Singular periodic impulse problems

We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume tha...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Halas, Z., Tvrdy, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Нелінійні коливання
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/178156
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-178156
record_format dspace
spelling irk-123456789-1781562021-02-19T01:26:55Z Singular periodic impulse problems Halas, Z. Tvrdy, M. We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R and Ji , Mi , i = 1, 2, . . . , m, are continuous mappings of G[0, T] × G[0, T] into R, where G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manasevich ´ and Mawhin for singular periodic problems with p-Laplacian. Отримано принцип iснування розв’язку перiодичної граничної задачi з iмпульсною дiєю, u’’ + c u’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u”(T), де g ∈ C(0,∞) може мати сильну особливiсть у нулi. Далi, припускається, що 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R i Ji , Mi , i = 1, 2, . . . , m, — неперервнi вiдображення з G[0, T] × G[0, T] в R, де G[0, T] — простiр функцiй, регульованих на [0, T]. Отримання принципу базується на процедурi усереднення, яка є аналогом процедури, запро- понованої Менасевiчем та Мавхiним, для сингулярних перiодичних задач iз p-лапласiаном. 2008 Article Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ. 1562-3076 http://dspace.nbuv.gov.ua/handle/123456789/178156 517.9 en Нелінійні коливання Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We obtain an existence principle for the impulsive periodic boundary-value problem u’’ + cu’ = g(x) + e(t), u(ti+) = u(ti) + Ji(u, u’ ), u’(ti+) = u’(ti) + Mi(u, u’), i = 1, . . ., m, u(0) = u(T), u’(0) = u’(T), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 < t1 < . . . < tm < T, e ∈ L₁ [0, T], c ∈ R and Ji , Mi , i = 1, 2, . . . , m, are continuous mappings of G[0, T] × G[0, T] into R, where G[0, T] denotes the space of functions regulated on [0, T]. The presented principle is based on an averaging procedure similar to that introduced by Manasevich ´ and Mawhin for singular periodic problems with p-Laplacian.
format Article
author Halas, Z.
Tvrdy, M.
spellingShingle Halas, Z.
Tvrdy, M.
Singular periodic impulse problems
Нелінійні коливання
author_facet Halas, Z.
Tvrdy, M.
author_sort Halas, Z.
title Singular periodic impulse problems
title_short Singular periodic impulse problems
title_full Singular periodic impulse problems
title_fullStr Singular periodic impulse problems
title_full_unstemmed Singular periodic impulse problems
title_sort singular periodic impulse problems
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/178156
citation_txt Singular periodic impulse problems / Z. Halas, M. Tvrdy // Нелінійні коливання. — 2008. — Т. 11, № 1. — С. 32-44. — Бібліогр.: 24 назв. — англ.
series Нелінійні коливання
work_keys_str_mv AT halasz singularperiodicimpulseproblems
AT tvrdym singularperiodicimpulseproblems
first_indexed 2025-07-15T16:31:23Z
last_indexed 2025-07-15T16:31:23Z
_version_ 1837731240286879744
