A Modification of the Frechet Distance for Nonnisomorphic Trees

The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider class of trees. A polynomial time algor...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автор: Vodolazskiy, Ye.V.
Формат: Стаття
Мова:English
Опубліковано: Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України 2021
Назва видання:Control systems & computers
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/181259
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Modification of the Frechet Distance for Nonnisomorphic Trees / Ye.V. Vodolazskiy // Control systems & computers. — 2021. — № 2-3. — С. 20–27. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-181259
record_format dspace
spelling irk-123456789-1812592022-04-21T20:39:21Z A Modification of the Frechet Distance for Nonnisomorphic Trees Vodolazskiy, Ye.V. Fundamental Problems in Computer Science The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider class of trees. A polynomial time algorithm is given for determining whether similarity of one tree to another is less than a given number. Ціль статті. Необхідно розробити метод порівняння дерев, ідеологічно близький до метрики Фреше, але виз- начений для пар неізоморфних дерев. Результати. У статті запропоновано модифікацію метрики Фреше для неізоморфних дерев. Нова числова характеристика названа близькістю дерева до еталону і визначена в тому числі для деяких класів пар неізоморфних дерев. Запропоновано поліноміальний алгоритм розпізнавання того, що одне дерево є близьким до іншого з точністю до заданого числа. 2021 Article A Modification of the Frechet Distance for Nonnisomorphic Trees / Ye.V. Vodolazskiy // Control systems & computers. — 2021. — № 2-3. — С. 20–27. — Бібліогр.: 8 назв. — англ. DOI https://doi.org/10.15407/csc.2021.02.020 2706-8145 http://dspace.nbuv.gov.ua/handle/123456789/181259 519.6 en Control systems & computers Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Fundamental Problems in Computer Science
Fundamental Problems in Computer Science
spellingShingle Fundamental Problems in Computer Science
Fundamental Problems in Computer Science
Vodolazskiy, Ye.V.
A Modification of the Frechet Distance for Nonnisomorphic Trees
Control systems & computers
description The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider class of trees. A polynomial time algorithm is given for determining whether similarity of one tree to another is less than a given number.
format Article
author Vodolazskiy, Ye.V.
author_facet Vodolazskiy, Ye.V.
author_sort Vodolazskiy, Ye.V.
title A Modification of the Frechet Distance for Nonnisomorphic Trees
title_short A Modification of the Frechet Distance for Nonnisomorphic Trees
title_full A Modification of the Frechet Distance for Nonnisomorphic Trees
title_fullStr A Modification of the Frechet Distance for Nonnisomorphic Trees
title_full_unstemmed A Modification of the Frechet Distance for Nonnisomorphic Trees
title_sort modification of the frechet distance for nonnisomorphic trees
publisher Міжнародний науково-навчальний центр інформаційних технологій і систем НАН та МОН України
publishDate 2021
topic_facet Fundamental Problems in Computer Science
url http://dspace.nbuv.gov.ua/handle/123456789/181259
citation_txt A Modification of the Frechet Distance for Nonnisomorphic Trees / Ye.V. Vodolazskiy // Control systems & computers. — 2021. — № 2-3. — С. 20–27. — Бібліогр.: 8 назв. — англ.
