Expanding of Intellectual Possibilities of Digital Tonometers for Home Using

The purpose of the article is to expand the intellectual capabilities of digital blood pressure monitors, which will increase the efficiency of their use at home. The proposed approach boils down to simple computational procedures that can be implemented on the internal processor of a home blood pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
1. Verfasser: Fainzilberg L.S.
Format: Artikel
Sprache:English
Veröffentlicht: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2020
Schriftenreihe:Control systems & computers
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/181118
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Expanding of Intellectual Possibilities of Digital Tonometers for Home Using / L.S. Fainzilberg // Control systems & computers. — 2020. — № 1. — С. 60–70. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-181118
record_format dspace
spelling irk-123456789-1811182021-11-03T01:26:26Z Expanding of Intellectual Possibilities of Digital Tonometers for Home Using Fainzilberg L.S. Applications The purpose of the article is to expand the intellectual capabilities of digital blood pressure monitors, which will increase the efficiency of their use at home. The proposed approach boils down to simple computational procedures that can be implemented on the internal processor of a home blood pressure monitor. It is shown that to assess long-term variability of indicators, it is enough to use the recurrence formulas for each current measurement to correct the range of recorded values, refine the mean and standard deviation, calculate the Pearson coefficient of variation and the index characterizing the percentage of measurements that exceed established medical standards. Мета статті – розширення інтелектуальних можливостей цифрових тонометрів, які забезпечать підвищення ефективності застосування їх у домашніх умовах. Результати. Встановлено, що в процесі декомпресії манжети на осциляціях спостерігаються характерні фрагменти, викликані зворотною пульсовою хвилею, виявлення яких дає змогу обчислити інтегральний показник жорсткості кровоносних судин за швидкістю розповсюдження пульсової хвилі. Показано, що для оцінки тривалої варіабельності показників достатньо за допомогою рекурентних формул за кожним поточним вимірюванням коригувати діапазон зареєстрованих значень, уточнювати середнє та середнє квадратичне відхилення, обчислювати коефіцієнт варіації Пірсона та індекс, що характеризує відсоток вимірювань, що перевищують встановлені медичні норми. Цель статьи – ррасширение интеллектуальных возможностей цифровых тонометров, которые обеспечат повышение эффективности их применения в домашних условиях. Результаты. Установлено, чтов процессе декомпрессии манжетки на осцилляциях наблюдаются характерные фрагменты, вызванные отраженной пульсовой волной, обнаружение которых позволяет вычислить интегральный показатель жесткости кровеносных сосудов по скорости распространения пульсовой волны. Показано, что для оценки долговременной вариабельности показателей достаточно с помощью рекуррентных формул по каждому текущему измерению корректировать диапазон зарегистрированных значений, уточнять среднее и среднеквадратическое отклонение, вычислять коэффициента вариации Пирсона и индекс, характеризующий процент измерений, превышающих установленные медицинские нормы. 2020 Article Expanding of Intellectual Possibilities of Digital Tonometers for Home Using / L.S. Fainzilberg // Control systems & computers. — 2020. — № 1. — С. 60–70. — Бібліогр.: 32 назв. — англ. 2706-8145 DOI https://doi.org/10.15407/usim.2020.01.060 http://dspace.nbuv.gov.ua/handle/123456789/181118 61.616-71 en Control systems & computers Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Applications
Applications
spellingShingle Applications
Applications
Fainzilberg L.S.
Expanding of Intellectual Possibilities of Digital Tonometers for Home Using
Control systems & computers
description The purpose of the article is to expand the intellectual capabilities of digital blood pressure monitors, which will increase the efficiency of their use at home. The proposed approach boils down to simple computational procedures that can be implemented on the internal processor of a home blood pressure monitor. It is shown that to assess long-term variability of indicators, it is enough to use the recurrence formulas for each current measurement to correct the range of recorded values, refine the mean and standard deviation, calculate the Pearson coefficient of variation and the index characterizing the percentage of measurements that exceed established medical standards.
format Article
author Fainzilberg L.S.
author_facet Fainzilberg L.S.
author_sort Fainzilberg L.S.
title Expanding of Intellectual Possibilities of Digital Tonometers for Home Using
title_short Expanding of Intellectual Possibilities of Digital Tonometers for Home Using
title_full Expanding of Intellectual Possibilities of Digital Tonometers for Home Using
title_fullStr Expanding of Intellectual Possibilities of Digital Tonometers for Home Using
title_full_unstemmed Expanding of Intellectual Possibilities of Digital Tonometers for Home Using
title_sort expanding of intellectual possibilities of digital tonometers for home using
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
publishDate 2020
topic_facet Applications
url http://dspace.nbuv.gov.ua/handle/123456789/181118
citation_txt Expanding of Intellectual Possibilities of Digital Tonometers for Home Using / L.S. Fainzilberg // Control systems & computers. — 2020. — № 1. — С. 60–70. — Бібліогр.: 32 назв. — англ.