fulltext UDC 517 . 9 SINGULAR PERIODIC IMPULSE PROBLEMS СИНГУЛЯРНI ПЕРIОДИЧНI IМПУЛЬСНI ЗАДАЧI Z. Halas, M. Tvrdý Mat. únstav AV ČR Žitná 25, 11567, Praha 1, Česká Republika e-mail: tvrdy@math.cas.cz We obtain an existence principle for the impulsive periodic boundary-value problem u′′ + c u′ = g(x) + e(t), u(ti+) = u(ti) +Ji(u, u′), u′(ti+)= u′(ti)+ Mi(u, u′), i = 1, . . .,m, u(0)= u(T ), u′(0)= u′(T ), where g ∈ C(0,∞) can have a strong singularity at the origin. Furthermore, we assume that 0 <t1 < . . . < tm <T, e ∈ L1[0, T ], c ∈ R and Ji, Mi, i = 1, 2, . . . ,m, are continuous mappings of G[0, T ] × G[0, T ] into R, where G[0, T ] denotes the space of functions regulated on [0, T ]. The presented principle is based on an averaging procedure similar to that introduced by Manásevich and Mawhin for singular periodic problems with p-Laplacian. Отримано принцип iснування розв’язку перiодичної граничної задачi з iмпульсною дiєю, u′′ + + c u′ = g(x) + e(t), u(ti+) = u(ti) +Ji(u, u′), u′(ti+)= u′(ti) +Mi(u, u′), i = 1, . . .,m, u(0)= u(T ), u′(0)= u′(T ), де g ∈ C(0,∞) може мати сильну особливiсть у нулi. Далi, припускається, що 0 <t1 < . . . < tm <T, e ∈ L1[0, T ], c ∈ R i Ji, Mi, i = 1, 2, . . . ,m, — неперервнi вiдображення з G[0, T ]×G[0, T ] в R, де G[0, T ] — простiр функцiй, регульованих на [0, T ]. Отримання принципу базується на процедурi усереднення, яка є аналогом процедури, запро- понованої Менасевiчем та Мавхiним, для сингулярних перiодичних задач iз p-лапласiаном. 1. Preliminaries. Starting with Hu and Lakshmikantham [1], periodic boundary-value prob- lems for nonlinear second order impulsive differential equations of the form u′′ = f(t, u, u′), (1.1) u(ti+) = u(ti) + Ji(u, u′), u′(ti+) = u′(ti) + Mi(u, u′), i = 1, 2, . . . ,m, (1.2) u(0) = u(T ), u′(0) = u′(T ) (1.3) have been studied by many authors. Usually it is assumed that the function f : [0, T ]×R2 → R fulfils the Carathéodory conditions, 0 <t1 <t2 < . . . < tm <T are fixed points of the interval [0, T ] (1.4) and Ji, Mi : R2 → R, i = 1, 2, . . . ,m, are continuous functions. A rather representative (however not complete) list of related papers is given in references. In particular, in [2 – 6] the existence results in terms of lower/upper functions obtained by the monotone iterative method can be found. All of these results impose monotonicity of the impulse functions and existence of an associated pair of well-ordered lower/upper functions. The papers [7] and [8] are based c© Z. Halas, M. Tvrdý, 2008 32 ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 SINGULAR PERIODIC IMPULSE PROBLEMS 33 on the method of bound sets, however the effective criteria contained therein correspond to the situation when there is a well-ordered pair of constant lower and upper functions. The ex- istence results which apply also to the case when there is a pair of lower and upper functions, which need not be well-ordered, were provided only by Rachůnková and Tvrdý, see [9 –12]. Analogous results for impulsive problems with quasilinear differential operator were delivered by Rachůnková and Tvrdý in [13 –15]. When no impulses are acting, periodic problems with singularities have been treated by many authors. For rather representative overview and refer- ences, see e.g. [16] or [17]. To our knowledge, up to now singular periodic impulsive problems have not been treated. For singular Dirichlet impulsive problems we refer to the papers by Rachůnková [18], Rachůnková and Tomeček [19] and Lee and Liu [20]. In this paper we establish an existence principle suitable for solving singular impulsive pe- riodic problems. Notations. Throughout the paper we keep the following notation and conventions: for a real-valued function u defined a.e. on [0, T ], we put ‖u‖∞ = sup esst∈[0,T ] |u(t)| and ‖u‖1 = T∫ 0 |u(s)| ds. For a given interval J ⊂ R, by C(J) we denote the set of real-valued functions which are continuous on J. Furthermore, C1(J) is the set of functions having continuous first derivatives