series Control systems & computers
work_keys_str_mv AT vodolazskiyyev amodificationofthefrechetdistancefornonnisomorphictrees
AT vodolazskiyyev modificationofthefrechetdistancefornonnisomorphictrees
first_indexed 2025-07-15T22:06:42Z
last_indexed 2025-07-15T22:06:42Z
_version_ 1837752343027777536
fulltext 20  iSSN 2706-8145, системи керування та комп'ютери, 2021, № 2–3 doi https://doi.org/10.15407/csc.2021.02.020 Udc 519.6 ye.V. VoDolAZsKIy, Senior research associate, international research and training centre of information technologies and Systems of the NaS and meS of Ukraine, glushkov ave., 40, kyiv, 03187, Ukraine, waterlaz@gmail.com A moDIFICAtIon oF tHe FreCHet DIstAnCe   For nonIsomorpHIC trees The paper presents a modification of the Frechet distance for nonisomorphic trees. While the classical Frechet distance between nonisomorphic trees is undefined, a new measure called similarity of a tree to a reference tree is given that is defined for a wider class of trees. A polynomial time algorithm is given for determining whether similarity of one tree to another is less than a given number. Keywords: computational geometry, Frechet distance, trees. Introduction Many image processing methods involve selecting contours on the image and processing those con- tours with various algorithms such as computing the Frechet distance between the selected contour and the reference contour . Another common ap- proach is to perform a so-called image skeletoniza- tion [6, 8] instead of contour selection . Computing the Frechet distance between curves, both open and closed, is a relatively well researched prob- lem [1, 3, 5, 7] . Since an image contour is always some sort of a curve, comparing contours with the Frechet metric does not impose much difficulty . The skeleton of a simply connected binary image is in some sense an acyclic set of points (a tree) . Computing the Frechet distance between trees [4] can be problematic since the metric is either unde- fined or equals infinity for non-isomorphic trees, depending on the point of view . An alternative for the Frechet metric is known [2], which is essen- tially a mixture of the Frechet distance between polygonal lines and Hausdorff distance . With this approach the distance between any pair of trees is defined and finite . We propose another variation on the Frechet distance that is also defined for noniso- morphic pairs of trees and is ideologically closer to the original Frechet metric, although the proposed distance is not symmetric and is therefore not a metric . problem formulation Let Г = (V, E) be an acyclic connected graph (a tree) with a finite number of vertices V ⊂ Rk, which are points in a k-dimensional linear space, and a set of edges E ⊂ V × V . Each edge (u,v) ∈ V defines a linear segment λ(u, v) = {α u + (1 - α) v | α ∈ [0, 1]}, and the whole tree Г defines a subset of points in Rk, the union of all linear seg- ments ( ) ( ), λ , u v E X u v ∈ = ∪ , which are called points of the tree Г . Definition 1. The Frechet distance between trees Г 1 and Г 2 with their corresponding sets of points X 1 and X 2 is 1 2( , ) inf max ( , ( )) x X f X X d x x ϕ ϕ ∈Φ ∈ = iSSN 2706-8145, control systems and computers, 2021, № 2–3 21 A Modification of the Frechet Distance for Nonisomorphic Trees where Ф is the set of all continuous bijections