series Control systems & computers
work_keys_str_mv AT fainzilbergls expandingofintellectualpossibilitiesofdigitaltonometersforhomeusing
first_indexed 2025-07-15T21:43:03Z
last_indexed 2025-07-15T21:43:03Z
_version_ 1837750848509181952
fulltext 60 ISSN 2706-8145, Системи керування та комп'ютери, 2020, № 1 DOI https://doi.org/10.15407/usim.2020.01.060 UDC 61.616-71 L.S. FAINZILBERG, D.Sc. (Engineering), Professor, Chief Researcher, International Research and Training Center for Information Technologies and Systems of the National Academy of Sciences of Ukraine and Ministry of Education and Science of Ukraine, Acad. Glushkova av., 40, Kiev, 03187, Ukraine, fainzilberg@gmail.com EXPANDING OF INTELLECTUAL POSSIBILITIES OF DIGITAL TONOMETERS FOR HOME USING The purpose of the article is to expand the intellectual capabilities of digital blood pressure monitors, which will increase the efficiency of their use at home. The proposed approach boils down to simple computational procedures that can be implemented on the internal processor of a home blood pressure monitor. It is shown that to assess long-term variability of indicators, it is enough to use the recurrence formulas for each current measurement to correct the range of recorded values, refine the mean and standard deviation, calculate the Pearson coefficient of variation and the index characterizing the percentage of measurements that exceed established medical standards. Keywords: home blood pressure monitor, vascular elasticity, oscillations, blood pressure variability. Introduction Arterial hypertension (high blood pressure) is one of the most common diseases of the cardio-vascu- lar system that suffer about 30% of the adult popu- lation [1]. The prevalence of diseases increases and reaches 65% among people over 65 years old [2]. With untimely diagnosis and treatment, the disease can cause serious complications — myocardial infarction and cerebral stroke, which often result the patient’s death or disability. Diagnosis and evaluating the effectiveness of arterial hypertension treatment primarily involves the measurement of blood pressure (BP) [3]. The auscultative method of measuring using the cuff and tonometer Riva-Rocci has been used in medi- cal practice for more than a hundred years. With a decrease in pressure in the cuff, when the blood begins to pass through the squeezed section of the vessel, vortices and turbulence appear, crea- ting characteristic sounds (Korotkov tones) that are heard in the phonendoscope and determine the levels of systolic and diastolic blood pressure. Due to its accuracy, simplicity and accessibility, the Korotkov method has become the gold standard and is recommended by the World Health Organi- zation for worldwide use. Along with the advantages, the auscultative method has a number of disadvantages that limit its use at home [4]. Firstly, listening to Korotkov’s tones requires certain qualifications, especially when measuring the patients’ blood pressure with the so-called effects of "acoustic failure" or "infinite tone, which, according to statistics, are found in 7% of patients. Secondly, even with typical Korot- kov tones, the measurement accuracy substantially depends on the location of the phonendoscope on the arteries, and the error increases significantly when measured through clothing. And finally, the main drawback of the Korotkov method is the complexity of the measurement automation, which makes it difficult to build reliable digital blood pres- sure monitors for home use. Control at home provides the possibility of long- term monitoring, which is extremely important both for the prevention of arterial hypertension Expanding of Intellectual Possibilities of Digital Tonometers for Home Using ISSN 2706-8145, Control systems and computers, 2020, № 1 61 and for further monitoring after discharge of pa- tients from the hospital. Therefore, home observa- tion, without pretending to replace the traditional clinical measurement, is an informative method for clarifying the diagnosis in most clinical situations, especially in people with suspected "masked hyper- tension". Recently, the market of medical devices for home use has been developing rapidly [5—7]. A significant place in this market is occupied by home blood pressure monitors, which allow individuals without special medical training to independently control blood pressure [8—10]. In such tonometers, the oscillometric method of measurement is most often used, it is based on recording the amplitude of the pulsations of air pressure at the time of passage of blood through the portion of the artery squeezed by the cuff. The method allows you to automatically measure with weak tones of Korotkov, in the presence of the phenomenon of “auscultation failure” and other effects that are difficult for the process of automa- tion of measurement by the Korotkov method. In addition, the oscillometric method can be used at a high noise level, its results are almost inde- pendent of the turn and movement of the cuff along the arm, and the measurement accuracy does not decrease when determined through the thin fabric of clothes. Digital tonometers based on the oscillometric method are constantly being improved. Recently, a new generation of devices for home use has ap- peared, in which intelligent technologies are im- plemented that provide protection against errors in various arrhythmias, including arterial fibrillation, weak pulses and other difficult situations. Tonome- ters of this class are represented on the medi- cal equipment market by well-known companies Omron and Citizen (Japan), Mocrolife (Sweden), Medisana (Germany), Gamma (England) and seve- ral other companies. Analysis of available publications shows