on J and L1(J) is the set of functions which are Lebesgue integrable on J. Any function x : [0, T ] → R which possesses finite limits x(t+) = lim τ→t+ x(τ) and x(s−) = lim τ→s− x(τ) for all t ∈ [0, T ) and s ∈ (0, T ] is said to be regulated on [0, T ]. The linear space of functions regulated on [0, T ] is denoted by G[0, T ]. It is well known that G[0, T ] is a Banach space with respect to the norm x∈G[0, T ]→‖x‖∞ (cf. [21], Theorem I.3.6). Let m ∈ N and let 0 = t0 < t1 < t2 < . . . < tm < tm+1 = T be a division of the interval [0, T ]. We denote D = {t1, t2, . . . , tm} and define C1 D[0, T ] as the set of functions u : [0, T ] → R such that u(t) =  u[0](t) if t ∈ [0, t1], u[1](t) if t ∈ (t1, t2], . . . . . . . . . . . . u[m](t) if t ∈ (tm, T ], where u[i] ∈ C1[ti, ti+1] for i = 0, 1, . . . ,m. In particular, if u ∈ C1 D[0, T ], then u′ possesses finite one-sided limits u′(t−) := lim τ→t− u(τ) and u′(s+) := lim τ→s+ u(τ) for each t ∈ (0, T ] and s ∈ [0, T ). Moreover, u′(t−) = u′(t) for all t ∈ (0, T ] and u′(0+) = = u′(0). For u ∈ C1 D[0, T ] we put ‖u‖D = ‖u‖∞ + ‖u′‖∞. ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 34 Z. HALAS, M. TVRDÝ Then C1 D[0, T ] becomes a Banach space when endowed with the norm ‖.‖D. Furthermore, by AC1 D[0, T ] we denote the set of functions u ∈ C1 D[0, T ] having first derivatives absolutely con- tinuous on each subinterval (ti, ti+1), i = 1, 2, . . . ,m + 1. We say that f : [0, T ] × R2 7→ R satisfies the Carathéodory conditions on [0, T ] × R2 if (i) for each x ∈ R and y ∈ R the function f(., x, y) is measurable on [0, T ]; (ii) for almost every t ∈ [0, T ] the function f(t, ., .) is continuous on R2; (iii) for each compact set K ⊂ R2 there is a function mK(t) ∈ L[0, T ] such that |f(t, x, y)| ≤ mK(t) holds for a.e. t ∈ [0, T ] and all (x, y) ∈ K. The set of functions satisfying the Carathéodory conditions on [0, T ] × R2 is denoted by Car([0, T ]× R2). Given a subset Ω of a Banach space X, its closure is denoted by Ω. Finally, we will write ē instead of 1 T ∫ T 0 e(s) ds and ∆+u(t) instead of u(t+)− u(t). If f ∈ Car([0, T ]×R2), problem (1.1) – (1.3) is said to be regular and a function u∈AC1 D[0, T ] is its solutions if u′′(t) = f(t, u(t), u′(t)) holds for a.e. t ∈ [0, T ] and conditions (1.2) and (1.3) are satisfied. If f /∈ Car([0, T ]×R2), problem (1.1) – (1.3) is said to be singular. In this paper we will deal with rather simplified, however the most typical, case of the sin- gular problem with f(t, x, y) = c y + g(x) + e(t) for x ∈ (0,∞), y ∈ R and a.e. t ∈ [0, T ], where c ∈ R, g ∈ C(0,∞), e ∈ L1[0, T ]. (1.5) Definition 1.1. A function u∈AC1 D[0, T ] is called a solution of the problem u′′ + c u′ = g(u) + e(t), (1.2), (1.3) (1.6) if u > 0 a.e. on [0, T ], u′′(t) + c u′(t) = g(u(t)) + e(t) for a.e. t ∈ [0, T ], and conditions (1.2) and (1.3) are satisfied. 2. Green’s functions and operator representations for impulsive two-point boundary-value problems. For our purposes an appropriate choice of the operator representation of (1.1) – (1.3) is important. To this aim, let us consider the following impulsive problem with nonlinear two-point boundary conditions, u′′ + a2(t) u′ + a1(t) u = f(t, u, u′) a.e. on [0, T ], (2.1) ∆+u(ti) = Ji(u, u′), ∆+u′(ti) = Mi(u, u′), i = 1, 2, . . . ,m, (2.2) P ( u(0) u′(0) ) + Q ( u(T ) u′(T ) ) = R(u, u′), (2.3) ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 SINGULAR PERIODIC IMPULSE PROBLEMS 35 and its linearized version u′′ + a2(t) u′ + a1(t) u = h(t) a.e. on [0, T ], (2.4) ∆+u(ti) = di, ∆+u′(ti) = d ′i, i = 1, 