On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions
We consider a multicriteria integer linear programming problem with a targeting set of optimal solutions given by the set of all individual criterion minimizers (extrema). In this study, the lower and upper attainable bounds on the quasistability radius of the set of extremum solutions are obtained...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут кібернетики ім. В.М. Глушкова НАН України
2019
|
Назва видання: | Кибернетика и системный анализ |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/181440 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a quasistability radius for multicriteria integer linear programming problem of finding extremum solutions / V. Emelichev, Yu. Nikulin // Кибернетика и системный анализ. — 2019. — Т. 55, № 6. — С. 80-89. — Бібліогр.: 46 назв. — англ. |