that the intellectual capabilities of home blood pres- sure monitors are far from exhausted. The rapid development of microelectronics and intelligent methods for detecting subtle changes in signals of a complex shape against a background of interfe- rence make it possible today to realize a number of important additional functions in tonometers. The purpose of this article is to further expand the intellectual capabilities of digital blood pres- sure monitors, which will increase the efficiency of their using at home. Integral assessment of blood vessel elasticity Human vascular system consists of veins, arteries and capillaries. The total length of the blood ves- sels of the human body is about 100 thousand kilo- meters, which is more than twice the length of the equator of the Earth. Determination of the blood vessels properties is an important link for the early detection, pre- vention and treatment of cardiovascular diseases. Elastic vessels allow you to save the stroke volume of blood, reduce the load on the heart and ensure smooth movement of blood from vessels of large diameter to vessels of smaller diameter. As a result, the pulsating blood flow from the heart is converted into a continuous and even flow through the entire vascular bed, which is very important for the nor- mal functioning of the body. It is known that aging of the body is accompa- nied by a loss of elasticity of blood vessels [11]. An increase in arterial stiffness leads to an increase in the pulse wave propagation speed, and this factor is currently recognized as one of the main risk factors for hypertension and the occurrence of coronary heart disease [12–14]. In recent years, non-invasive rheography methods have become widespread [15], which pro- vide automatic determination of the pulse wave propa-gation velocity and the other parameters of vascular stiffness, which carry information about the initial signs of cardiovascular pathologies. In clinical conditions, the pulse wave velocity (PWV) is determined using special sensors installed in the carotid and femoral arteries. In this case, the PWV is estimated by the value of the delay of the signal recorded by these sensors [16]. There is another way: PWV is estimated by the time between the moments of the appearance of a direct pulse wave 1 generated by the current heart Fainzilberg L.S. 62 ISSN 2706-8145, Системи керування та комп'ютери, 2020, № 1 beat and a reverse pulse wave 2 reflected from the extremities (Fig. 1). At the current contraction of the heart (systole), a wave of increased pressure occurs (direct pulse wave 1), which propagates through all blood ves- sels. Reaching the limbs, this wave is reflected and generates an “echo” wave” 2, which propagates in the opposite direction of the vascular tree. With elastic arteries, the pulse wave propagation speed is relatively low and reflected wave 2 returns to the ascending aorta during the diastole (relaxation of the heart muscle). Such a delay is favorable, since in this case the reflected wave does not overlap the systolic phase and does not affect the systolic blood pressure. On the contrary, with a decrease in vascu- lar elasticity, the pulse wave propagation velocity increases. As a result, reflected wave 2 returns to the heart already in the systole period, which leads to an increase in systolic blood pressure, an increase in afterload on the heart, an increase in oxygen consumption by the myocardium and damage to arteries [17]. Therefore, an assessment of the elasticity of blood vessels can provide impor- tant information about the complex of risk factors for cardiovascular diseases [18]. Let us show that digital tonometers with a cer- tain improvement tare able to provide information about the pulse wave propagation speed and there- by evaluate the integral stiffness index of blood ves- sels. To do this, we first consider some details of the oscillometric measurement method (Fig. 2). Fig. 2. illustrates the methodology of the oscil- lometric measurement method: a) a graph of changes in air pressure in the cuff; b) signal after trend removal; c) micropulsation (oscillation) of the signal during the measurement; d) the calculation of the systole and diastole blood pressure levels by the "bell". The initial data for the calculation is a finite sequence of discrete pressure values KPPP ...,,, 21 , (1) which record during decompression from the ini- tial value above the expected systolic to the final value below the estimated diastolic pressure (Fig. 2, a). Recursive procedure: Fig. 1. Pressure in the bloodstream generated by forward 1 and backward 2 pulse waves Fig. 2. The methodology of the oscillometric measurement method Expanding of Intellectual Possibilities of Digital Tonometers for Home Using ISSN 2706-8145, Control systems and computers, 2020, № 1 63 1 10 0 0 1 ( ) 1 2k k k W k WP P P P W− + − −= + − + � � , 0 0W k K W≤ ≤ − (2) with a sufficiently large window 0W allows us to es- timate the low-frequency trend of values and sub- tract it from the initial data (Fig. 2, b). Further processing ensures the construction of the amplitudes array îY , 1,...,i N= of the signal micropulsations, the level of which exceeds a pre- determined threshold of insensitivity. Using special procedures, a “bell” is constructed – an approxi- mation dependence of the amplitudes îY , 1,...,i N= of micropulsations relative to the corresponding pressure levels during the decompression period. The systolic and diastolic pressure levels iP are esti- mated by the maximum maxP of this bell (Fig. 2, c) using the formulas 1 maxSPB q P= , (3) 2 maxDBP q P= , (4) where 1q , 2q are empirical coefficients. Experimental studies have shown that the intel- ligent computational