∈ N. One should emphasize that the idea of considering higher order impulsive differential equati- ons with discontinuity in all derivatives is not new [9 – 13]. It is understood that the solutions of the systems (1), (2) and (3), (4) are left continuous functions with discontinuities of the first type at the points θi. ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 3 POSITIVE SOLUTIONS OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS 293 2. Main results. Theorem 1. Assume that assertions C1) – C3) are fulfilled. Then there exists a solution x = = x(t) of (1), (2), which is not identically zero, satisfying x(t) ≥ 0, −x′(t) ≥ 0, t ∈ R+, (5) −∆x(θi) ≥ 0, ∆x′(θi) ≥ 0, i ∈ N. (6) Proof. We intend to prove existence of positive valued solution x0(t) constructively as a limit of solutions which are positive on sections. a) Fix an integer r > 0 and x0 > 0. We shall show that for a given initial condition (r, x0), there exists a positive valued solution xr(t) = x(t, r, x0) of (1) and (2) on [0, r]. We assume, without loss of generality, that θl < r ≤ θl+1 for some l ≥ 1. Let us show that on (θl, r], xr(t) is decreasing and positive valued. Since xr(r) = x0 > 0, it follows that xr(t) > 0 for t near r, hence xr(t) dt ≤ 0 for t near r. Thus xr(t) ≥ xr(r) > 0 for t less than and close to r. This argument shows that xr(t) > 0 and xr(t) dt ≤ 0 for t ∈ (θl, r]. In order to define a value xr(θ−l ), we, by using (2), obtain, xr(θ+ l ) = (I −Bl)xr(θ−l ) and, hence, xr(θ−l ) = (I −Bl)−1xr(θ+ l ). Then, we could continue the solution on (θl−1, θl]. Proceeding in this way, we construct the solution xr(θi) on interval [0, r]. In the case when 0 < r < θ1 one can proceed in the same manner as it has been done for the interval (θl, r] above. b) In stage a) we construct a solution xr(t) for every r ≥ 1. It is clear that zr(t) = xr(t) ‖xr(0)‖ is a solution of (1) and (2) and ‖zr(0‖ = 1. There exists a subsequence of zr(0), r ≥ 1, which converges to z0 with ‖z0‖ = 1 (we assume without loss of generality that the convergent subsequence is the sequence zr(0) itself). Fix an arbitrary integer i ≥ 1. Using Theorem 5 from [5], one can show that zr(t) is convergent in sup-norm on [0, i] to the function x0(t), which is a solution of (1) and (2) on the interval [0, i] and it is nonnegative since all solutions zr(t) are positive on [0, i] if r ≥ i. Since i is arbitrary, x0(t) is a nonnegative solution of (1) and (2) on R+. c) Substituting x0(t) in (1) we obtain the second inequality in (5), dx0(t) dt = −A(t)x0(t) ≤ 0, t 6= θi. Similarly using x0(θi) ≥ 0, condition C3) and equation (2), we have the first inequality in (6) as follows: −∆x0(θi) = Bi x 0(θi) ≥ 0. ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 3 294 M. U. AKHMET, O. YILMAZ While for the second inequality in (6), we use (2) again, ∆x0′ (θi) = x0′ (θ+ i )− x0′ (θ−i ) = −A(θ+ i ) x(θ+ i ) + A(θ−i ) x(θ−i ) = −A(θi) ∆x(θi) ≥ 0. This concludes the proof. In the following theorem, we generalize the above result to the n-th order case. Theorem 2. Assume that the linear impulsive differential equation of n-th order satisfies the conditions D1) – D3). Then the system (3), (4) has a solution y = y(t) which is positive for t ∈ R+ and, what is more, (−1)j y(j) ≥ 0, j = 0, 1, . . . , n− 1, (7) ∆y ≤ 0,∆y′ ≥ 0, . . . , (−1)n−1∆y(n−1) ≤ 0. (8) Proof. Let g(t) = exp  t∫ 1 a1(s)ds  > 0. Next, we change the variables, y = x1, y ′ = −x2, . . . , y (n−2) = (−1)n−2xn, y(n−1) = (−1)n−1 xn g . Then, the system becomes x′1 = −x2, t 6= θi, x′2 = −x3, t 6= θi, . . . . . . . . . . . . . . . . . . x′n−1 = −xn g , t 6= θi, x′n = −gxn−1 a2(t) a0(t) − gxn−2 a3(t) a0(t) − . . .− gx1 an(t) a0(t) , t 6= θi, ∆x̂ |t=θi = B̂ix̂, where x̂(t) = [x1(t), . . . , xn(t)]T and B̂i =  bi 11 −bi 12 · · · (−1)n+1bi 1n −bi 21 bi 22 · · · (−1)n+2bi 2n . . . . . . . . . . . . (−1)n+1bi n1 (−1)n+2bi n2 . . . (−1)n+nbi nn  . ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 3 POSITIVE SOLUTIONS OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS 295 If the above transformed system is identified with the one in Theorem 1, we have x̂(t) ≥ 0, −x̂ ′(t) ≥ 0, and −∆x̂ ′(t) ≥ 0, ∆x̂ ′(t) ≥ 0. By retaining the original variables we have  y −y′ ... (−)n−1yn−1  ≥ 0 and −  ∆y −∆y′ ... (−1)n−1∆yn−1  ≥ 0. This concludes the proof. 3. Examples. Example 1. Consider the following coupled system: mx′′ = 2kx + ky, t 6= θi, 2my′′ = kx + 2ky, t 6= θi, ∆x|t=θi = −1 2 x + 1 4 x′, (9) ∆x′|t=θi = 1 4 x− 1 2 x′, ∆y|t=θi = −1 2 y, ∆y′|t=θi = −1 2 y′, where m and k are positive real numbers and θi = 2i, i = 1, 2, . . . . Theorem 2 is not appli- cable for this example. But by changing the variables in the above system, Theorem 1 will be applicable, x = z1, y = z3, x′ = −z2, y′ = −z4 so, the system becomes, z′ = −Az, t 6= θi, ∆z|t=θi = Bz, where z = [z1, z2, z3, z4]T . If the above system is identified with (1), (2), the matrices A and B ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 3 296 M. U. AKHMET, O. YILMAZ become A =  0 1 0 0 2k m 0 k m 0 0 0 0 1 k 2m 0 k 2m 0  , B =  1 2 1 4 0 0 1 4 1 2 0 0 0 0 1 2 0 0 0 0 1 2  , and we can evaluate that (I −Bi)−1 =  8 3 4 3 0 0 4 3 8 3 0 0 0 0 2 0 0 0 0 2  . The system (9) satisfies the conditions of Theorem 1, so there exists a solution which satisfies z ≥ 0, −z′ ≥ 0 and −∆z ≥ 0, ∆z′ ≥ 0. By retaining the original variables,( x y ) ≥ 0, − ( x′ y′ ) ≥ 0 and − ( ∆x ∆y ) ≥ 0, ( ∆x′ ∆y′ ) ≥ 0. Example 2. Consider the following second order system: y′′ + y′ − (sin2 t)x = 0, t 6= θi, ∆y|t=θi = −2y + 0, 001y′, (10) ∆y′|t=θi = 0, 2y − 3y′, where θi = i, i = 1, 2, . . . . If the above system is identified with (3), (4), the matrix B becomes B = [ −2 0, 001 0, 2 −3 ] , and one can evaluate that (I −B)−1 =  1 3 25 30 · 10−5 1 60 1 4  , ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 3 POSITIVE SOLUTIONS OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS 297 and a0 = 1, a2 = sin2 t ≥ 0. The system (10) satisfies the conditions of Theorem 2, so, there is at least one solution y = y(t) which satisfies y ≥ 0, −y′ ≥ 0, −∆y ≥ 0, ∆y′ ≥ 0. 1. Agarwal R. P., O’Regan D. Positive solutions to superlinear singular boundary-value problems // J. Comput. Appl. Math. — 1998. — 88. — P. 129 – 147. 2. Soohyun Bae. Separation structure of positive radial solutions of a semilinear elliptic equation in Rn // J. Different. Equat. — 2003. — 194 (2). — P. 460 – 499. 3. Dancer E. N., Yihong Du, and Li Ma. Asymptotic behavior of positive solutions of some elliptic problems // Pacif. J. Math. — 2003. — 210 (2). — P. 215 – 228. 4. Haitao Yang. Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem // J. Different. Equat. — 2003. — 189 (2). — P. 487 – 512. 5. Samoilenko A. M., Perestyuk N. A. Impulsive differential equations. — Singapore: World Sci., 1995. 6. Lakshmikantham V., Bainov D. D., and Simeonov P. S. Theory of impulsive differential equations. — Si- ngapore: World Sci., 1989. 7. Rachunkova I. Singular Dirichlet secon-order BVPs with impulses // J. Different. Equat. — 2003. — 193. — P. 435 – 459. 8. Hartman P., Wintner A. Linear differential and difference equations with monotone solutions // Amer. J. Math. — 1953. — 75. — P. 731 – 743. 9. Cabada A., Liz E. Boundary-value problems for higher order ordinary differential equations with impulses // Nonlinear Anal. — 1998. — 32 (6). — P. 775 – 786. 10. Erbe L. H., Liu X. Existence results for boundary-value problems of second order impulsive differential equations // J. Math. Anal. and Appl. — 1990. — 149 (1). — P. 56 – 69. 11. Freiling G., Yurko V. Inverse spectral problems for singular non-self adjoint differential operators with di- scontinuities in an interior point // Inverse Problems. — 2002. — 18. — P. 757 – 773. 12. Frigon M., O’Regan D. Boundary-value problems for second order impulsive differential equations using set valued maps // Appl. Anal. — 1995. — 58. — P. 325 – 333. 13. Liu X., Liu H. Periodic solutions of second order boundary-value problems with impulses // Dyn. Contin. Discrete Impuls. Syst. Ser. A. Math. Anal. — 2002. — 9 (3). — P. 397 – 416. Received 13.02.2005, after revision — 23.05.2005 ISSN 1562-3076. Нелiнiйнi коливання, 2005, т . 8, N◦ 3