Model to control portioning for multi-component charge
Introduction. Bell-less tops used in the charging area give significantly wider opportunities for regulating and distributing the charge material along the furnace top radius. Moreover, it becomes feasible to develop the methods for gas flow control and these methods shall differ from the conventi...
Saved in:
Date: | 2020 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Published: |
Видавничий дім "Академперіодика" НАН України
2020
|
Series: | Наука та інновації |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/185474 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Model to control portioning for multi-component charge / M.O. Rybalchenko, A.M. Selegej, V.I. Golovko, S.M. Selegej, O.S. Mirgorodskaya // Наука та інновації. — 2020. — Т. 16, № 6. — С. 36-45. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-185474 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1854742022-09-20T01:26:27Z Model to control portioning for multi-component charge Rybalchenko, M.O. Selegej, A.M. Golovko, V.I. Selegej, S.M. Mirgorodskaya, O.S. Наукові основи інноваційної діяльності Introduction. Bell-less tops used in the charging area give significantly wider opportunities for regulating and distributing the charge material along the furnace top radius. Moreover, it becomes feasible to develop the methods for gas flow control and these methods shall differ from the conventional ones. One of such methods is introduction of multi-component portions of the charge with a technology based component ratio. Problem Statement. The bell-less top charging device is not designed for that type of portioning when the charge material mixing is accompanied with a simultaneous shift of one component with respect to other one for a certain set value, while charging. These portions can be formed with the use of computer-aided stock-conveying system, while discharging the material from weighing hoppers into the blast furnace conveyor. Purpose. This research aims at the development of the structure, the functioning algorithms and the mathematical model for the system to control the formation of multi-component mixed charge batches in order to increase the blast furnace productivity and to reduce the specific coke consumption. Materials and Methods. In this research, the methods of automatic control theory and artificial intellect for the synthesis of weight neuro-fuzzy controllers within the automatic control system of charge dosage have been used. The developed system designed to control multi-component charge portioning via PC has been tested by means of simulation modelling methods. Results. There has been developed an algorithm for operating the system for controlling the multi-component mixed charge preparation on the conveyor, given the arrangement of the specified components, their ratios in portions, total volumetric productivity of the conveyor, the variable geometry of the unloaded material, in the connection with the on-line information on the mixing process. The feasibility of the system has been verified by its simulation with the use of standard application tools. Conclusions. It has been established that the designed control system allows the formation of mixed portions of any composition defined by an operator at a given maximum output of the conveyor and prevents its overload in terms of mass or volume. Вступ. Застосування безконусних завантажувальних пристроїв значно розширило технологічні можливості регулювання і розподілу шихти по радіусу колошника доменних печей. При цьому виникла можливість розробки методів управління газовим потоком, одним з яких є завантаження в піч багатокомпонентних порцій шихти з технологічно обґрунтованим співвідношенням компонентів. Проблематика. Безконусний завантажувальний пристрій не призначено для формування порцій шихти шляхом змішування з одночасним зсувом в процесі завантаження одного виду матеріалу щодо іншого на задану величину. Реалізувати формування таких порцій можна за допомогою ЕО М системи шихтоподачі в процесі розвантаження матеріалів з вагових воронок на доменний конвеєр. Мета. Розробка структури, алгоритмів функціонування та математичної моделі системи управління формуванням багатокомпонентних (змішаних) порцій шихти для підвищення продуктивності доменної печі та зменшення питомої витрати коксу. Матеріали і методи. Використано методи теорії автоматичного управління і штучного інтелекту для синтезу нейронечітких регуляторів ваги для системи автоматичного регулювання дозування шихти. Застосовано методи імітаційного моделювання для тестування розробленої системи управління формування багатокомпонентних порцій шихти на ЕОМ. Результати. Розроблено алгоритм функціонування та виконано моделювання роботи системи управління формуванням змішаних порцій з урахуванням заданого розташування компонентів, їхнього співвідношення в порції, сумарної об'ємної продуктивності конвеєра, змінної геометрії сипучого матеріалу, що розвантажується з вагової воронки, у взаємозв'язку з оперативною інформацією про процес змішування. Висновки. Розроблена система управління дозволяє сформувати порції шихтових матеріалів відповідно до будь-якої структури при заданій максимальній продуктивності конвеєра, виключаючи його перевантаження за масою (об’ємом). 2020 Article Model to control portioning for multi-component charge / M.O. Rybalchenko, A.M. Selegej, V.I. Golovko, S.M. Selegej, O.S. Mirgorodskaya // Наука та інновації. — 2020. — Т. 16, № 6. — С. 36-45. — Бібліогр.: 25 назв. — англ. 1815-2066 DOI: doi.org/10.15407/scin16.06.036 http://dspace.nbuv.gov.ua/handle/123456789/185474 en Наука та інновації Видавничий дім "Академперіодика" НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Наукові основи інноваційної діяльності Наукові основи інноваційної діяльності |
spellingShingle |
Наукові основи інноваційної діяльності Наукові основи інноваційної діяльності Rybalchenko, M.O. Selegej, A.M. Golovko, V.I. Selegej, S.M. Mirgorodskaya, O.S. Model to control portioning for multi-component charge Наука та інновації |
description |
Introduction. Bell-less tops used in the charging area give significantly wider opportunities for regulating and
distributing the charge material along the furnace top radius. Moreover, it becomes feasible to develop the methods
for gas flow control and these methods shall differ from the conventional ones. One of such methods is introduction
of multi-component portions of the charge with a technology based component ratio.
Problem Statement. The bell-less top charging device is not designed for that type of portioning when the
charge material mixing is accompanied with a simultaneous shift of one component with respect to other one for
a certain set value, while charging. These portions can be formed with the use of computer-aided stock-conveying
system, while discharging the material from weighing hoppers into the blast furnace conveyor.
Purpose. This research aims at the development of the structure, the functioning algorithms and the mathematical
model for the system to control the formation of multi-component mixed charge batches in order to increase
the blast furnace productivity and to reduce the specific coke consumption.