2, . . . ,m, (2.5) P ( u(0) u′(0) ) + Q ( u(T ) u′(T ) ) = c, (2.6) where a1, h ∈ L[0, T ], a2 ∈ C[0, T ], f ∈ Car([0, T ]× R2), Ji and Mi : G[0, T ]×G[0, T ]→R, i=1, 2, . . . ,m, are continuous mappings, c ∈ R2, di, d ′i ∈ R, i = 1, 2, . . . ,m, P, Q are real 2× 2-matrices, rank(P,Q) = 2, R : G[0, T ]×G[0, T ]→R2 is a continuous mapping. (2.7) Solutions of problems (2.1) – (2.3) and (2.4) – (2.6) are defined in a natural way quite analo- gously to the above mentioned definition of regular periodic problems. Problem (2.4) – (2.6) is equivalent to the two-point problem for a special case of generalized linear differential systems of the form x(t)− x(0)− t∫ 0 A(s) x(s) ds = b(t)− b(0) on [0, T ], (2.8) P x(0) + Qx(T ) = c, (2.9) where x(t) = ( x1(t) x2(t) ) = ( u(t) u′(t) ) , A(t) = ( 0 1 −a1(t) −a2(t) ) , (2.10) b(t) = t∫ 0 ( 0 h(s) ) ds + m∑ i=1 ( di d ′i ) χ(ti, T ](t), t ∈ [0, T ], and χ(ti, T ](t) = 1 if t∈ (ti, T ], χ(ti, T ](t) = 0 otherwise. Solutions of (2.8), (2.9) are 2-vector functions of bounded variation on [0, T ] satisfying the two-point condition (2.9) and fulfilling the integral equation (2.8) for all t ∈ [0, T ], cf. e.g. [22]. Assume that the homogeneous problem u′′ + a2(t) u′ + a1(t) u = 0, P ( u(0) u′(0) ) + Q ( u(T ) u′(T ) ) = 0 (2.11) has only the trivial solution. Then, obviously, the problem x′ −A(t) x = 0, P x(0) + Qx(T ) = 0 (2.12) ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 36 Z. HALAS, M. TVRDÝ has also only the trivial solution. In view of [23] (Theorems 4.2 and 4.3) (see also [24], Theorem 4.1), problem (2.8), (2.9) has a unique solution x and it is given by x(t) = T∫ 0 Γ(t, s) d[b(s)] + x0(t), t ∈ [0, T ], (2.13) where x0 is the uniquely determined solution of x′ −A(t) x = 0, P x(0) + Qx(T ) = c, and Γ(t, s) = (γi,j(t, s))i,j=1,2 is Green’s matrix for (2.12). Recall that, for each s ∈ (0, T ), the matrix function t → Γ(t, s) is absolutely continuous on [0, T ] \ {s} and ∂ ∂ t Γ(t, s)−A(t) Γ(t, s) = 0 for a.e. t ∈ [0, T ], P Γ(0, s) + QΓ(T, s) = 0, Γ(t+, t)− Γ(t−, t) = I, where I stands for the identity 2×2-matrix. In particular, the component γ1,2 of Γ is absolutely continuous on [0, T ] for each s ∈ (0, T ) and ∂ ∂ t γ1,2(t, s) = γ 2,2(t, s) for a.e. t ∈ [0, T ]. Denote G(t, s) = γ1,2(t, s). Then G(t, s) is Green’s function of (2.11). Furthermore, we have ∂ ∂s Γ(t, s) = −Γ(t, s) A(s) for all t ∈ (0, T ) and a.e. s ∈ [0, T ]. In particular, γ1,1(t, s) = − ∂ ∂s G(t, s) + a1(s) G(t, s) for all t ∈ [0, T ] and a.e. s ∈ [0, T ]. Inserting (2.10) into (2.13) we get that, for each h∈L[0, T ], c, di, d ′i ∈R, i = 1, 2, . . . ,m, the unique solution u of problem (2.4) – (2.6) is given by u(t) = u0(t) + t∫ 0 G(t, s) h(s) ds+ + m∑ i=1 ( − ∂ ∂s G(t, ti) + a1(t) G(t, ti) ) di + m∑ i=1 G(t, ti) d ′i for t ∈ [0, T ], where u0 is the uniquely determined solution of the problem u′′ + a2(t) u′ + a1(t) u = 0, (2.6). (1) ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 SINGULAR PERIODIC IMPULSE PROBLEMS 37 Now, choose an arbitrary w ∈ C1 D[0, T ] and put h(t) = f(t, w(t), w′(t)) for a.e. t ∈ [0, T ], di = Ji(w,w′), d ′i = Mi(w,w′), i = 1, 2, . . . ,m, c = R(w,w′). Then h ∈ L[0, T ], c, di, d ′i ∈ R, i = 1, 2, . . . ,m, and there is a unique u ∈ AC1 D[0, T ] fulfilling (2.4) – (2.6) and it is given by (2.12). Therefore, assuming, in addition, that the problem u′′ + a2(t) u′ + a1(t) u = 0, (2.14) P ( u(0) u′(0) ) + Q ( u(T ) u′(T ) ) = R(u, u′) (2.15) has a unique solution u0, we conclude that u∈C1 D[0, T ] is a solution to (2.1) – (2.3) if and only if u(t) = u0(t) + t∫ 0 