procedures, proposed in [19], make it possible by the signal ( )P t recorded during the decompression process to obtain not only the information necessary for measurement blood pres- sure levels, but also to “see” the fragments carrying information about pulse wave velocity. This gives us the key to the construction of a new generation of home blood pressure monitors, which allow the integral measurement of the stiffness of blood ves- sels during the measurement process [20]. Figure 3 shows a graph of the signal ( )P t during the cuff decompression. At pressures close to SBP and DBP fragments F caused by the reflected pulse wave are observed on the oscillations. Such frag- ments have the characteristic shape and can be automatically detected using computer algorithms implemented on the internal processor of a home digital blood pressure monitor. To determine the elasticity of the vessels, we cal- culate the time delays , 1,2,...l lτ = between the mo- ment when the corresponding oscillation takes the maximum value and the moment of appearance of the fragment F caused by the reflected wave. Then, we determine the average value of time delays for a certain sequence L of such oscillations: 1 1 L l lL τ τ = = ∑ . (5) The obtained value makes it possible to deter- mine the average propagation time of the pulse wave in the forward and reverse directions of blood flow, by which it is possible to integrally evaluate the elasticity of the patient’s blood vessels (stiffness index) by formula 2HI τΩ = , (6) where H — patient height. Checking the effectiveness of the proposed ap- proach was carried out using a computer prog- ramme, the input of which received a sequence of (1) pressures during the oscillometric measure- ment using BP by home tonometer. The stiffness index IΩ was calculated according to the method described above, for which the programme imple- ments computational procedures for searching and automatically recognizing fragments F of oscilla- tions generated by reflected waves. Fig. 3. Illustration of the proposed method Fainzilberg L.S. 64 ISSN 2706-8145, Системи керування та комп'ютери, 2020, № 1 Experimental studies were conducted with a group of healthy volunteers (27 people of both sexes) of different age groups. Figure 4 shows the results of calculation experiments obtained from three healthy volunteers. The first person was 57 years old, H=1,76 m. The time delays between the maximum values of the oscillations and the moments of the ap- pearance of fragments generated by the reflected pulse wave in two successive oscillations were 1 2 0,184 sτ τ= = (Fig. 4, a). Therefore 0,184 sτ = and (2 1,76) / 0,184 19,1 m/sIΩ = ⋅ = . The second volunteer was 35 years old, H= =1,78 m. The time delays between the maximum values of the oscillations and the moments of the appearance of fragments generated by the reflec- ted pulse wave in two successive oscillations were 1 0,288 sτ = , 2 0,232 sτ = (Fig. 4, b). Therefore 0,26 sτ = and (2 1,78) / 0,26 13,7IΩ = ⋅ = . The third person was 14 years old, H=1,65 m. The time delays between the maximum values of the oscillations and the moments of the appearance of fragments generated by the reflected pulse wave in two successive oscillations were 1 0,256 sτ = , 2 0,288 sτ = (Fig. 4, c). Therefore 0,272 sτ = and (2 1,65) / 0,272I = ⋅ = 12,1 m/s= . The results are consistent with the well-estab- lished notion of clinicians about increasing the value of the stiffness index as the body ages. An analysis of the publications suggests that the pulse wave form carries information not only about vascular stiffness, but also about other important characteristics of the body [21]. Therefore, it is advisable to direct further research to the construc- tion of diagnostic models that allow one to indi- rectly evaluate these characteristics in the process of oscillometric measurement BP and implement these models into home blood pressure monitor. Let us consider one of the possible approaches to solving this problem. By analogy with [22], let us approximate the re- sulting signal generated by the direct and reflected pulse waves (see Fig. 1) as the sum of the asymmet- ric Gaussian functions 2 2 1 2 1 22 2 1 2 ( ) ( )ˆ( ) exp exp 2[ ( )] 2[ ( )] t tP t A A b t b t μ μ⎛ ⎞ ⎛ ⎞− − = − + −⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ , 1,2,....t = , (7) in which 2μ = 1μ τ + , (8) and (1) (2) , при , ( ) , при , i i i i i b t b t b t μ μ ⎧ ≤⎪= ⎨ >⎪⎩ i=1,2. (9) Next, we calculate the optimal values of eight parameters iA , iμ , (1) ib , (1) 2b , 1,2i = which are figu- ring in (7), which satisfying the criterion of the minimum mean square deviation of discrete values ˆ( )P t from the observed values ( )P t . To determine the optimal values iA, iμ , (1) ib , (1) 2b , 1,2i = you may use the analytical method described in [22]. However, from a computational point of view, this method seems rather cumbersome for its implementation on the internal processor of a home blood pressure monitor. But we may go the other way. The experiments showed that acceptable values iA, iμ , (1) ib , (1) 2b , 1,2i = can be found by a simple search procedure using a set of pretabulated exponential functions xy e= with different values of the argument x. As a result, the real signal generated by the direct and reflected waves uniquely encodes by totality of the parame- ters found (Fig. 5). Fig. 4. Results of experiments on the calculation for dif- ferent ages volunteers: 57 years old (a); 35 years old (b); 14 years old (c) m/s Expanding of Intellectual Possibilities of Digital Tonometers for Home Using ISSN 2706-8145, Control systems and computers, 2020, № 1 65 Fig. 5. The result of approximation of the real pulse wave by function (7) As can be seen from fig. 