Materials and Methods. In this research, the methods of automatic control theory and artificial intellect for
the synthesis of weight neuro-fuzzy controllers within the automatic control system of charge dosage have been
used. The developed system designed to control multi-component charge portioning via PC has been tested by
means of simulation modelling methods. Results. There has been developed an algorithm for operating the system for controlling the multi-component mixed charge preparation on the conveyor, given the arrangement of the specified components, their ratios in portions,
total volumetric productivity of the conveyor, the variable geometry of the unloaded material, in the connection
with the on-line information on the mixing process. The feasibility of the system has been verified by its
simulation with the use of standard application tools.
Conclusions. It has been established that the designed control system allows the formation of mixed portions
of any composition defined by an operator at a given maximum output of the conveyor and prevents its overload
in terms of mass or volume. |
format |
Article |
author |
Rybalchenko, M.O. Selegej, A.M. Golovko, V.I. Selegej, S.M. Mirgorodskaya, O.S. |
author_facet |
Rybalchenko, M.O. Selegej, A.M. Golovko, V.I. Selegej, S.M. Mirgorodskaya, O.S. |
author_sort |
Rybalchenko, M.O. |
title |
Model to control portioning for multi-component charge |
title_short |
Model to control portioning for multi-component charge |
title_full |
Model to control portioning for multi-component charge |
title_fullStr |
Model to control portioning for multi-component charge |
title_full_unstemmed |
Model to control portioning for multi-component charge |
title_sort |
model to control portioning for multi-component charge |
publisher |
Видавничий дім "Академперіодика" НАН України |
publishDate |
2020 |
topic_facet |
Наукові основи інноваційної діяльності |
url |
http://dspace.nbuv.gov.ua/handle/123456789/185474 |
citation_txt |
Model to control portioning for multi-component charge / M.O. Rybalchenko, A.M. Selegej, V.I. Golovko, S.M. Selegej, O.S. Mirgorodskaya // Наука та інновації. — 2020. — Т. 16, № 6. — С. 36-45. — Бібліогр.: 25 назв. — англ. |
series |
Наука та інновації |
work_keys_str_mv |
AT rybalchenkomo modeltocontrolportioningformulticomponentcharge AT selegejam modeltocontrolportioningformulticomponentcharge AT golovkovi modeltocontrolportioningformulticomponentcharge AT selegejsm modeltocontrolportioningformulticomponentcharge AT mirgorodskayaos modeltocontrolportioningformulticomponentcharge |
first_indexed |
2025-07-16T06:10:33Z |
last_indexed |
2025-07-16T06:10:33Z |
_version_ |
1837782777914720256 |
fulltext |
36
НАУКОВІ ОСНОВи
ІННОВАЦІйНОЇ дІяльНОСТІ
https://doi.org/10.15407/scin16.06.036
RyBalchENko, M.o., sElEgEj, a.M., golovko, v.i.,
sElEgEj, s.M., and MiRgoRodskaya, o.s.
National Metallurgical Academy of Ukraine,
4, Gagarina Аve., Dnipro, 49600, Ukraine,
+380 56 745 3156, nmetau@nmetau.edu.ua
a model to control the formation
of multi-component charge portionS
on a BlaSt furnace conveyor
цитування: Rybalchenko M.o., selegej a.M., golovko v.i., selegej s.M., and Mirgorodskaya o.s. a Mo
del to control the formation of Multicomponent charge Portions on a Blast furnace conveyor. Nauka
innov. 2020. v. 16, no. 6. P. 36—45. https://doi.org/10.15407/scin16.06.036
Introduction. Bellless tops used in the charging area give significantly wider opportunities for regulating and
distributing the charge material along the furnace top radius. Moreover, it becomes feasible to develop the methods
for gas flow control and these methods shall differ from the conventional ones. One of such methods is introduc
tion of multicomponent portions of the charge with a technology based component ratio.
Problem Statement. The bellless top charging device is not designed for that type of portioning when the
char ge material mixing is accompanied with a simultaneous shift of one component with respect to other one for
a certain set value, while charging. These portions can be formed with the use of computeraided stockconveying
system, while discharging the material from weighing hoppers into the blast furnace conveyor.
Purpose. This research aims at the development of the structure, the functioning algorithms and the mathe
matical model for the system to control the formation of multicomponent mixed charge batches in order to in
crease the blast furnace productivity and to reduce the specific coke consumption.
Materials and Methods. In this research, the methods of automatic control theory and artificial intellect for
the synthesis of weight neurofuzzy controllers within the automatic control system of charge dosage have been
used. The developed system designed to control multicomponent charge portioning via PC has been tested by
means of simulation modelling methods.
Results. There has been developed an algorithm for operating the system for controlling the multicomponent
mixed charge preparation on the conveyor, given the arrangement of the specified components, their ratios in por
tions, total volumetric productivity of the conveyor, the variable geometry of the unloaded material, in the connec
tion with the online information on the mixing process. The feasibility of the system has been verified by its
simulation with the use of standard application tools.
Conclusions. It has been established that the designed control system allows the formation of mixed portions
of any composition defined by an operator at a given maximum output of the conveyor and prevents its overload
in terms of mass or volume.
K e y w o r d s : automation, charge, multicomponent charge, control system, dosage, and model.
Bellless tops used within the charging area [1] has contributed to developing new methods
for gas flow control. one of such methods is introduction of multicomponent portions of
the charge with a technologybased component ratio [2—4].
ISSN 1815-2066. Nauka innov. 2020. 16(6)
a Model to control the formation of Multi-component charge Portions on a Blast furnace conveyor
ISSN 1815-2066. Nauka innov. 2020. 16 (6) 37
the portions are formed by an automatic cont
rol system that, depending on the location of the
respective weighting hoppers and a given portion,
gives the necessary time between the beginning
of the next and the end of unload of the previous
doses of this portion [5].
the analysis presented in [5] is based on the
following suggestions for the procedure of mixed
portion preparation:
spreliminary mixing of pellets with agglome
rates before charging to the furnace top;
spreliminary concentration of pellets in the pespreliminary concentration of pellets in the pe
riphery and axial zones of the furnace top;
spreliminary ironbearing materials mixing with
coke into separate portions can be combined
with separate charge of burden materials.