between X 1 and X 2 . Definition 2. The Hausdorff distance between sets X and Y is the number ( ) ( ) ( ), max[max min , ,max min , ]. y Y x Xx X y Y h X Y d x y d x y ∈ ∈∈ ∈ = (1) The problem of the Frechet distance between trees is immediately apparent from the definition, since the value f(X 1 ,X 2 ) is only defined when the set of continuous bijections�Ф is not empty . The set �Ф is never empty when Г 1 and Г 2 are polygonal lines . The same, however, can not be said for non- isomorphic pairs of trees . Examples of trees that have at least one continuous bijection is given on Fig . 2, while Fig . 2 gives an example of a pair of trees with no continuous bijection . The Frechet metric needs to be weakened in order to be used on non-isomorphic trees . We do so by not limiting ϕ to continuous bijections . For any function ϕ: X 1 → X 2 and a point x 2 �∈ X 2 denote ϕ-1(x 2 ) = {x 1 �∈ X 1 | ϕ(x 1 )} the preimage of x 2 �∈ X 2 . Note that ϕ-1(x 2 ) in no way implies that ϕ is an invertible function . For any continuous function ϕ: X 1 → X 2 an image ( )2 1φX X∗ ∗= of any connected subset 1 1X X∗ ⊂ is also connected . Definition 3. A function ϕ: X 1 → X 2 is called monotone if preimage ϕ-1(x 2 ) of any point x 2 ∈�X 2 is a connected set. Fig. 2 . A pair of trees with no continuous bijection and undefined Frechet distance Fig. 1. An example of trees with non-empty Ф . For any of given pair of trees the Frechet distance is defined and is finite 22  iSSN 2706-8145, системи керування та комп'ютери, 2021, № 2–3 E.V. Vodolazskiy Definition 4. For a given number ε the set X 1 is called ε–similar to the reference set X 2 , if a continuous monotone function ϕ: X 1 → X 2 exists such that ϕ(X 1 )=X 2 and d(x 1 , ϕ (x 1 )) ≤ ε for all x 1 ∈ X 1 . Definition 5. Similarity δ(X 1 ,X 2 ) of the set X 1 to the reference set X 2 is the exact lower bound on such values ε that X 1 is ε–similar to X 2 . The problem is to determine for given trees Г 1 , Г 2 and a number ε whether X 1 is ε-similar to X 2 , where X 1 and X 2 are the sets of points of Г 1 and Г 2 respectively . General properties of set similarity The relation of ε-similarity of X 1 to X 2 as well as the function δ(X 1 ,X 2 ) of similarity is not symmetric with respect to its arguments . Therefore, δ(X 1 ,X 2 ) is not a metric . Nevertheless, it is ideologically close to the Hausdorff and Frechet metrics and lies in the middle of them in the sense of the following theorem . Theorem 1. Let h(X 1 ,X 2 ) be the Hausdorff distance between X 1 and X 2 , let f(X 1 ,X 2 ) be the Frechet distance between X 1 and X 2 . For all X 1 and X 2 the following inequalities are valid h(X 1 ,X 2 ) ≤ δ (X 1 ,X 2 ) ≤ f (X 1 ,X 2 ) . (2) The equality δ(X 1 ,X 2 ) = 0 holds if and only if X 1 =X 2 . Proof. We first prove that when f (X 1 ,X 2 ) = = f *, the inequality δ(X 1 ,X 2 ) ≤ f * holds . Indeed, the expression f(X 1 ,X 2 ) = f * means that for any ε* > f * a continuous bijection ϕ*: X 1 ↔ X 2 exists, such that for any x ∈ X 1 the inequality d(x 1 , ϕ (x 1 )) ≤ ε* holds . Since ϕ*is continuous and invertible, then according to Definition 3 it is monotone and according to Definition 4 the set X 1 is ε*–similar to X 2 for all ε* > f * . Therefore, δ (X 1 ,X 2 ) ≤ f * ccording to Definition 5 . We now prove that if δ(X 1 ,X 2 ) ≤ δ* then h(X 1 ,X 2 ) ≤ δ* . The