5, the found optimal values of the parameters iA, iμ , (1) ib , (1) 2b , 1,2i = charac- terize the shape of the observed pulse wave quite well, which means that they can be used as argu- ments of models (1) (2)( , , , )j j i i i iZ Z A b bμ= , 1,...j J= , (10) providing the indirect determination of physiologi- cal characteristics jZ 1,...j J= . Identification of such models is supposed by observation samples based on the inductive modeling methods [23]. Assessment of blood pressure variability with a home blood pressure monitor It is known that most physiological parameters (pulse rate, blood pressure and many others) are subject to significant spontaneous fluctuations (true biological variability) [24, 25]. If such fluctuations lie within certain limits, then this is considered a physiological norm. According to [26], in practi- cally healthy people aged 20 to 60 years, the daily variability in blood pressure is at least 10% of the average levels SBP and DBP. 24 hour monitoring of blood pressure, which is carried out using the special devices, allows to determine the time intervals T 1 , T 2 , …, when BP exceeds the norm (Fig. 6), to evaluate the average values in the daytime and nighttime and a number of other indicators that carry valuable information in the diagnosis of hypertension [ 27]. Of course, 24 hour monitoring has a number of advantages compared to measuring blood pres- sure in a medical institution. The method allows to obtain a profile (series of values) BP under condi- tions typical for the patient and thereby eliminate the so-called “white medical gown” effect. In ad- dition, it becomes possible to identify patients with a high risk of cardiovascular complications due to the lack of an adequate reduction BP at night and night time hypertension. However, it is clear that 24 hour monitoring does not allow to assess the long-term variability BP between visits to the doctor (so called visit-to-visit variability), which, according to the doctors, is very important for making the right diagnostic decisions [28—31]. Let us show that minor improvements to the home blood pressure monitor will provide the user with a number of additional useful functions that characterize the individual characteristics of ones pressure profile. We will consider the values SBP i , i=1,2,... of systolic blood pressure, which were observed in a particular user over a sufficiently large period of time (weeks, months, years), as the implementation of a random variable P with a probability distribu- tion SBPℜ . We denote the carrier of this distribution by the set { : 0}SBP SBPPΩ = ℜ > , (11) and let M SBP be the average value of SBP i , i=1,2,... . Let further (0) [100, 120]SBPΩ = be the set (range) of normal values accepted in medical practice SBP1. We consider four options for the mutual arrange- ment of sets and relative to the axis of values (Fig. 7). Case 1. (0) SBP SBPΩ ⊂ Ω , i.e. the range SBPΩ of mea- sured values is fully included in the normal range (0) SBPΩ of systolic blood pressure. Fig. 6. Profile for 24 hour monitoring of blood pressure Fainzilberg L.S. 66 ISSN 2706-8145, Системи керування та комп'ютери, 2020, № 1 Case 2. (0)( )SBP SBPΩ ∩ Ω ≠ ∅, ( )/ ( )щ SBP SBP SBPΩ Ω ∩ Ω ≠ ≠ ∅, the range SBPΩ partially enters the region (0) SBPΩ , moreover (0) SBP SBPM ∈Ω , i.e. the average of the mea- sured values belongs to the normal range (0) SBPΩ of systolic blood pressure. Case 3. (0)( )SBP SBPΩ ∩ Ω ≠ ∅, ( )/ ( )щ SBP SBP SBPΩ Ω ∩ Ω ≠ ≠ ∅, i.e. the range SBPΩ partially enters to the re- gion (0) SBPΩ , moreover (0) SBP SBPM ∉Ω , i.e. the average of the measured values do not belong to the normal range (0) SBPΩ of systolic blood pressure. Case 4. (0)( )SBP SBPΩ ∩ Ω = ∅ , those the range of measured values SBPΩ extends beyond the normal range (0) SBPΩ of systolic blood pressure. In the first case, the patient should be considered healthy. In the second case, the results of indivi- dual measurements did not correspond to the nor- mal range (0) SBPΩ . But since the average SBPM of the measured values belongs to the region (0) SBPΩ , such a patient can be classified as conditionally healthy with a tendency to hypertension. In the third case, and especially in the fourth, there is nothing left to do but to attribute the patient to a group of patients with varying degrees of arterial hypertension. Note that for the practical implementation of the proposed approach, it is not necessary to have the entire array of measured values. For each mea- surement SPB i it is enough to override the mini- mum SBP min and maximum SBP max of full array by scheme min, min, 1, ifi i i iSBP SPP SPP SBP −= < , (12) max, max, 1, ifi i i iSBP SPP SPP SBP −= > , (13) and refine the current average SBPM using a recur- rence formula , , 1 , 1 1[ ]SBP i SBP i i SBP iM M SBP M i− −= + − , (14) by setting the initial conditions ,0 0SBPM = and also min,0 max,0 0SBP SBP SBP= = . Applying the recurrence formula for calculating the modified random variance estimate for a sample of independent observations proposed in [32], it is also possible for each measurement iSBP, i=1,2,... to reevaluate the current value of the mean square (standard) deviation SBPσ of the systolic blood pres- sure value for a particular patient. To prevent distortion minSBP , maxSBP , SBPM and SBPσ is advisable to provide an additional button in the tonometer, with which the user can block the recalculation of these values at the slightest suspi- cion of an error in the current result due to random artifacts. With each measurement we can also calcu- late the current values of Pearson coefficient of variation 100%SBM SBP SBM V M σ = ⋅ (15) and index , (16) Condition Text mes- sage Emoticon + KPPP ...,,, 21 Dange- rous