G(t, s) f(s, u(s), u′(s)) ds+ + m∑ i=1 ( − ∂ ∂s G(t, ti) + a1(t) G(t, ti) ) Ji(u, u′) + m∑ i=1 G(t, ti) Mi(u, u′) for t ∈ [0, T ]. Let us define operators F1 and F2 : C1 D[0, T ] → C1 D[0, T ] by (F1 u)(t) = T∫ 0 G(t, s) f(s, u(s), u′(s)) ds, t ∈ [0, T ], and (F2 u)(t) = u0(t) + m∑ i=1 ( − ∂ ∂s G(t, ti) + a1(t) G(t, ti) ) Ji(u, u′)+ + m∑ i=1 G(t, ti) Mi(u, u′), t ∈ [0, T ], respectively. The former one, F1, is a composition of the Green type operator h ∈ L1[0, T ] → T∫ 0 G(t, s) h(s) ds ∈ C1[0, T ], which is known to map equiintegrable subsets1 of L1[0, T ] onto relatively compact subsets of C1[0, T ] ⊂ C1 D[0, T ], and the superposition operator generated by f ∈ Car([0, T ]× R2), which 1I.e., sets of functions having a common integrable majorant. ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 38 Z. HALAS, M. TVRDÝ similarly to the classical setting maps bounded subsets of C1 D[0, T ] to equiintegrable subsets of L1[0, T ]. Therefore, it is easy to see that F1 is completely continuous. Furthermore, since Ji, Mi, i = 1, 2, . . . ,m, are continuous mappings, the operator F2 is continuous as well. Having in mind that F2 maps bounded sets onto bounded sets and its values are contained in a (2m+1)- dimensional subspace2 of C1 D[0, T ], we conclude that the operators F2 and F = F1 + F2 are completely continuous as well. So, we have the following assertion. Proposition 2.1. Assume (1.4) and (2.7). Furthermore, let problem (2.11) have Green’s function G(t, s) and let u0 ∈ AC1 D[0, T ] be a uniquely defined solution of problem (2.14), (2.15). Then u ∈ AC1 D is a solution to (2.1) – (2.3) if and only if u = F u, where F : C1 D[0, T ] → → C1 D[0, T ] is the completely continuous operator given by (Fu)(t) =u0(t) + T∫ 0 G(t, s) ( f(t, u(s), u′(s))−a1(s) u(s)−a2(s) u′(s) ) ds+ + m∑ i=1 ( − ∂ ∂s G(t, ti)+a1(t)G(t, ti) ) Ji(u, u′) + m∑ i=1 G(t, ti) Mi(u, u′), t ∈ [0, T ]. In particular, if a1(t) = a2(t) = 0 on [0, T ], P = ( 1 0 0 0 ) and Q = ( 0 0 1 0 ) , then problem (2.11) reduces to the simple Dirichlet problem u′′ = 0, u(0) = u(T ) = 0 and its Green’s function is well-known, G(t, s) =  s (t− T ) T if 0 ≤ s < t ≤ T, t (s− T ) T if 0 ≤ t ≤ s ≤ T (2.16) and ∂ ∂s G(t, s) =  T − t T if 0 ≤ s < t ≤ T, − t T if 0 ≤ t ≤ s ≤ T. Furthermore, let us notice that the periodic boundary conditions (1.3) can be reformulated as u(0) = u(T ) = u(0) + u′(0)− u′(T ), i.e., in the form (2.15), where R(u, v) = u(0) + v(0)− v(T ) for u, v ∈ G[0, T ]. It is easy to see that, in such a case, for any c ∈ R the only solution to (2.14), (2.15) is u0(t) ≡ c. Therefore, we have the following corollary of Proposition 2.1. 2I.e., spanned over the set � u0, G(., ti), � − ∂ ∂s G(., ti) + a1 G(., ti) � , i = 1, 2, . . . , m � . ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 SINGULAR PERIODIC IMPULSE PROBLEMS 39 Corollary 2.1. Assume (1.4) and (2.7) and let the function G(t, s) be given by (2.16). Then u ∈ AC1 D is a solution to (1.1) – (1.3) if and only if u = F u, where F : C1 D[0, T ] → C1 D[0, T ] is the completely continuous operator given by (Fu)(t) =u(0)+ u′(0)−u′(T ) + T∫ 0 G(t, s) f(t, u(s), u′(s)) ds− − m∑ i=1 ∂ ∂s G(t, ti) Ji(u, u′) + m∑ i=1 G(t, ti) Mi(u, u′), t ∈ [0, T ]. Remark 2.1. Similarly, u ∈ AC1 D is a solution to the impulsive Dirichlet problem (1.1), (1.2), u(0) = u(T ) = c if and only if u = Fdir u, where (Fdiru)(t) = c+ T∫ 0 G(t, s) f(t, u(s), u′(s)) ds− − m∑ i=1 ∂ ∂s G(t, ti) Ji(u, u′) + m∑ i=1 G(t, ti) Mi(u, u′), t ∈ [0, T ]. 