equality δ(X 1 ,X 2 ) = δ* means that for any ε* < δ* there exists a monotone continuous functions ϕ: X 1 → X 2 such that for any x ∈ X 1 the inequality d(x 1 , ϕ* (x 1 )) ≤ ε* holds . For a function ϕ* there exists a function ψ*: X 1 → X 2 such that ψ*(x 2 ) ∈ ϕ* (x 2 ) and d(x 1 , ϕ* (x 1 )) ≤ ε* for all x 1 ∈ X 1 , d(ψ*(x 2 ), x 2 ) ≤ ε* for all x 2 ∈ X 2 . From the inequalities it obviously follows that min d(x 1 , x 2 ) ≤ ε* for all x 1 ∈ X 1 , x 2 ∈ X 2 min d(x 1 , x 2 ) ≤ ε* for all x 2 ∈ X 2 , x 1 ∈ X 1 max min d(x 1 , x 2 ) ≤ ε* , x 1 ∈ X 1 x 2 ∈ X 2 max min d(x 1 , x 2 ) ≤ ε* , x 2 ∈ X 2 x 1 ∈ X 1 and finally max {max min d(x 1 , x 2 ), max min d(x 1 , x 2 )} ≤ ε* . x 1 ∈ X 1 x 2 ∈ X 2 x 2 ∈ X 2 x 1 ∈ X 1 According to Definition 2 the left-hand side of the last inequality is the Hausdorff distance h(X 1 ,X 2 ) . Since h(X 1 ,X 2 ) ≤ ε* for all ε* > δ*, then h(X 1 ,X 2 ) ≤ δ* = δ(X 1 ,X 2 ) . The last statement of the theorem [δ(X 1 ,X 2 ) = 0] ⇔ [X 1 = X 2 ] directly follows from the proved inequalities (2) and the fact that both h and f are metrics . properties of tree similarity Let ,V EΓ = � be a tree that defines a set of points X . Definition 6. Denote P(u,v)⊆ X the minimal connected subset of X that contains u and v. Definition 7. A point u ∈ V ⊂ Rk is called a bran- ching point of X if u has strictly more than two adja- cent vertices . A point u ∈ V ⊂ Rk is called a terminal point of X if u has exactly one adjacent vertex . All other points from X are called ordinary points . iSSN 2706-8145, control systems and computers, 2021, № 2–3 23 A Modification of the Frechet Distance for Nonisomorphic Trees A path P(u,v) can either go through branching points of X or not . If all points r ∈ P(u,v)\{u,v} are not branching points the path is called an unbranched section (see Fig . 4) . Definition 8. For any unbranched section P(u,v) denote S(u,v) the set of such points t that P(t,u)∩ P(u,v) = {u} and call it a sector (see Fig . 4) . Any terminal vertex is a special case of a sector . Definition 9. For any pair of r ∈ V and s ∈ V such that each r and s are either branching points or terminals denote the set Z(r,s)=(X \ S(r,u)) \ \ S(s,v) ∪ {r,s}, where u and v are branching points on P(r,s) (see Figure 4) and call it a subtree of X . Obviously P(r,s) ⊆ Z(r,s) is part of the subtree Z(r,s) without all the branches . Definition 10. A flower F(u,v) is the union of the corresponding unbranched path and the sector . F(u,v)=S(u,v) ∪P(u,v) . The provided definitions result in a number of properties . Let r be a terminal point and let s be a branching point such that P(r,s) is an unbranched section . Then S(r,s) = {r} and S(s,r) ∪ P(r,s) = X . Or even more general . Property 1. If P(u,v) is an unbranched section (see Fig . 4), then X=S(u,v)∪P(u,v)∪S(v,u) . Any sector that is not a terminal vertex is a union of flowers as the following property states . Property 2. Let S(u,v) be a sector and let {t 1 , t 2 , . . ., t n-1 , t n } be the set of all branching t i ∈ S(u,v) such that P(t i ,u) is an unbranched section . In this case (Fig . 