Сингулярно непрерывный спектр сингулярно возмущенных операторов
Пропонується побудова сингулярно збуреного самоспряженого оператора iз заданою ком- пактною множиною в його сингулярно неперервному спектрi. Зокрема, множина може бути фракталом наперед заданого типу. При цьому використовується конструкцiя сингулярно збу- реного оператора Ã ˜ для заданого самоспряже...
Gespeichert in:
Datum: | 2006 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Інститут математики НАН України
2006
|
Schriftenreihe: | Нелінійні коливання |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/178160 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Сингулярно непрерывный спектр сингулярно возмущенных операторов / Н.Е. Дудкин // Нелінійні коливання. — 2006. — Т. 9, № 3. — С. 326-335. — Бібліогр.: 25 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineZusammenfassung: | Пропонується побудова сингулярно збуреного самоспряженого оператора iз заданою ком- пактною множиною в його сингулярно неперервному спектрi. Зокрема, множина може бути фракталом наперед заданого типу. При цьому використовується конструкцiя сингулярно збу- реного оператора Ã ˜ для заданого самоспряженого оператора A в гiльбертовому просторi H, який розв’язує задачу на власнi значення Ã ψi = λiψi для злiченної множини Λ = {λi}∞ i=1 дiйс- них чисел λi ∈ R¹, |λi | < ∞, й ортонормованої системи векторiв {ψi}, i = 1, 2, . . . , iз деякими додатковими умовами загального характеру. |
---|