3. Existence principle. Theorem 3.1. Let assumptions (1.4) and (1.5) hold. Furthermore, assume that there exist r ∈ (0,∞), R ∈ (r,∞) and R ′ ∈ (0,∞) such that (i) r < v < R on [0, T ] and ||v′||∞ < R ′ for each λ ∈ (0, 1] and for each positive solution v of the problem v′′(t) = λ ( −c v′(t) + g(v(t)) + e(t) ) for a.e. t ∈ [0, T ], (3.1) ∆+v(ti) = λ Ji(v, v′), i = 1, 2, . . . ,m, (3.2) ∆+v′(ti) = λ Mi(v, v′), i = 1, 2, . . . ,m, (3.3) v(0) = v(T ), v′(0) = v′(T ); (3.4) (ii) (g(x) + ē = 0) =⇒ r < x < R; (iii) (g(r) + ē) (g(R) + ē) < 0. Then problem (1.6) has a solution u such that r <u < R on [0, T ] and ‖u′‖∞<R ′. Proof. Step 1. For λ ∈ [0, 1] and v ∈ C1 D[0, T ] denote Ξλ(v) = T∫ 0 g(v(s)) ds +T ē+ m∑ i=1 Mi(v, v′) +λ c m∑ i=1 Ji(v, v′). (3.5) ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 40 Z. HALAS, M. TVRDÝ Notice that Ξλ(v) = 0 holds for all solutions v ∈ C1 D[0, T ] of (3.1) – (3.4). (3.6) Indeed, let v ∈ C1 D[0, T ] be a solution to (3.1) – (3.4). Then T∫ 0 v′′(s) ds = m∑ i=0 ti+1∫ ti v′′(s) ds = m∑ i=0 [ v′(ti+1)− v′(ti+) ] = = v′(T )− v′(0)− m∑ i=1 ∆+v′(ti) = −λ m∑ i=1 Mi(v, v′) and T∫ 0 c v′(s) ds = c m∑ i=0 ti+1∫ ti v′(s) ds = c m∑ i=0 [ v(ti+1)− v(ti+) ] = = c [ v(T )− v(0)− m∑ i=1 ∆+v(ti) ] = −λ c m∑ i=1 Ji(v, v′). Thus, integrating (3.1) over [0, T ] gives (3.6). Step 2. Consider system (3.7), (3.2), (3.4), where (3.7) is the functional-differential equa- tion: v′′ = λ [ −c v′ + g(v) + e(t) ] + (1−λ) 1 T Ξλ(v). (3.7) Due to (3.6), we can see that for each λ∈ [0, 1] the problems (3.1) – (3.4) and (3.7), (3.2) – (3.4) are equivalent. Moreover, for λ =1, problem (3.7), (3.2), (3.4) reduces to the given problem (1.6) (with u replaced by v). Now, notice that in view of (2.16) we have T∫ 0 G(t, s) ds = 1 2 t (t− T ) for t ∈ [0, T ] and define, for λ ∈ [0, 1], u ∈ C1 D[0, T ], u > 0 on [0, T ], and t ∈ [0, T ], Fλ(u)(t) = u(0) + u′(0)− u′(T ) + λ T∫ 0 G(t, s) [ − cu′(s) + g(u(s))+ e(s) ] ds+ + (1−λ) t (t− T ) 2 T Ξλ(u)−λ m∑ i=1 ∂ ∂s G(t, ti) Ji(u, u′)+ + λ m∑ i=1 G(t, ti) Mi(u, u′). (3.8) ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 SINGULAR PERIODIC IMPULSE PROBLEMS 41 In particular, if λ = 0, then F0(u)(t) = u(0) + u′(0)− u′(T ) + t (t− T ) 2 T Ξ0(u) for t ∈ [0, T ]. Let us put Ω = {u ∈ C1 D[0, T ] : r < u < R and |u′| < R ′ on [0, T ]}. Arguing similarly to the regular case (see Corollary 2.1), we can conclude that for each λ ∈ ∈ [0, 1] the operator Fλ : Ω ⊂ C1 D[0, T ] → C1 D is completely continuous and a function v ∈ Ω is a solution of (3.7), (3.2) – (3.4) if and only if it is a fixed point of Fλ. In particular, u∈Ω is a solution to (1.6) if and only if F1(u) =u. (3.9) Step 3. We will show that Fλ(u) 6= u for all u ∈ ∂ Ω and λ ∈ [0, 1]. (3.10) Indeed, for λ ∈ (0, 1] relation (3.10) follows immediately from assumption (i), while for λ = 0 it is a corollary of assumption (ii) and of the following claim. Claim. u ∈ Ω is a fixed point of F0 if and only if there is x ∈ R such that u(t) ≡ x on [0, T ], x ∈ (r, R), and g(x) + ē = 0. (3.11) Proof of Claim. Let u ∈ Ω be a fixed point of F0(v), i.e., u(t) = u(0) + u′(0)− u′(T ) + t (t− T ) 2 T Ξ0(u) for all t ∈ [0, T ]. (3.12) Inserting t = 0 into (3.12), we get u(0) = u(0)+u′(0)−u′(T ), which implies that u′(0) = u′(T ). Similarly, inserting t = T we get u(T ) = u(0). Furthermore, u′(t) = 2 t− T 2T Ξ0(u) for t ∈ [0, T ]. Since u′(0) = u′(T ), it follows that Ξ0(u) = 0. This means that u is constant on [0, T ]. Denote x = u(0). Then 0 = Ξ0(u) = T (g(x) + ē), i.e., (3.11) is true. On the other hand, it is easy to see that if x ∈ R is such that (3.11) holds and u(t) ≡ x on [0, T ], then u ∈ Ω is a fixed point