Provided that the indicated conditions are met,
one can improve the layer permeability for gases
and the indices of ironbearing materials reduci
bility as well as achieve a longer service life for li
ning and tuyeres, a more stable drive of blast fur
nace and a higher degree of gas utilization [6, 7].
Research [8] explains the reasonability of char
ging the principle ingredients (agglomerate, pel
lets, coke), the unconventional components of the
charge (limestone, anthracite, manganese ore, etc.),
the screenings of burden materials, and the addi
tives for various purposes in the composition of
mi xed portions.
Moreover, in the course of the experimental
trials with a mixed portion charge, positive re
sults have been achieved as specific consumption
of coke decreases (0.2 kg of coke is saved per each
ton of pig iron) [6].
further, the analysis on the existing techni
ques of multicomponent portions formation [9—
12] has shown that this problem is still under
discussion and is open to successful engineering
solutions.
the first attempt to implement the multicom
ponent charge can be assigned to the solution of
combining the final elements of certain raw ma
terials portions while loading them on the con
veyor [9]. this method was developed to load the
charging materials on the conveyor with the time
interval as long as it was required for a certain
weighing hopper to accumulate a raw material
mass that was equal to the mass of the previously
charged portion. however, it has a disadvantage
for the blast furnace process: the masses and the
volumes of portions are not regular, therefore the
head of the current portion, which is time marking,
does not come to the tail part of the previous por
tion. Moreover, this method does not enable over
lapping of raw materials of various kinds.
in research [11], the method is reported for mul
ticomponent portioning with set locations of the
portion on the conveyor, including those charges
which consist of three or more different materials
(for instance: the ratio of iron ore bearing mate
rials to coke in the charge). the control was carried
out per the lead time of the driving portion com
ponent beginning with respect to the start of the
driven component. Based on this, the time when
the discharge mechanism to be released was de
termined for each weighing bin, the increasing se
quence of these values was established and the
discharging mechanisms of the weighing hoppers
were set off in that sequence. however, this me
t hod of multicomponent charge forming enabled
no opportunities available for making changes in
the material consumption during discharging and
therefore this led to the conveyor operation with
the incomplete capacity on some areas of the bur
den material portion.
another method of control described [12] is the
control over the mechanisms of the charge de livery
to the blast furnace top via forming multicompo
nent mixed portion on the dedicated conveyor.
according to the method, the preset locations of
the components, the total volumetric capacity of
the conveyor and the relation between the com
ponents being mixed on the conveyor allow deve
loping the graphs on the components consump
tion and, in its turn, the control over the discharge
mechanisms of the weighing bins is performed ac
cording to the graphs. unfortunately, this does not
take into account the geometric parameters of the
portion lying on the conveyor and therefore the
situation is possible when the central lines of two
Rybalchenko, M.o., selegej, a.M., golovko, v.i., selegej, s.M., and Mirgorodskaya, o.s.
38 ISSN 1815-2066. Nauka innov. 2020. 16 (6)
neighboring burden material placements overlap
each other and cause conveyor overloading with
the emergency stop of the charge supply.
considering the mentioned above, the current
publication finds it reasonable to address the prob
lem of the system development with the objective
to form the desired content of the burden mate
rials portions via the means of the controlled dis
charge from the hoppers and to provide the maxi
mal effectiveness of the dedicated conveyor with
out any overloading accidents.
further, the general requirements for the por
tions of any structure are said to be minimization
of the portion length, which is placed on the con
veyor, portion transportation with minimal de
lays to prevent conveyor overloading followed by
burden material coming off on the driven conve
yor drum and consequent interruption in the bur
den materials delivery.
Eventually, it becomes obvious that the neces
sary condition for the successful multicomponent
portion formation is the control over the burden
materials consumption during discharges of the
bur dens from the weighing hoppers. along with
this, it is also required to attain the control of the
burden materials geometry being placed on the
conveyor in order to ensure the desired parame
ters of the burden materials portions to be char
ged into the blast furnace.
the use of the radar equipment [13—15] and
the availability of the adequate mathematical re gu
larity between the coal consumption and the weig
hing hopper gate opening [16—22] allow determi
ning how the mixing operation can be cont rolled
when discharging on the blast furnace conveyor.
Provided that the control system for the mixed
portions is based on the realtime information on
the changes in the discharges of the weighing hop
pers, the hopper gate opening time instants, the
material coming out of the weighing hoppers and
the material geometric parameters, it is possible
to reduce the variations both in the length of the
gathered portion placed on the conveyor and in
the length of its separate parts. in its turn, this
per mits decreasing in variations in some of the
production parameters, for instance, the mass of
the principle portion and the mass of agglomera
tepellet mixture.
further, in order to ensure the mixed portions
of burden materials to possess the given place
ment, the desired amounts and the preset propor
tions of the ingredients while they are discharged
onto the conveyor, the formation of the mixed por
tions is to be carried out with the control over the
gate opening mechanisms intended for regulating
the crosssections of the bin scales opening for
the discharge.