4) sector S(u,v) can be expressed as Fig. 4 . An example of sector S(u,v), which is a union of sectors S(t 1 ,u), S(t 2 ,u), S(t 3 ,u) and unbranched sections P(t 1 ,u), P(t 2 ,u), P(t 3 ,u) . Also F(t 1 ,u) = S(t 1 ,u) ∪ P(t 1 ,u), F(t 2 ,u) = S(t 2 ,u) ∪ P(t 2 ,u) and F(t 3 ,u) = S(t 3 ,u) ∪ P(t 3 ,u) Fig. 3 . An example of an unbranched section P(u,v) and two sectors S(u,v) and S(v,u) that together form the whole set X 1 1 ( , ) [ ( , ) ( , )] [ ( , )] n i n i S u v S t u P t u F t u = = = = = ∪ ∪ ∪ 24  iSSN 2706-8145, системи керування та комп'ютери, 2021, № 2–3 E.V. Vodolazskiy So to sum up, a sector is a union of flowers while each flower is a union of a sector and an unbran- ched path . For any sector S a single set of flowers F 1 , F 2 ,… …, F n exist that satisfy Property 2 . We may say that secto S consists of flowers F 1 , F 2 ,…, F n . The main idea of the algorithm presented further is that for certain subsets X 1 * ⊆ X 1 and X 2 * ⊆ X 2 it is determined whether a continuo- us monotone mapping ϕ : X 1 * → X 2 * exists, such that max d(x 1 , ϕ (x 1 )) ≤ ε . x∈X 1 * Whenever such mapping exists we would say that X 1 * maps onto X 2 * and denote this as G(X 1 *, X 2 *) = 1 . Otherwise, G(X 1 *, X 2 *) = 0 denotes that such map- ping does not exist . Algorithm Description When X 1 and X 2 are points of trees Г 1 and Г 2 the concept of monotone and continuous function ϕ: X 1 → X 2 has a very demonstrative interpretation expressed in the following three lemmas . Lemma 1. For a monotone continuous func- tion ϕ : X 1 → X 2 and any three points u,v,w ∈ X 1 such that w ∈ P(u,v) the relation ϕ(w) ∈ P(ϕ(u), ϕ(v)) holds . Proof. Let us show that when the function ϕ: X 1 → X 2 is continuous then either ϕ(w) ∈ P(ϕ(u), ϕ(v)) or ϕ is not monotone . Denote r = med(ϕ(w), ϕ(u), ϕ(v)) a median of points ϕ (w), ϕ(u), ϕ(v), that is a point of intersection of paths P(ϕ(u), ϕ(v)), P(ϕ(w), ϕ(v)) and P(ϕ(w),ϕ(u)) . Either the equality r = ϕ (w) holds or inequality r ≠ ϕ(w) holds . If r = ϕ (w) then ϕ(w)∈ P(ϕ(u), ϕ(v)) . Suppose that r≠ ϕ(w) . Since the restriction of function ϕ to P(u,w) is a continuous function, the point w 1 ∈ P(w,v), w 1 ≠ w, exists such that ϕ(w 1 ) = r . The restriction of ϕ to P(w,v) is also a continuous function, and therefore, there exists a point w 2 ∈ P(w,v), w 2 ≠ w, such that ϕ(w 2 ) = r . Therefore, w 1 -1 ∈ ϕ(r), w 2 -1 ∈ ϕ(r), and the point w, that belongs to P(w 1 ,w 2 ) does not belong to ϕ-1(r), since ϕ(w) ≠ r . This means that the preimage ϕ-1(r) is not connected and ϕ is not monotone . Lemma 2. If ϕ: X 1 → X 2 is a monotone continuous function then for any three points u,v,w ∈ X 1 the equality ϕ(med(u,v,w))=med(ϕ(u), ϕ(v), ϕ(w)) holds . Proof. Median r of the triple u,v,w ∈ X 1 belongs to paths P(u,v), P(u,w) and P(v,w) . Therefore, according to Lemma 1, the point ϕ(r) belongs to paths P((u), (v)), P(ϕ(u), ϕ(w)) and P(ϕ(v), ϕ(w)), or in other words is a median of three points ϕ(u), ϕ(v), ϕ(w) ∈ X 2 . The algorithm works by determining whether certain subsets X 1 * ⊆ X 1 of tree X 1 can be mapped onto certain subsets X 2 * ⊆ X 2 of tree X 2 . Recall that when such mapping exists it is denoted by G(X 1 *, X 2 *) . Computing G(X 1 *, X 2 *) can be divided into these important special cases . Fig. 5 . A subtree Z(r,s) (shown in bold) is a part of the whole tree X that is enclosed between two sectors S(r,u) and S(s,v) such that X = S(r, u) ∪ Z(r, s) ∪ S(r, v) iSSN 2706-8145, control systems and computers, 2021, № 2–3 25 A Modification of the Frechet Distance for Nonisomorphic Trees 1 .Can a sector S(u,v) be mapped onto a sector S(r,s) such that � ϕ(u) = r . 