condition! + 0,5 SBP SBPσ ≤ Δ ≤ Be careful! + or - 0,5SBP SBPσΔ < Stable condition! - 0,5 SBP SBPσ ≤ Δ ≤ The condition is impro- ving - 1,5SBP SBPσΔ > You are in good condition Table 1. One of the option for generating quality information (when SBP > 100 mmHG) 1,5 SBPσ≤ 1,5 SBPσ≤ ( ) 100% E SBP SBP NI N = ⋅ Fig. 7. The relative position of the sets and ( SBPΩ (0) SBPΩ Expanding of Intellectual Possibilities of Digital Tonometers for Home Using ISSN 2706-8145, Control systems and computers, 2020, № 1 67 characterizing the ratio of the number of measure- ments at which the systolic blood pressure excee- ded the threshold SBH = 140 mmHg to the total number of measurements. In addition, with each measurement, we may calculate the value ,SBP i i SBPSBP MΔ = − , 1,2,...i = (17) characterizing the deviation of the current result SBP i from the previously found average value M SBP , and compare the value ,SBP iΔ with the current value of the standard deviation SBPσ . As a result, with a simple refinement of the inter- nal software, the home blood pressure monitor can additionally display on its screen quality informa- tion about the current functional state of the pa- tient in the form of understandable graphic images (emoticons). One of the options for the formation of such information is presented in table 1. In a similar way, we can calculate the values minDBP , maxDBP , DBPM , DBPσ , DBMV , DBMI allowing us to estimate the variability of diastolic blood pressure iDBP, 1,2,...i = . To illustrate, consider an example of the forma- tion of qualitative information in the analysis of systolic blood pressure. Figure 8 shows a graph of the results of 85 mea- surements recorded over a period of three months using home tonometer by a patient who did not undergo antihypertensive therapy. Statistical cha- racteristics of the results are summarized in table 2. Since the average value of the results is out- side the range of the currently accepted norm ( 120 mmHgSBPM > ) this patient should be recog- nized as ill person (see Case 3 on Figure 7). Figure 9 shows the areas of a qualitative assess- ment of the results, constructed according to the data of tables 1 and 2. A qualitative assessment of the results of blood pressure measurements, implemented in a home blood pressure monitor, helps a user who does not have a medical education make independent deci- sions aimed at optimizing his lifestyle, a reaso- nable distribution of the regime of load and rest, determine the need for additional intake of medi- cations prescribed by a doctor, and evaluate pos- sible dangerous situations requiring urgent medical attention. Of course, the proposed approach in no way claims to replace, and even more so to cancel the established medical recommendations for the diag- nosis and treatment of hypertension. Conclusion The article shows that the modern intelligent in- formation technologies can implement a number of important additional functions for improving the efficiency of digital blood pressure monitors for home use. It has been shown that directly in the process of the oscillometric method for determining blood pressure, home tonometers can provide the user an integrated assessment of the arterial stiffness index, which provides important diagnostic information about the complex of risk factors for cardiovascular diseases. An approach has been proposed that allows us to assess the long-term variability of blood pressure indicators for self-measurement at home between visits to the doctor, which increases the reliability of decisions by eliminating the so-called “white medical gown” effect. Fig. 8. Results of registration of systolic blood pressure by home tonometer SBPmax SBPmin MSBP σ SBP V SBP (%) 187 113 142,7 12,4 8,7 Table 2. Statistical characteristics of the measurement re- sults SBP, mmHG Fig 9. The example of qualitative assessment of the measurement results P, mmHg Fainzilberg L.S. 68 ISSN 2706-8145, Системи керування та комп'ютери, 2020, № 1 REFERENCES 1. Dilaveris, P.E., Richter, D.J., Gialafos, J.E., 1999. "Inadequate blood pressure control in a low risk Mediterranean popu- lation". European Heart Journal. Vol. 20, pp. 1845. DOI: 1053/euhj.1999.1847. 2. Klimov, A. V., Denisov, E. N., Ivanova, O. V., 2018. "Arterial hypertension and its prevalence among the population". Young scientist, 50, pp. 86-90 [Климов А. В., Денисов Е. Н., Иванова О. В. Артериальная гипертензия и ее распространенность среди населения. Молодой ученый. 2018. № 50. С. 86-90]. 3. O’Brien, E., Waeber, B. et al., 2001. "Blood pressure measuring devices: recommendations of European Society of Hy- pertension". BMJ, 322, pp. 531-536. DOI: 10.1136/bmj.322.7285.531. 4. O’Brien, E., Petrie, J., Littler, W.A. et al., 1993. "The British Hypertension Society Protocol for the evaluation of blood pressure measuring devices". Journal of Hypertension, 11 (2), pp. 43-62. DOI: 1097/00004872-199007000-00004. 5. Ambulatory cardiac monitoring: Avoiding maturity through technological advancement, 2008. Market engineering re- search. Frost & Sullivan, Meriland, 9, pp. 325. 6. Jordan, M., 2008. "Bringing medical devices home". Medical Device & Diagnostic Industry Magazine, 30 (2), pp. 62-67. 7. Lewis, C., 2001. "Emerging trends in medical device technology: Home is where the heart monitor is." FDA Consumer, 35 (3), pp. 10-15. 8. Ward, A.M, Takahashi, O, Stevens, R, Heneghan, C.,2012. "Home measurement of blood pressure and cardiovascular disease: systematic review and meta-analysis of prospective studies". Journal of Hypertension, 30 (3), pp. 449–456. DOI: 10.1097/HJH.0b013e32834e4aed. 9. Cuspidi, C., Meani, S., Lonati, L. et al., 2005. "Prevalence of home blood pressure measurement among selected hyper- tensive patients: results of a multicenter survey from six hospital outpatient hypertension clinics in Italy". Blood pressure, 14 (4), pp. 251–256. DOI: 10.1080/ 08037050500210765. 