With this publication, we report on the deve
lopments of the structure and the algorithm, the
mathematical model for the control system of mul
ticomponent burden materials formation on the
conveyor with respect to the preset arrangement
of the components, their ratios and portions, to
tal conveyor capacity, variable geometry of the
raw materials to be discharged and with the ob
servance of the interconnection with the realti
me information on the mixing process. the forma
tion of the mixed portion in our case is carried
out as suggested above by the mechanisms of the
gate, which controls the hole crosssection of the
bin scales during the time when the materials are
coming on the conveyor. the conveyor speed is
constant and is 2 m/s. the control over the dis
charge is performed via the preset time of burden
materials unloading on the dedicated portion area,
the amount of the materials to be discharged on
this area and the rate of their consumption. the
maximal volumetric capacity of the conveyor is al
so taken into account.
the block diagram of the newly developed sys
tem for mixed portions formation is illustrated in
fig. 1 and describes the control over the three
weighing hoppers, the rest of the weighting hop
pers are controlled in the similar way.
as fig. 1 illustrates, the following elements
are introduced for each weighting hopper into
the automatic control system for burden materi
als dosage:
signal to determine the moment for the dischar
ge mechanism switching on;
a Model to control the formation of Multi-component charge Portions on a Blast furnace conveyor
ISSN 1815-2066. Nauka innov. 2020. 16 (6) 39
F
ig
. 1
. B
lo
ck
d
ia
gr
am
o
f c
on
tr
ol
o
ve
r
M
ix
ed
c
ha
rg
e
P
or
ti
on
s
f
or
m
at
io
n.
*m
x/
і,
m
y/
і,
m
z/
і —
m
as
se
s
of
c
om
po
ne
nt
s
of
X
, Y
, Z
; t
he
y
ar
e
di
sc
ha
rg
ed
o
n
i
nu
m
be
r
pl
ac
em
en
t
(t
)
I =
1
, 2
…
n,
n
—
t
ot
al
n
um
be
r
of
p
la
ce
m
en
ts
in
t
he
p
or
ti
on
s;
γ Х
—
b
ul
k
m
as
s
of
c
om
po
ne
nt
X
(
t/
m
3 );
γ
Y
—
b
ul
k
m
as
s
of
c
om
po
ne
nt
Y
(
t/
m
3 );
γ
Z —
b
ul
k
m
as
s
of
c
om
po
ne
nt
Z
(
t/
m
3 );
P
—
t
ot
al
c
ap
ac
it
y
of
t
he
c
ol
le
ct
in
g
co
nv
ey
er
(
m
3 /s
).
*
*
f
or
w
ar
di
ng
s
eq
ue
nc
e
of
w
ei
gh
ti
ng
h
op
pe
rs
s
w
it
ch
in
g
on
m
ea
ns
o
bs
er
vi
ng
t
he
o
rd
er
o
f w
ei
gh
in
g
ho
pp
er
s
in
t
he
b
ur
de
n
m
at
er
ia
ls
d
uc
t
in
t
he
d
ir
ec
ti
on
o
f t
he
c
on
ve
ye
r
tr
av
el
(
th
e
fa
rt
he
st
w
ei
gh
in
g
ho
pp
er
s
fr
om
t
he
in
cl
in
ed
c
on
ve
ye
r
ar
e
di
sc
ha
rg
ed
fi
rs
t
th
en
t
he
n
ea
re
st
o
ne
s)
. t
he
r
es
er
ve
se
qu
en
ce
is
p
ro
vi
de
d
by
w
ei
gh
ti
ng
h
op
pe
rs
s
w
it
ch
in
g
on
in
t
he
c
ou
nt
er
d
ir
ec
ti
on
o
f t
he
c
on
ve
ye
r
tr
av
el
(
th
e
ne
ar
es
t
w
ei
gh
in
g
ho
pp
er
s
fr
om
t
he
in
cl
in
ed
co
nv
ey
er
a
re
d
is
ch
ar
ge
d
fi
rs
t
th
en
t
he
fa
rt
he
st
o
ne
s)
.
c
om
po
ne
nt
X
c
on
t
ro
lle
d
au
to
m
at
io
n
re
gu
la
ti
ng
W
ei
gh
ti
ng
H
op
pe
r C
ho
ic
e:
th
ey
a
re
in
vo
lv
ed
in
t
he
po
rt
io
ns
fo
rm
at
io
n
co
ns
id
er
in
g
th
e
co
nd
it
io
ns
of
t
he
ir
n
um
be
r
to
s
ui
t
th
e
de
di
ca
te
d
ki
nd
of
r
aw
m
at
er
ia
ls
a
nd
t
he
re
ad
in
es
s t
o
be
d
is
ch
ar
ge
d
d
et
er
m
in
in
g
th
e
ti
m
e
w
he
n
th
e
m
ec
ha
ni
sm
s
ar
e
sw
it
ch
ed
o
n
fo
r
th
e
w
ei
gh
ti
ng
h
op
pe
r
di
sc
ha
rg
e:
in
vo
lv
ed
in
fo
rm
in
g
th
e
po
rt
io
ns
of
t
he
1
st
p
la
ce
m
en
t
c
al
cu
la
ti
on
o
f t
he
r
eq
ui
re
d
va
lu
es
o
f t
he
c
on
su
m
ab
le
co
m
po
ne
nt
s
w
it
hi
n
ea
ch
pl
ac
em
en
t
po
rt
io
ns
Q
x/
i,
Q
y/
i, Q
z/
i, i
=
1
, 2
…
n,
n
–
to
ta
l n
um
be
r
of
t
he
p
la
ce
m
en
ts
w
it
hi
n
th
e
po
rt
io
ns
d
et
er
m
in
in
g
th
e
ti
m
e
w
he
n
th
e
m
ec
ha
ni
sm
s
ar
e
sw
it
ch
ed
on
fo
r
th
e
w
ei
gh
ti
ng
h
op
pe
r
di
sc
ha
rg
e:
in
vo
lv
ed
in
fo
rm
in
g
th
e
po
rt
io
ns
o
f t
he
2
nd
a
nd
t
he
3d …
p
la
ce
m
en
t
at
t
he
r
ev
er
se
se
qu
en
ce
o
f t
he
w
ei
gh
in
g
ho
pp
er
s
w
it
ch
in
g
on
d
at
a
co
lle
ct
io
n
fo
r
th
e
st
ra
in
g
au
ge
s
en
si
ng
el
em
en
t
fo
r
de
fi
ni
ng
t
he
cu
rr
en
t
am
ou
nt
o
f t
he
di
sc
ha
rg
ed
b
ur
de
n
m
at
er
ia
ls
fo
r
ea
ch
w
ei
gh
ti
ng
h
op
pe
r
in
re
al
t
im
e
m
od
e
d
ef
in
in
g
th
e
en
d
of
t
he
m
at
er
ia
ls
d
os
in
g
on
t
he
i
nu
m
be
r
pl
ac
em
en
t,
t
he
c
ha
ng
e
in
t
he
r
eq
ui
re
d
va
lu
e
fr
om
Q
x/