of F0. This completes the proof of the claim. Step 4. By Step 3 and by the invariance under the homotopy property of the topological degree, we have deg(I − F1,Ω) = deg(I − F0,Ω). (3.13) Step 5. Let us denote X = {u ∈ C1 D[0, T ] : u(t) ≡ u(0) on [0, T ]} and Ω0 = Ω ∩ X. Notice that Ω0 = {u ∈ X : r <u(0)<R} and Ω0 = {u ∈ X : r≤u(0)<R} . By Claim in Step 3, all fixed points of F0 belong to Ω0. Hence, by the excision property of the topologi- cal degree we have deg(I − F0,Ω) = deg(I − F0,Ω0). (3.14) ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 42 Z. HALAS, M. TVRDÝ Step 6. Define F̃µ(u)(t) = u(0) + [ 1− µ + µ 2 t (t− T ) ] ( g(u(0) + ē ) (3.15) for t ∈ [0, T ], u ∈ Ω0 and µ ∈ [0, 1]. We have F̃0(u) = u(0) + g(u(0)) + ē and F̃1(u) = F0(u) for each u ∈ X. Similarly to Fλ, the operators F̃µ, µ ∈ [0, 1], are also completely continuous and, by the Claim in Step 3, we have F̃1(u) 6= u for all u ∈ ∂ Ω0. Let i and i−1 be respectively the natural isometrical isomorphism R → X and its inverse, i.e., i(x)(t) ≡ u for x∈R and i−1(u) = u(0) for u∈X, and assume that µ ∈ [0, 1), x ∈ (0,∞), u = i(x) and F̃µ(u) = u. Then[ 1− µ + µ 2 t (T − t) ] ( g(x) + e ) = 0 for all t ∈ [0, T ]. If t = 0, this relation reduces to g(x) + e = 0, which is, due to assumption (ii) possible only if x ∈ (r, R). To summarize, we have F̃µ(u) 6= u for all u ∈ ∂ Ω0 and all µ ∈ [0, 1]. Hence, using the homotopy invariance property of the topological degree and taking into ac- count that dim X = 1, we conclude that deg(I − F̃1,Ω0) = deg(I − F̃1,Ω0) = dB(I − F̃0,Ω0), (3.16) where dB(I − F̃0,Ω0) stands for the Brouwer degree of I − F̃0 with respect to the set Ω0 (and the point 0). Step 7. Define Φ : x ∈ (0,∞) → g(x) + ē ∈ R. Then (I − F̃0)(i(x)) = i(Φ(x)) for each x ∈ (0,∞). In other words, Φ = i−1 ◦ (I − F̃0) ◦ i on (0,∞). Consequently, dB(I − F̃0,Ω0) = dB(Φ, (r, R)). (3.17) Now, put Ψ(x) = Φ(r) R− x R− r + Φ(R) x− r R− r . We can see that Ψ has a unique zero x0 ∈ (r, R) and Ψ′(x0) = Φ(R)− Φ(r) R− r . ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 SINGULAR PERIODIC IMPULSE PROBLEMS 43 Hence, by the definition of the Brouwer degree in R, we have dB(Ψ, (r, R)) = signΨ′(x0) = sign (Φ(R)− Φ(r)) . By the homotopy property and thanks to our assumption (iii), we conclude that dB(Φ, (r, R)) = dB(Ψ, (r, R)) = sign (Φ(R)− Φ(r)) 6= 0. (3.18) Step 8. To summarize, by (3.13) – (3.18) we have deg(I − F1,Ω) 6= 0, which, in view of the existence property of the topological degree, shows that F1 has a fixed point u∈Ω. By Step 1 this means that problem (1.6) has a solution. The theorem is proved. 1. Hu Shouchuan, Laksmikantham V. Periodic boundary value problems for second order impulsive differential systems // Nonlinear Anal. — 1989. — 13. — P. 75 – 85. 2. Bainov D., Simeonov P. Impulsive differential equations: periodic solutions and applications. — Harlow: Longman Sci. Tech., 1993. 3. Cabada A., Nieto J. J., Franco D., Trofimchuk S. I. A generalization of the monotone method for second order periodic boundary value problem with impulses at fixed points // Dynam. Contin. Discrete Impuls. Syst. — 2000. — 7. — P. 145 – 158. 4. Erbe L. H., Liu Xinzhi. Existence results for boundary value problems of second order impulsive differential equations // J. Math. Anal. and Appl. — 1990. — 149. — P. 56 – 69. 5. Liz E., Nieto J. J. Periodic solutions of discontinuous impulsive differential systems // Ibid. — 1991. — 161. — P. 388 – 394. 6. Liz E., Nieto J. J. The monotone iterative technique for periodic boundary value problems of second order impulsive differential equations // Comment. math. Univ. carol. — 1993. — 34. — P. 405 – 411. 