Distributional semantic modeling: a revised technique to train term/word vector space models applying the ontology-related approach
We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings) – term vector space models as a result, inspired by the recent ontology-related approach (using different types of contextual knowled...
Gespeichert in:
Datum: | 2020 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут програмних систем НАН України
2020
|
Schriftenreihe: | Проблеми програмування |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/180480 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Distributional semantic modeling: a revised technique to train term/word vector space models applying the ontology-related approach / O.V. Palagin, V.Yu Velychko., K.S. Malakhov, O.S. Shchurov // Проблеми програмування. — 2020. — № 2-3. — С. 341-351. — Бібліогр.: 50 назв. — англ. |