i in
to
Q
x/
i+
1
c
al
cu
la
ti
on
o
f t
he
t
ot
al
r
eq
ui
re
d
m
as
s
va
lu
e
to
b
e
di
sc
ha
rg
ed
fr
om
ea
ch
w
ei
gh
in
g
ho
pp
er
, i
nv
ol
ve
d
in
t
he
p
or
ti
on
fo
rm
in
g
OPERATOR
m
x/
i
m
y/
i
m
z/
i
g x g y g z P
*
c
om
po
ne
nt
Z
c
on
t
ro
lle
d
au
to
m
at
io
n
re
gu
la
ti
ng
W
ei
gh
ti
ng
h
op
pe
r
di
sc
ha
rg
e
be
gi
ns
B
as
ed
o
n
on
l
in
e
in
fo
rm
at
io
n
on
po
rt
io
ns
fo
rm
at
io
n,
ta
sk
c
or
re
ct
io
n
fo
r
do
si
ng
(
co
nt
ro
lle
d
au
to
m
at
io
n
re
gu
la
ti
on
)
d
ef
in
in
g
th
e
m
om
en
t
fo
r
di
sc
ha
rg
e
m
ec
ha
ni
sm
s
sw
it
ch
o
n
fo
r
th
os
e
w
ei
gh
ti
ng
h
op
pe
rs
w
hi
ch
a
re
in
vo
lv
ed
in
to
fo
rm
in
g
th
e
po
rt
io
ns
o
n
th
e
pl
ac
em
en
ts
n
um
be
r
2,
3
…
n
w
he
n
th
e
ho
pp
er
s
ar
e
sw
it
ch
ed
on
in
fo
rw
ar
d
se
qu
en
ce
d
et
er
m
in
in
g
th
e
cu
rr
en
t
ch
ar
ge
of
t
he
c
on
ve
ye
r
w
it
h
bu
rd
en
m
at
er
ia
ls
in
t
he
o
n
lin
e
m
od
e
c
om
po
ne
nt
Y
c
on
t
ro
lle
d
au
to
m
at
io
n
re
gu
la
ti
ng
additives
additives
co
m
po
ne
nt X
co
m
po
ne
nt X
co
m
po
ne
nt X
{ D
ef
in
in
g
m
ul
ti
-c
om
po
ne
nt
po
rt
io
ns
o
f m
ix
ed
c
ha
rg
e
ar
ra
ng
ed
a
s
th
e
fo
llo
w
in
g
ea
ch
o
th
er
p
la
ce
m
en
ts
on
th
e
co
lle
ct
in
g
co
nv
ey
or
:
th
e
gi
ve
n
m
as
s
va
lu
es
of
t
he
c
om
po
ne
nt
s
on
t
he
pl
ac
em
en
ts
, t
he
ir
b
ul
k
m
as
se
s,
t
ot
al
c
on
ve
yo
r
ca
pa
ci
ty
d
et
er
m
in
in
g
th
e
pr
ed
ic
te
d
ti
m
e
du
ra
ti
on
o
f e
ac
h
pl
ac
em
en
t
d
at
a
co
lle
ct
ed
w
it
h
ra
da
r
sc
an
ni
ng
m
on
it
or
in
g
Rybalchenko, M.o., selegej, a.M., golovko, v.i., selegej, s.M., and Mirgorodskaya, o.s.
40 ISSN 1815-2066. Nauka innov. 2020. 16 (6)
information on the required consumption of the
component within each placement (the requi
red consumption is corrected with the obser
vance of the online information on the mixing
processes, received from straingauge sensing
elements and radars);
total mass value to be discharged from the weig
hing hopper when the portion formation.
according to the realtime data information
obtained from the radar sensors of the charge level,
the current discharge of the burdens on the con
veyor is determined in the realtime mode and
the correction of the automatic regulation system
for portioning is carried out as being based on the
realtime information of portion formation.
the specific feature of the charge dosage regu
lation system to be operated within the control
system for multicomponent portion is that there
are the limits imposed on the controller exit, they
are related to the changes in the required demand
for the component depending on what placement
the discharge is to be. the structural pattern of
the automatic regulation system for the charge
material dosage is shown in fig. 2 (diagram with
out a continuous graph).
Within the blast furnace charging equipment,
the asynchronous drives with aP8312 shortcir
cuited rotors are employed for controlling the
burden materials release. the vector control is ch o
sen for the system to control the asynchronous dri
ves [23, 24]. Research [25] reports on the simula
tion results for the control system over the asyn
chronous drive to operate the weighing hopper gate.
in order to provide the performance of auto
matic regulation for dozing, the use of an adap
tive neurofuzzy weight controller is necessary.
at this, the input variable is the required angle of a
weighing hopper gate opening at iplacement whi
le the output variable is the proportionality coef
Neurofuzzy
Net
controller
Electric
drive
Proportional
Weight
controller
Q (j)
jrequired
mset
(–)
mactual
jactual
Kp
1
p
Fig. 2. the structural Pattern of the automatic Regulation
system for the charge Materials dosage.
mset is the set value of the mass to be discharged from the
weighing hopper; mactual is actual mass; Q (j) is mathema
tical model of burden materials rate supply per the angle of
weighing hopper gate opening; jrequired is required value of
the angle of weighing hopper gate opening; jactual is angle
value of weighing hopper gate opening; 1/p is integrator
Fig. 3. Rule viewer for the fuzzy input
b
a
a Model to control the formation of Multi-component charge Portions on a Blast furnace conveyor
ISSN 1815-2066. Nauka innov. 2020. 16 (6) 41
ficient (Kр) and adaptive neurofuzzy proportio
nal controller.