2 . Can a flower F(u,v) be mapped onto a flower F(r,s) such that � ϕ(v) = s . 3 . Can a flower F(u,v) be mapped onto a single point {r} . 4 . Can a subtree Z(u,v) be mapped onto an unbranched path P(r,s) such that ϕ(u) = r and � ϕ(v) = s . Mapping a flower on a flower A flower F(u,v) can be mapped onto a flower F(r,s) if there exists a sector S(p,t) ⊂ F(u,v) that can be mapped onto a sector S(r,s) such that the subtree Z(p,v) can be mapped onto the unbranched section P(r,s) (see Fig . 6) . This can be written as ( , ) ( , ) ( , ) ( , ) ( ( , ), ( , )) ( ( , ), ( , )) & ( ( , ), ( , )). S p t S p t F u v t P p v G F u v F r s G Z p v P r s G S p t S r s ⊂ ∈ = = ∨ Mapping a sector on a sector If a sector 1 ( , ) ) m i S u v F t u = = ∪ i( , is mapped onto a sector 1 ( , ) ( , ) n i i S u v F p r = = ∪ via a function ϕ then ϕ(u) = r and each flower F(t i , u), i = 1,..., m must either map onto some flower F(p i , r) or map onto the vertex r . Moreover, no two flowers can map on the same flower, but multiple flowers can map onto the vertex r . Whether such a correspondence exists can be determined by solving a maximum matching problem on a bipartite graph (see Fig . 7) . Mapping a flower on a point Testing whether G(F(t, u), r) = 1 is straightforward . Indeed, G(F(t, u), r) = 1 ⇔ ∀ x ∈ F(t, u) ∩ V 1 : d(x,r) ≤ ε, so the algorithm needs to check the proximity of finite number of points to r . Mapping a subtree on an unbranched path Testing G(Z(p, v), P(r, s)) = 1 may seem tricky . However, it is not much different from testing G(P(p, v), P(r, s)) = 1, which is the problem solved by Alt and Godau [1] for testing whether the Frechet distance between polygonal curves does not exceed . Fig. 6 . A flower F(u,v)=S(p,t)�∪ Z(p,v) (on the left) being mapped onto a flower F(r,s)= S(r,s)�∪ P(r,s) (on the right) . The subtree Z(p,v) and the unbranched section P(r,s) are shown in bold Fig. 7 . A maximum bipartite matching problem for com- puting G(S(u,v),S(r,s)), when 1 ( , ) ) m i S u v F t u = = ∪ i( , and 1 ( , ) ( , ) n i i S u v F p r = = ∪ 26  iSSN 2706-8145, системи керування та комп'ютери, 2021, № 2–3 E.V. Vodolazskiy Conclusions We have presented a measure of similarity of one tree to another reference tree . This measure of similarity is not a metric, however, it is weaker than the Frechet metric, which allows it to be fi- nite on nonisomorphic trees, but stronger than the Hausdorff metric . The presented algorithm for determining if the similarity between to trees is less than a given num- ber ε takes polynomial time and works by reducing the problem of comparing two trees into smaller problems of comparing subsets of these trees (called flowers and sectors), which in turn are reduced to smaller and smaller problems and so on . REFERENCES Alt H ., Godau M ., 1995 .“Computing the Frechet distance between two polygonal curves” . Int . J . Comput . Geometry 1 . Appl .Vol . 5,pp . 75–91 . Berezsky O ., Zarichnyi M ., 2016 . “Frechet distance between weighted rooted trees” .MatematychniStudii . 2 . Dec ., Vol . 48 . Berezsky O ., Zarichnyi M ., 2018 . “Gromov-Frechet distance between metric curves” .MatematychniStudii . 2018 . 3 . Aug ., Vol . 50 . Buchin M ., Krivosija A ., Neuhaus A ., 2020 .“Computing the Frechet distance of trees and graphs of bounded tree 4 . width” .arXiv:2001 . 