On the finite convergence of the NN classification learning on mistakes
The paper establishes an analog of well-known Novikoff’s theorem on the perceptron learning algorithm’s finite convergence in linearly separated classes. We obtain a similar result concerning the nearest neighbor classification algorithm in the case of compact classes in a general metric space for...
Збережено в:
Дата: | 2022 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Видавничий дім "Академперіодика" НАН України
2022
|
Назва видання: | Доповіді НАН України |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/184927 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the finite convergence of the NN classification learning on mistakes / V.I. Norkin // Доповіді Національної академії наук України. — 2022. — № 1. — С. 34-38. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-184927 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1849272022-08-27T01:26:18Z On the finite convergence of the NN classification learning on mistakes Norkin, V.I. Інформатика та кібернетика The paper establishes an analog of well-known Novikoff’s theorem on the perceptron learning algorithm’s finite convergence in linearly separated classes. We obtain a similar result concerning the nearest neighbor classification algorithm in the case of compact classes in a general metric space for the case of non-intersecting classes. The learning process consists of gradual modification of the algorithm in misclassification cases. The process is studied in the deterministic setting. Classes are understood as compacts in complete metric space, and class separation is defined as the non-intersection of compacts. The number of learning steps is bounded by the number of elements in some ε-net for the considered classes. Встановлено аналог відомої теореми Новікова про скінченну збіжність алгоритму навчання персептрона у випадку лінійно розділених класів. Ми отримуємо аналогічний результат щодо алгоритму класифікації за принципом найближчого сусіда у випадку компактних класів у загальному метричному просторі для класів, що не перетинаються. Процес навчання полягає у поступовій модифікації алгоритму у випадках помилкової класифікації. Процес вивчається в детермінованій постановці. Класи розуміються як компакти в повному метричному просторі. Розділення класів визначається як неперетин компактів. Кількість кроків навчання обмежена числом елементів в деякій ε-сітці для розглянутих класів. 2022 Article On the finite convergence of the NN classification learning on mistakes / V.I. Norkin // Доповіді Національної академії наук України. — 2022. — № 1. — С. 34-38. — Бібліогр.: 10 назв. — англ. 1025-6415 DOI: doi.org/10.15407/dopovidi2022.01.034 http://dspace.nbuv.gov.ua/handle/123456789/184927 519.7 en Доповіді НАН України Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Інформатика та кібернетика Інформатика та кібернетика |
spellingShingle |
Інформатика та кібернетика Інформатика та кібернетика Norkin, V.I. On the finite convergence of the NN classification learning on mistakes Доповіді НАН України |
description |
The paper establishes an analog of well-known Novikoff’s theorem on the perceptron learning algorithm’s finite convergence
in linearly separated classes. We obtain a similar result concerning the nearest neighbor classification algorithm
in the case of compact classes in a general metric space for the case of non-intersecting classes. The learning
process consists of gradual modification of the algorithm in misclassification cases. The process is studied in the
deterministic setting. Classes are understood as compacts in complete metric space, and class separation is defined as
the non-intersection of compacts. The number of learning steps is bounded by the number of elements in some ε-net
for the considered classes. |
format |
Article |
author |
Norkin, V.I. |
author_facet |
Norkin, V.I. |
author_sort |
Norkin, V.I. |
title |
On the finite convergence of the NN classification learning on mistakes |
title_short |
On the finite convergence of the NN classification learning on mistakes |
title_full |
On the finite convergence of the NN classification learning on mistakes |
title_fullStr |
On the finite convergence of the NN classification learning on mistakes |
title_full_unstemmed |
On the finite convergence of the NN classification learning on mistakes |
title_sort |
on the finite convergence of the nn classification learning on mistakes |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2022 |
topic_facet |
Інформатика та кібернетика |
url |
http://dspace.nbuv.gov.ua/handle/123456789/184927 |
citation_txt |
On the finite convergence of the NN classification learning on mistakes / V.I. Norkin // Доповіді Національної академії наук України. — 2022. — № 1. — С. 34-38. — Бібліогр.: 10 назв. — англ. |
series |
Доповіді НАН України |
work_keys_str_mv |
AT norkinvi onthefiniteconvergenceofthennclassificationlearningonmistakes |
first_indexed |
2025-07-16T05:27:18Z |
last_indexed |
2025-07-16T05:27:18Z |
_version_ |
1837780056329420800 |