the structural scheme of the adaptive auto
matic regulation system with neurofuzzy weight
controller is shown in fig. 2 (diagram with a con
tinuous graph).
for the sake of the information collection on
the object behavior and causeandeffect relations
between the required angle of the gate ope ning
on iplacement and the settings of the proportio
nal controller, the simulation has been conducted
for the dosage operations and the obtained results
permit determining the proportional controller
settings as dependent on the required angle of the
gate opening.
table 1 shows the results of the parameter cal
culations for the proportional controller of the
agglomerate dosage system at various limitations
imposed on the control signal of the controller.
the parameters of the weight controller for pel
lets and coke were calculated by the same scheme.
the data obtained from thereof have been app
lied as the training set for the neurofuzzy net
(adaptive Network Based fuzzy inference sys
tem, aNfis). the latter acts in accordance to the
sugeno algorithm and is widely used for the con
trollers of the fuzzy systems of automatic regu
lation.
in order to analyze the adequacy of the deve
loped system in terms of parameter output by the
proportional controller, we applied the rule view
er of the rule database (refer to fig. 3). the va
lues obtained via the program assistance were
input and output parameters (relative value of
0.8
0.4
0
0.2
0.6
90
70
50
60
80
5 10 15 20 25 Time, s
0.4
0
10
R
eq
ui
re
d
a
ng
le
of
o
pe
ni
ng
(d
eg
re
es
)
a
gg
lo
m
er
at
e
R
at
e,
m
3 /s
d
is
ch
ar
ge
d
a
m
ou
nt
(
t)
Fig. 4. simulation Results
Fig. 5. the structure of the set Portion
2 placement 3 placement 5 placement1 placement 4 placement
mA/1 = 18 t
mK/2 = 3.3 t mK/4 = 10.3 t
mK/3 = 7.2 t mO/5 = 16.7 t
P
m4/2 = 9 t m4/4 = 3.5 t
Agglomerate PelletsCoke
Agglomerate
Coke
Pellets
Coke
Rybalchenko, M.o., selegej, a.M., golovko, v.i., selegej, s.M., and Mirgorodskaya, o.s.
42 ISSN 1815-2066. Nauka innov. 2020. 16 (6)
an angle opening jrequired/jmax = 0.5 → Kр = 114 il
lustrated in fig. 3, а; jrequired/jmax = 1 → Kр = 33.14
refer to fig. 3, b), they coincided with the va
lues obtained by testing. this brought the evi
dence that the developed neurofuzzy net was
adequate.
this taught neurofuzzy net has been applied in
adaptive automatic regulation of the burden ma
terials supply.
the dedicated simulation modelling has been
performed in order to check the effectiveness of
the neurofuzzy net performance. the results of
the simulation for the agglomerate dosage regula
tion system which incorporated the limitations of
the controlling action are shown in fig. 4 (at the
reference time of jrequired = 90°; at the reference
time of t = 7 s and jrequired = 70°; at the reference
time of t = 9 s jrequired = 50°).
the graphs analyzed with respect to the transi
tion processes within the system have evidenced
that the agglomerate dosage precision is high (the
error is ±0.1%). Note that the occasional place
ment on the other surface has been taken into ac
count, along with the limitations imposed on the
weight controller output.
the neurofuzzy weight controllers within the
automatic regulations for pellets dosage and coke
dosage are synthesized in the identical way.
the adequacy of the designed system of cont
rol over the formation of charge mixed portions has
been assessed by means of the simulation stu dy
Table 1. The Calculated Parameters
of the Proportion Controller at Various Angles
for Weighing Hopper Gate Opening
Required
angle of
opening,
jrequired
Relative value
for the Required angle
of opening,
jrequired/jmax*
Proportionality
coefficient of
agglomerate Weight
controller, Кр
90 1 33.14
67.5 0.75 51.25
45 0.5 114
22.5 0.25 590
*jmax — the maximal angle values for weighing hopper gate
opening, is equal to 90°.
Fig. 6. а1 left Weighing hopper at operation: 1 — angle of
Weighing hopper gate opening, degrees; 2 — discharged
Mass, t (27 t); 3 — Material charge to the conveyor, m3/s
time, s
100
80
90
60
40
20
30
50
70
10
–10
10
1
2
3
20 30 40 50 60 70 80 90
0
0
time, s
Fig. 7. к2 left Weighing hopper at operation: 1 — angle of
Weighing hopper gate opening, degrees; 2 — discharged
Mass, t (14 t); 3 — conveyer Material charge, m3/s
80
90
60
40
20
30
50
70
10
10
1
2
3
20 30 40 50 60 70 80 90
0
0 100
time, s
Fig. 8. о1 left Weighing hopper at operation: 1 — angle
of Weighing hopper gate opening, degrees; 2 — discharged
Mass, t (27 t); 3 — conveyor Material charge, m3/s
100
80
90
60
40
20
30
50
70
10
–10
10
1
2
3
20 30 40 50 60 70 80 90
0
0
a Model to control the formation of Multi-component charge Portions on a Blast furnace conveyor
ISSN 1815-2066. Nauka innov. 2020. 16 (6) 43
based on the algorithm for simulating the beha
vior and the interaction of the system elements.