10502 . Buchin K ., 2017 .“Four Soviets Walk the Dog: Improved Bounds for Computing the Fr�chet Distance” . Discrete & 5 . Computational Geometry . Lee T ., Kashyap R ., Chu, C ., 1994 .“Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms” . 6 . CVGIP: Graphical Models and Image Processing . Vol . 56, no . 6, pp . 462–478 . Schlesinger M . I ., Vodolazskiy E . V ., Yakovenko V .M ., 2016 .“Frechet Similarity of Closed Polygonal Curves” . 7 . International Journal of Computational Geometry & Applications . Vol . 26, no . 01 . Zhang T . Y ., Suen C . Y ., 1984 .“A Fast Parallel Algorithm for Thinning Digital Patterns .Commun . ACM . New York, NY, 8 . USA, Vol . 27, no . 3, pp . 236–239 . Received 01 .06 .2021 ЛІТЕРАТУРА 1 . Alt H ., Godau M . Computing the Frechet distance between two polygonal curves . Int . J . Comput . Geometry Appl . 1995 . Vol . 5 . P . 75–91 . 2 . Berezsky O ., ZarichnyiM .Frechet distance between weighted rooted trees .MatematychniStudii . 2016 . Dec . Vol . 48 . 3 . Berezsky O ., ZarichnyiM .Gromov-Frechet distance between metric curves .MatematychniStudii . 2018 . Aug . Vol . 50 . 4 . Buchin M ., Krivosija A ., Neuhaus A . Computing the Frechet distance of trees and graphs of bounded tree width . arXiv:2001 .10502 . 2020 . 5 . Buchin K . Four Soviets Walk the Dog: Improved Bounds for Computing the Fr�chet Distance . Discrete & Computational Geometry . 2017 . 6 . Lee T ., Kashyap R ., Chu C . Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms . CVGIP: Graphical Models and Image Processing . 1994 . Vol . 56, no . 6 . P . 462–478 . 7 . Schlesinger M . I ., Vodolazskiy E . V ., Yakovenko V . M .Frechet Similarity of Closed Polygonal Curves . International Journal of Computational Geometry & Applications . 2016 . Vol . 26, no . 01 . 8 . Zhang T . Y ., Suen C . Y . A Fast Parallel Algorithm for Thinning Digital Patterns .Commun . ACM . New York, NY, USA, 1984 . Vol . 27, no . 3 . P . 236–239 . Надійщла 01 .06 .2021 iSSN 2706-8145, control systems and computers, 2021, № 2–3 27 A Modification of the Frechet Distance for Nonisomorphic Trees Є.В. Водолазський, старший науковий співробітник, Міжнародний науково-навчальний центр інформаційних технологій та систем НАН та МОН України, 03187, м . Київ, просп . Академіка Глушкова, 40, Україна, waterlaz@gmail .com МОДИФІКАЦІЯ МЕТРИКИ ФРЕШЕ ДЛЯ НЕІЗОМОРФНИХ ДЕРЕВ Вступ . Скелетизація зображень для подальшого порівняння пар скелетів — поширена практика в розпізнаванні зображень . У більшості випадків скелет зображення — ациклічна підмножина поля зору . Поширеною метрикою для порівняння підмножин є метрика Фреше . Однак, відстань Фреше визначено лише для пар ізоморфних дерев, що зводить нанівець можливість практично застосовувати таку метрику на деревах . Ціль статті. Необхідно розробити метод порівняння дерев, ідеологічно близький до метрики Фреше, але виз- начений для пар неізоморфних дерев . Результати. У статті запропоновано модифікацію метрики Фреше для неізоморфних дерев . Нова числова ха- рактеристика названа близькістю дерева до еталону і визначена в тому числі для деяких класів пар неізоморфних дерев . Запропоновано поліноміальний алгоритм розпізнавання того, що одне дерево є близьким до іншого з точністю до заданого числа . Ключові слова: обчислювальна геометрія, метрика Фреше, дерева .