7. Dong Yujun. Periodic solutions for second order impulsive differential systems // Nonlinear Anal. — 1996. — 27. — P. 811 – 820. 8. Zhang Zhitao. Existence of solutions for second order impulsive differential equations // Appl. Math. Ser. B (Engl. Ed.) — 1997. — 12. — P. 307 – 320. 9. Rachůnková I., Tvrdý M. Impulsive periodic boundary value problem and topological degree // Funct. Dif- ferent. Equat. — 2002. — 9, № 3 – 4. — P. 471 – 498. 10. Rachůnková I., Tvrdý M. Non-ordered lower and upper functions in second order impulsive periodic prob- lems // Dynam Contin. Discrete Impuls. Syst. Ser. A. Math. Anal. — 2005. — 12. — P. 397 – 415. 11. Rachůnková I., Tvrdý M. Existence results for impulsive second order periodic problems // Nonlinear Anal: Theory, Methods and Appl. — 2004. — 59. — P. 133 – 146. 12. Rachůnková I., Tvrdý M. Method of lower and upper functions in impulsive periodic boundary value prob- lems // EQUADIFF 2003. Proc. Int. Conf. Different. Equat. (Hasselt, Belgium, July 22-26, 2003) / Eds F. Dumortier, H. Broer, J. Mawhin, A. Vanderbauwhede, S. Verduyn. — Hackensack, NJ: World Sci., 2005. — P. 252 – 257. 13. Rachůnková I., Tvrdý M. Second order periodic problem with φ-Laplacian and impulses. Pt I. — Math. Inst. Acad. Sci. Czech Republic. Preprint 155/2004 [available as \http: //www.math.cas.cz/ e tvrdy/lapl1.pdf or \http: //www.math.cas.cz/ e tvrdy/lapl1.ps]. 14. Rachůnková I., Tvrdý M. Second order periodic problem with φ-Laplacian and impulses. Pt II. — Math. Inst. Acad. Sci. Czech Republic, Preprint. 156/2004 [available as \http: //www.math.cas.cz/ e tvrdy/lapl2.pdf or \http: //www.math.cas.cz/ e tvrdy/lapl2.ps]. 15. Rachůnková I., Tvrdý M. Second order periodic problem with φ-Laplacian and impulses // Nonlinear Anal. — 2005. — 63. — P. 257 – 266. ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1 44 Z. HALAS, M. TVRDÝ 16. Rachůnková I., Staněk S., Tvrdý M. Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations // Handbook Different. Equat. Ordinary Different. Equat. / Eds A. Caňada, P. Drábek, A. Fonda. — Elsevier, 2006. — Vol. 3. — P. 607 – 723. 17. Rachůnková I., Staněk S., Tvrdý M. Solvability of nonlinear singular problems for ordinary differential equa- tions // Hindawi Cotemp. Math. and Appl. (to appear). 18. Rachůnková I. Singular Dirichlet second order boundary value problems with impulses // J. Different. Equat. — 2003. — 193. — P. 435 – 459. 19. Rachůnková I., Tomeček J. Singular Dirichlet problem for ordinary differential equations with impulses // Nonlinear Anal.: Theory, Methods and Appl. — 2006. — 65. — P. 210 – 229. 20. Lee Yong-Hoon, Liu Xinzhi. Study of singular boundary value problem for second order impulsive differen- tial equations // J. Math. Anal. and Appl. — 2007. — 331. — P. 159 – 176. 21. Ch. S. Hönig. Volterra Stieltjes-integral equations // Math. Stud. — Amsterdam; New York: North Holland and Amer. Elsevier, 1975. — 16. 22. Schwabik Š., Tvrdý M., Vejvoda O. Differential and integral equations: boundary value problems and adjoint. — Praha, Dordrecht: Academia and D. Reidel, 1979. 23. Tvrdý M.. Fredholm-Stieltjes integral equations with linear constraints: duality theory and Green’s function // Čas. pěstov. mat. — 1979. — 104. — P. 357 – 369. 24. Schwabik Š., Tvrdý M. Boundary value problems for generalized linear differential equations // Czech. Math. J. — 1979. — 29, № 104. — P. 451 – 477. Received 19.10.07 ISSN 1562-3076. Нелiнiйнi коливання, 2008, т . 11, N◦ 1