10. Bancej, C.M, Campbell, N., McKay, D.W. et al., 2010. "Home blood pressure monitoring among Canadian adults with hypertension: results from the 2009 Survey on Living with Chronic Diseases in Canada". Canadian Journal of Cardioljgy, 26, (5), pp. 152–157. DOI: 1016/s0828-282x(10)70382-2. 11. Lehmann, E.D., 1993. "Elastic properties of the aorta. Lancet", 342, pp. 1417. DOI: 10.1016/0140-6736(93)92772-l. 12. Benetos, A, Laurent, S, Hoeks, AP, Boutotiyrie, P.H., Safar, M.E., 1993. "Arterial alterations with ageing and high blood pressure". A noninvasive study of carotid and femoral arteries. Arterioscler Thromb, 13, pp. 90-97. DOI: 1161/01. atv.13.1.90 13. Cameron, J.D., Jennings, Q.L., Dart, A.M., 1995. "The relationship between arterial compliance, age, blood pressure and serum lipid levels". Journal of Hypertension, 13, pp. 1718-1723. 14. Laurent,S, Boutouyrie, P, Asmar, R, et al., 2001. "Aortic stiffness is an independent predictor of all-cause and cardiovas- cular mortality in hypertensive patients". Hypertension, 37, pp. 1236-1241. DOI: 1161/01.hyp.37.5.1236. 15. Blacher, J., Asmar, R., Djane, S. et al., 1999. "Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients". Hypertension, 33 (5), pp. 1111-1117. DOI: 10.1161/01.hyp.33.5.1111. 16. Asmar, R., Benetos, A. Topouchian, J. et al., 1995. "Assessment of arterial distensibility by automatic pulse wave ve- locity measurement. Validation and clinical application studies". Hypertension, 26 (3), pp. 485-490, https://doi. org/10.1161/01.HYP.26.3.485. 17. Asmar, R., Topouchian, J., Pannier, B. et al., 2001. "Pulse wave velocity as endpoint in large-scale intervention trial. The Complior study". Journal of Hypertension, 19 (4), pp. 813-818, DOI: 1097/00004872-200104000-00019. 18. Vasyuk, Y.A., Ivanova, S.V., Shkolnik, E.L. et al., 2016. "Consensus of Russian experts on the assessment of arterial stiff- ness in clinical practice". Cardiovascular therapy and prevention, 15 (2), pp. 4–19, http://dx.doi.org/10.15829/1728- 8800-2016-2-4-19. 19. Fainzilberg, L.S., 2008. Information technology for signal processing of complex shapes. Theory and practice. Kiev: Naukova Dumka, 333 p. [Файнзильберг Л.С. Информационные технологии обработки сигналов сложной формы. Теория и практика. Киев: Наукова Думка, 2008. 333 с]. It is shown that for the practical implementation of the proposed approach, it is sufficient to use the recurrence formulas for each current measurement to correct the range of recorded values, clarify the mean and standard deviation, calculate the Pear- son coefficient of variation and the index characte- rizing the percentage of measurements that exceed the established medical norms. Such calculations can easily be implemented on the internal proces- sor of a home blood pressure monitor. Expanding of Intellectual Possibilities of Digital Tonometers for Home Using ISSN 2706-8145, Control systems and computers, 2020, № 1 69 20. Fainzilberg, L.S. Method for integral estimation of human blood vessels elasticity. Invention Patent of Ukraine No. 80757. Patents newsletter No. 17, 2007 [Файнзільберг Л.С. Спосіб інтегрального оцінювання еластичності кровонос- них судин людини. Патент України на винахід № 80757. Бюл. № 17, 2007 р.]. 21. Engendi, M., 2012. "On the Analysis of Fingertip Photoplethysmogram Signals. Current Cardiology Reviews", 8 (1), pp. 14-25. DOI: 2174/157340312801215782. 22. Fainzilberg, L.S., Matushevich, N.A., 2016. "An effective method for analyzing diagnostic signs by a noisy electro- cardiogram". Upravlausie sistemy i masiny, 2, pp.76-84 [Файнзильберг Л.С., Матушевич Н.А. Эффективный метод анализа диагностических признаков по зашумленной электрокардиограмме. Управляющие системы и машины. 2016. № 2. С.76-84]. 23. Stepashko, V.S., 2017. "Achievements and prospects of inductive modeling". Upravlausie sistemy i masiny, 2, pp. 58- 73 [Степашко В.С. Достижения и перспективы индуктивного моделирования. Управлячющие системы и машины. 2017. № 2. 58-73]. 24. Stolarz-Skrzypek, K., Thijs, L., Richart, T., 2010. "Blood Pressure variability in relation to outcome in the Interna- tional Database of Ambulatory blood pressure in relation to Cardiovascular Outcome". Hypertension Research, 33, pp. 757–766. 25. Malik, M., Camm, A.J., 1993. "Components of heart rate variability. What they really mean and what we really measure". American Journal of Cardioljgy, 72, pp. 821-822. 26. Voronin, I.M., Bazhenova, E.A., 2007. "Variability of blood pressure in normal and pathological conditions". Bulletin of the Tambov State University, 12 (1), pp. 179-181 [Воронин И.М., Баженова Е.А. Вариабельность артериального давления в норме и при патологии. Вестник Тамбовского Государственного Университета. 2007. Том 12. Вып.1. С. 179-181]. 27. Rogoza, A.N., Agaltsov, M.V., Sergeeva, M.V., 2005. 24-hour monitoring of arterial pressure: options for medical opin- ions and comments. Nizhny Nozniy NovGorod: DECOM, 64 p. [Рогоза А. Н., Агальцов М. В., Сергеева М. В. Суточное мониторирование артериального давления: варианты врачебных заключений и комментарии. Нижний Новгород: ДЕКОМ, 2005. 64 c.]. 28. Muntner, P., Shimbo, D., Tonelli, M., Reynolds, K., Arnett ,D.K., Oparil, S., 2011. "The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III 1988 to 1994". Hypertension, 57, pp. 160-166, DOI: 1161/HYPERTENSIONAHA.110.162255. 29. Stergiou, G.S., Parati, G., Vlachopoulo, C. et al., 2016. "Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions - Position statement of the Eu- ropean Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability". Journal of Hypertension, 34 ( 9), pp. 1665-1677, DOI: 1097/HJH.0000000000000969. 