Before simulating per the set program for the
blast furnace charge, the multicomponent mixed
portions were determined in the form of the pla ce
ments following each other on the conveyor. Wi
t hin these placements the amount and the ratios
of the components were constant. thus, the ini
tial data for the simulation were the component
masses on the placements, the bulk masses of char
ge materials and the volumetric capacity of the
conveyor.
the weighing hoppers were also involved in the
process of multicomponent formation.
the simulation results of the portion formation
structure are shown in fig. 5.
the following parameters were set: mА/1 = 18 t
is the agglomerate mass in the first placement;
mA/2 = 9 t is the agglomerate mass on the second
placement, mK/2 = 3.3 t is the coke mass on the
second placement of the portion, mK/3 = 7.2 t is
the coke mass on the third placement, mK/4 = 3.5 t
is the coke mass on the fourth placement, mO /4 =
= 10.3 t is the pellets mass on the fourth place
ment, mO/5 = 16.7 t is the pellets mass on the fifth
placement, P = 0.8 m3/s is the conveyor volumet
ric capacity, gК = 0.45 t/m3 is the coke bulk mass,
gА = 1.6 t/m3 is the agglomerate bulk mass, gо =
= 2.1 t/m3 is the pellet bulk mass.
the following weighing bins were chosen for
the discharge: к2 left, о1 left и а1 left.
the simulation results are shown in figs. 6—9.
the analysis of the techniques of multicompo
nent portions formation on the conveyor for the
blast furnace charging has shown that the men
tioned problem still requires a proper engineering
solution. the necessary condition for solving this
problem is measures to control and regulate the
burden materials consumption when they are dis
charged out from the weighing hoppers. along with
the controlled release of the burden materials, the
re is also the necessity of the control over burden
materials geometry on the conveyor in order to
provide the required parameters of the burden
portion.
the structure, the operation algorithms, and
the mathematical model have been developed for
exercising control over the formation of multi
component charge on the conveyer, given the pre
set arrangement of the discharged burden materi
als on the conveyor, their portions and ratios and
the variability of their geometry in relation to the
online information on the mixing operations.
the use of the adaptive neurofuzzy controller
within the automatic regulation has enabled us to
provide a high accuracy of the burden materials
dosage (the simulation results have shown that
the possible error is ±0.1%).
Fig. 9. conveyor charging with the Materials: 1 — changes in agglomerate consumption; 2 — changes in coke consump
tion; 3 — changes in consumption of Pellets
1
1
2 22
3
3
0.8
1
C
on
ve
yo
r
C
ha
rg
in
g
w
ith
th
e
M
at
er
ia
ls
(m
/s
)
0.4
0
0.2
0.6
20 40 60 80 100 120
0.8
1
0.4
0
0.2
0.6
20 40 60 80 100 120
Time, s
3
Rybalchenko, M.o., selegej, a.M., golovko, v.i., selegej, s.M., and Mirgorodskaya, o.s.
44 ISSN 1815-2066. Nauka innov. 2020. 16 (6)
the adequacy of the designed control system
for forming the mixed portions of the burden ma
terials has been performed on the grounds of the
simulation modelling which has been assessed by
operation algorism to simulate the behavior of
the system components and their interaction.
having analyzed the graphs obtained in the
simulation process for various charge portions
one can conclude that the designed system for
controlling mixed portion formation allows reali
zing the formation of multicomponent portions
consisting of whatever amount of materials, given
the specified arrangement of the components and
their ratio in the portion, the variable geometry
of the bulk material unloaded, the total volumet
ric capacity of the conveyor in conjunction with
operational information about the mixing pro
cess, which makes it possible to form portions of
charge materials according to any structure given
the maximum performance of the conveyor with
the prevention of its overload in terms of weight
(volume).
REfERENcEs
1. Bolshakov, v. i. (2004). contemporary charging equipment and monitoring systems for blast furnace reconstruction.
Metallurgical and Mining Industry, 5, 96—100 [in Russian].
2. loginov, v. i., Berin, a. l., solomatin, s. M. (1977). the influence of iron ore material mixed with coke on gas dynamic
conditions and technical and economic performance of a blast furnace. Steel in Translation, 5, 391—394 [in Russian].
3. loginov, v. i., Musienko, s. M., Berin, a. l. (1984). charging iron ore raw materials mixed with coke. Metallurgical and
Mining Industry, 3, 10—12 [in Russian].
4. loginov, v. i., Musienko, s. M., voronkov, d. v. (1987). Blast furnace performance at skip charging iron ore raw materials
along with coke. Steel in Translation, 12, 7—12 [in Russian].
5. Bolshakov, v. i. (1990). Theory and practice of blast furnace charging. Moscow [in Russian].
6. Bolshakov, v. i., ivancha, N. g., Muravieva, i. g., vishniakov, v. i. (2012). the study and industrial testing for charging mul
ticomponent mixed portions, consisting of iron ore raw materials and coke. Collection of scientific works of Z. I. Nekrasov
Iron & Steel Institute of NAS of Ukraine “Fundamental and applied problems of ferrous metallurgy”, 18, 53—67 [in Russian].
7. Bolshakov, v. i., gladkova, N. a., ivancha, N. g., shutylev, f. M., Porubova, t. P. (2006). interconnection of smelt indica
tors under operation with multicomponent burden materials charge. Collection of scientific works of Z. I. Nekrasov Iron &
Steel Institute of NAS of Ukraine: “Fundamental and Applied Problems of Ferrous Metallurgy”, 13, 15—26 [in Russian].
8. Bolshakov, v. i., ivancha, N. g., Muravieva, i. g., vishniakov, v. i. technological explanation on effectiveness of multi
component mixed charge application in blast furnace practice. Collection of scientific works of Z. I. Nekrasov Iron & Steel
Institute of NAS of Ukraine “Fundamental and Applied Problems of Ferrous Metallurgy”, 25, 103—122 [in Russian].
9. A. s. 694446. MPK S 21 V 7/20. Method for feeding charge materials into a blast furnace. a. v. Prazdnikov, E. ya. klots
man, f. M. shutylev, v. i. golovko, i. P. denisik. No. 2380955; publ. 30.10.1979, Bjul. No. 40.
10. Bolshakov, v. i., ivancha, N. g. (2002). Preparing mixed portions of burden materials on the conveyer for the blast fur
nace. Metallurgical and Mining Industry, 6, 79—83.
11. A. s. 1049549. MPK S 21 V 7/20. Method of controlling mechanisms of conveyor charge feeding of blast furnaces. g. d. Zo
lotnickaia, M. M. frenkel, Burgutin, B. g. garbuz, E. ya. klotsman, v. i. golovko, a. s. gurov. No. 3358183; pri pri tet
izob retenya 26.11.1981; publ. 23.10.1983, Bjul. No. 39.