30. Rothwell, P.M., 2011. "Does blood pressure variability modulate cardiovascular risk? Current Hypertension Reports", 13 (3), pp. 177–186, DOI: 1007/s11906-011-0201-3. 31. Mancia, G., 2007. "Effective Ambulatory Blood Pressure Control in Medical Practice", 49, pp.17–18, https://doi. org/10.1161/01.HYP.0000250560.27738.72 32. Zhukovskaya, O.A., Glushauskene, G.A., Fainzilberg, L.S., 2008. "Investigation of the properties of the modified esti- mation of the varianse by a sampling of independent random observations". Scientific News of NTU Ukraine KPI, 4, pp. 139-145 [Жуковська О.А., Глушаускенє Г.А., Файнзільберг Л.С. Дослідження властивостей модифікованої оцінки дисперсії випадкової величини за вибіркою незалежних спостережень. Наукові вісті НТУ України КПІ. 2008. № 4. С. 139-145]. Received 01.01.2020 Л.С. Файнзільберг, доктор техн. наук, професор, головний науковий співробітник, Міжнародний науково-навчальний центр інформаційних технологій та систем НАН та МОН України, просп. Глушкова, 40, Київ 03187, Україна, fainzilberg@gmail.com РОЗШИРЕННЯ ІНТЕЛЕКТУАЛЬНИХ МОЖЛИВОСТЕЙ ЦИФРОВИХ ТОНОМЕТРІВ ДЛЯ ДОМАШНЬОГО ВИКОРИСТАННЯ Вступ. Артеріальна гіпертензія (підвищений артеріального тиск) — одне з найпоширеніших захворювань серцево- судинної системи. Діагностика та оцінка ефективності лікування артеріальної гіпертензії передбачає вимірювання артеріального тиску, в тому числі за допомогою цифрових домашніх тонометрів. Однак інтелектуальні можливості таких тонометрів далеко не вичерпано. Fainzilberg L.S. 70 ISSN 2706-8145, Системи керування та комп'ютери, 2020, № 1 Мета статті – розширення інтелектуальних можливостей цифрових тонометрів, які забезпечать підвищення ефективності застосування їх у домашніх умовах. Методи. Для досягнення поставленої мети сформульовано та досліджено два завдання. Перше завдання спрямовано на визначення можливості цифрового тонометра оцінити інтегральний показник (індекс) жорсткості кровоносних судин на основі визначення швидкості поширення пульсової хвилі за сигналом, що реєструється в процесі осцилометричного способу вимірювання артеріального тиску. Друге завдання орієнтовано на розробку простих засобів, що забезпечують оцінку тривалої варіабельності показників артеріального тиску при самостійному вимірюванні в домашніх умовах між відвідинами лікаря (visit-to-visitvariability). Результати. Встановлено, що в процесі декомпресії манжети на осциляціях спостерігаються характерні фрагменти, викликані зворотною пульсовою хвилею, виявлення яких дає змогу обчислити інтегральний показник жорсткості кровоносних судин за швидкістю розповсюдження пульсової хвилі. Показано, що для оцінки тривалої варіабельності показників достатньо за допомогою рекурентних формул за кожним поточним вимірюванням коригувати діапазон зареєстрованих значень, уточнювати середнє та середнє квадратичне відхилення, обчислювати коефіцієнт варіації Пірсона та індекс, що характеризує відсоток вимірювань, що перевищують встановлені медичні норми. Висновки. Запропонований підхід зводиться до простих обчислювальних процедур, які можуть бути реалізовані на внутрішньому процесорі домашнього тонометра. Ключові слова: домашній тонометр, еластичність судин, осциляції, варіабельність артеріального тиску. Л.С. Файнзильберг, д-р техн. наук, профессор, глав. науч. сотруд., Международный научно-учебный центр информационных технологий и систем НАН и МОН Украины, просп. Глушкова, 40, Киев 03187, Украина, fainzilberg@gmail.com РАСШИРЕНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ ВОЗМОЖНОСТЕЙ ЦИФРОВЫХ ТОНОМЕТРОВ ДЛЯ ДОМАШНЕГО ПРИМЕНЕНИЯ Введение. Артериальная гипертензия (повышенное артериального давление) — одно из наиболее распрос- транённых заболеваний сердечно-сосудистой системы. Диагностика и оценка эффективности лечения артериальной гипертензии предполагает измерение артериального давления, в том числе с помощью цифровых домашних тонометров. Однако интеллектуальные возможности таких тонометров далеко не исчерпаны. Цель статьи – ррасширение интеллектуальных возможностей цифровых тонометров, которые обеспечат повышение эффективности их применения в домашних условиях. Методы. Для достижения поставленной цели сформулированы и исследованы две задачи. Первая задача направлена на определения возможности цифрового тонометра оценить интегральный показатель (индекс) жесткости кровеносных сосудов на основе определения скорости распространения пульсовой волны по сигналу, регистрируемому в процессе осциллометрического способа измерения артериального давления. Вторая задача ориентирована на разработку простых средств, обеспечивающих оценку долговременной вариабельности показателей артериального давления при самостоятельном измерении в домашних условиях между посещениями врача (visit-to-visit variability). Результаты. Установлено, чтов процессе декомпрессии манжетки на осцилляциях наблюдаются характерные фрагменты, вызванные отраженной пульсовой волной, обнаружение которых позволяет вычислить интегральный показатель жесткости кровеносных сосудов по скорости распространения пульсовой волны. Показано, что для оценки долговременной вариабельности показателей достаточно с помощью рекуррентных формул по каждому текущему измерению корректировать диапазон зарегистрированных значений, уточнять среднее и среднеквадратическое отклонение, вычислять коэффициента вариации Пирсона и индекс, характеризующий процент измерений, превышающих установленные медицинские нормы. Выводы. Предложенный подход сводится к простым вычислительным процедурам, которые могут быть реализованы на внутреннем процессоре домашнего тонометра. Ключевые слова: домашний тонометр, эластичность сосудов, осцилляции, вариабельность артериального давления.