12. Patent of the Russian Federation № 2016068, MPk s 21 v 7/20. Porkh, v. i. the technique for controlling the mecha
nisms of burden materials supply for blast furnace practice [in Russian].
13. viktorov, v. a., lunkin, B. v., sovlukov, a. s. (1989). Radio wave methods to measure the parameters of technological pro
cesses. Moscow [in Russian].
14. golovko, v. i., kukushkin, o. N., Mihajlovskij, N. v. (1998). opportunities of microwave methods of measurement for
monitoring technological processes in metallurgy. Collection of scientific and technical papers: “Electronics technology”,
1(471), 14—17 [in Russian].
15. Rybalchenko, M. a., golovko, v. i., verhovskaia, a. a. (2011, april). Radar impulse spectrum analysis for online deter
mination of the metallurgical materials level. Collection of articles based on the materials of the international forum of ju
niour scientists “The problems of natural resources management”, 48—50. st. Petersburg [in Russian].
16. shternlikht, d. v. (1984). Hydraulics. Moscow [in Russian].
a Model to control the formation of Multi-component charge Portions on a Blast furnace conveyor
ISSN 1815-2066. Nauka innov. 2020. 16 (6) 45
17. kiriia, R. v., Maksiutenko, v. ju., Braginets d. d., Mostovoi, B. i. (2008). Back to the problem of bulky materials dischar
ge from the bin with the slot opening. GeoTechnical Mechanics “GeoTechnical Mechanics”, 80, 351—362 [in Russian].
18. kiriia, R. v., Braginets d. d., Mostovoi, B. i. (2009). Bulky materials discharge from the bin with the lateral slot opening.
Collection of Research Papers of the National Mining University, 32, 114—122 [in Russian].
19. kiriia, R. v. (2003). concerning the factor of internal losses at bulky material movement on the elements of belt con
veyer transfer groups. GeoTechnical Mechanics, 41, 159—167 [in Russian].
20. kiriia, R. v., Maksutenko, v. yu., titschenko, t. f., Mostovoi, B. i. (2009). concerning interaction of bulky material with
the cover plate. GeoTechnical Mechanics “GeoTechnical Mechanics”, 83, 246—252 [in Russian].
21. kiriia, R. v., Rybalchenko, M. a., Mostovoi, B. i. (2012). Bulky material discharge from the bin with automatic lateral
gate. Collection of Research Papers of the National Mining University, 37, 217—224 [in Russian].
22. Rybalchenko, M. a., ivatschenko, v. P., golovko, v. i., kiriia, R. v., Papanov, h. a. (2012). verification on the performan
ce correctness for the mathematical model to describe the dependence between bulky material consumption and gate
opening angle. Scientific Bulletin «Modern problems of Metallurgy», Хv(15), 25—35 [in Russian].
23. vinogradov, a. B. (2008). Vector control of alternating current electric drives. ivanovo [in Russian].
24. Rudakov, v. v., stoljarov, i. M., dartau, v. a. (1987). Asynchronous electric drives with vector control. leningrad [in Russian].
25. Rybalchenko, M. a., golovko, v. i., verhovskaya, a. a., Papanov, g. a. (2014). simulation of vector control asynchro
nous Electric Motor gate Weight funnel of system serve of charge Blast furnace. Mining Journal of Kryvyi Rih Na
tional University, 98, 123—130 [in Russian].
Стаття надійшла до редакції / Received 14.05.19
Статтю прорецензовано / Revised 23.07.19
Статтю підписано до друку / Accepted 07.11.19
М.О. Рибальченко, А.М. Селегей, В.І. Головко,
С.М. Селегей, О.С. Миргородська
Національна металургійна академія України,
просп. Гагаріна, 4, Дніпро, 49600, Україна,
+380 56 745 3156, nmetau@nmetau.edu.ua
МоДель УправліННЯ ФорМУваННЯМ баГатокоМпоНеНтНиХ
порцій ШиХти На ДоМеННоМУ коНвеЄрі
Вступ. застосування безконусних завантажувальних пристроїв значно розширило технологічні можливості регулю
вання і розподілу шихти по радіусу колошника доменних печей. при цьому виникла можливість розробки методів
управління газовим потоком, одним з яких є завантаження в піч багатокомпонентних порцій шихти з технологічно
обґрунтованим співвідношенням компонентів.
Проблематика. безконусний завантажувальний пристрій не призначено для формування порцій шихти шляхом
змішування з одночасним зсувом в процесі завантаження одного виду матеріалу щодо іншого на задану величину.
реалізувати формування таких порцій можна за допомогою еоМ системи шихтоподачі в процесі розвантаження
матеріалів з вагових воронок на доменний конвеєр.
Мета. розробка структури, алгоритмів функціонування та математичної моделі системи управління формуван
ням багатокомпонентних (змішаних) порцій шихти для підвищення продуктивності доменної печі та зменшення
питомої витрати коксу.
Матеріали і методи. використано методи теорії автоматичного управління і штучного інтелекту для синтезу ней
ронечітких регуляторів ваги для системи автоматичного регулювання дозування шихти. застосовано методи іміта
ційного моделювання для тестування розробленої системи управління формування багатокомпонентних порцій
шихти на еоМ.
Результати. розроблено алгоритм функціонування та виконано моделювання роботи системи управління форму
ванням змішаних порцій з урахуванням заданого розташування компонентів, їхнього співвідношення в порції, су
марної об'ємної продуктивності конвеєра, змінної геометрії сипучого матеріалу, що розвантажується з вагової ворон
ки, у взаємозв'язку з оперативною інформацією про процес змішування.
Висновки. розроблена система управління дозволяє сформувати порції шихтових матеріалів відповідно до будьякої
структури при заданій максимальній продуктивності конвеєра, виключаючи його перевантаження за масою (об’ємом).
Ключові слова : автоматизація, шихта, багатокомпонентні порції, система управління, дозування, модель.
|