Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure
Reaction of 5-carbethoxy-6-chloromethyl-3,4-dihydropyrimidin-2(1H)-ones with N,N’-binucleophiles has been studied on hydrazine hydrate, monosubstituted hydrazines and carboxylic acid hydrazides. It has been determined that the reaction takes place as nucleophilic substitution of halogen on N,N’-binu...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України
2010
|
Schriftenreihe: | Украинский химический журнал |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/185945 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure / І.О. Lebedyeva, М.V. Povstyanoy, V.М. Povstyanoy, A.B. Ryabitskii, O.G. Panasyuk // Украинский химический журнал. — 2010. — Т. 76, № 3. — С. 46-55. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-185945 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1859452022-10-26T01:24:41Z Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure Lebedyeva, І.О. Povstyanoy, М.V. Povstyanoy, V.М. Ryabitskii, A.B. Panasyuk, O.G. Органическая химия Reaction of 5-carbethoxy-6-chloromethyl-3,4-dihydropyrimidin-2(1H)-ones with N,N’-binucleophiles has been studied on hydrazine hydrate, monosubstituted hydrazines and carboxylic acid hydrazides. It has been determined that the reaction takes place as nucleophilic substitution of halogen on N,N’-binucleophile followed by the primary pyrimidine heterocyclisation into the pyrrolo[4,3-d]pyrimidine and pyridazino[4,5-d]pyrimidine derivatives. Исследована реакция взаимодействия 5-карбэтокси-6-хлорметил-3,4-дигидропиримидин-2-(1Н)-онов с N,N’-динуклеофилами на примерах гидразингидрата, монозамещенных гидразинов и гидразидов карбоновых кислот. Установлено, что реакция протекает как нуклеофильное замещение галогена N,N’-динуклеофилом с последующей гетероциклизацией исходного пиримидина в производные пирроло[4,3-d]пиримидина и пиридазино[4,5-d]пиримидина. Досліджено реакцію взаємодії 5-карбетокси-6-хлорометил-3,4-дигідропіримідин-2(1Н)-онів з N, N’-динуклеофілами на прикладах гідразингідрату, монозаміщених гідразину і гідразидів карбонових кислот. Встановлено, що реакція проходить як нуклеофільне заміщення галогену N,N’-динуклеофілом з наступною гетероциклізацією вихідного піримідину в похідні піроло[4,3-d]піримідину та піридазино[4,5-d]піримідину. 2010 Article Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure / І.О. Lebedyeva, М.V. Povstyanoy, V.М. Povstyanoy, A.B. Ryabitskii, O.G. Panasyuk // Украинский химический журнал. — 2010. — Т. 76, № 3. — С. 46-55. — Бібліогр.: 9 назв. — рос. 0041–6045 http://dspace.nbuv.gov.ua/handle/123456789/185945 54.057+547.853+547.677 en Украинский химический журнал Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Органическая химия Органическая химия |
spellingShingle |
Органическая химия Органическая химия Lebedyeva, І.О. Povstyanoy, М.V. Povstyanoy, V.М. Ryabitskii, A.B. Panasyuk, O.G. Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure Украинский химический журнал |
description |
Reaction of 5-carbethoxy-6-chloromethyl-3,4-dihydropyrimidin-2(1H)-ones with N,N’-binucleophiles has been studied on hydrazine hydrate, monosubstituted hydrazines and carboxylic acid hydrazides. It has been determined that the reaction takes place as nucleophilic substitution of halogen on N,N’-binucleophile followed by the primary pyrimidine heterocyclisation into the pyrrolo[4,3-d]pyrimidine and pyridazino[4,5-d]pyrimidine derivatives. |
format |
Article |
author |
Lebedyeva, І.О. Povstyanoy, М.V. Povstyanoy, V.М. Ryabitskii, A.B. Panasyuk, O.G. |
author_facet |
Lebedyeva, І.О. Povstyanoy, М.V. Povstyanoy, V.М. Ryabitskii, A.B. Panasyuk, O.G. |
author_sort |
Lebedyeva, І.О. |
title |
Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure |
title_short |
Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure |
title_full |
Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure |
title_fullStr |
Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure |
title_full_unstemmed |
Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure |
title_sort |
interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure |
publisher |
Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України |
publishDate |
2010 |
topic_facet |
Органическая химия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/185945 |
citation_txt |
Interaction of 4-substituted 5-carbethoxy-6-chloromethylpyrimidin-2-ones with hydrazines and hydrazide derivatives: synthesis and structure / І.О. Lebedyeva, М.V. Povstyanoy, V.М. Povstyanoy, A.B. Ryabitskii, O.G. Panasyuk // Украинский химический журнал. — 2010. — Т. 76, № 3. — С. 46-55. — Бібліогр.: 9 назв. — рос. |
series |
Украинский химический журнал |
work_keys_str_mv |
AT lebedyevaío interactionof4substituted5carbethoxy6chloromethylpyrimidin2oneswithhydrazinesandhydrazidederivativessynthesisandstructure AT povstyanoymv interactionof4substituted5carbethoxy6chloromethylpyrimidin2oneswithhydrazinesandhydrazidederivativessynthesisandstructure AT povstyanoyvm interactionof4substituted5carbethoxy6chloromethylpyrimidin2oneswithhydrazinesandhydrazidederivativessynthesisandstructure AT ryabitskiiab interactionof4substituted5carbethoxy6chloromethylpyrimidin2oneswithhydrazinesandhydrazidederivativessynthesisandstructure AT panasyukog interactionof4substituted5carbethoxy6chloromethylpyrimidin2oneswithhydrazinesandhydrazidederivativessynthesisandstructure |
first_indexed |
2025-07-16T06:49:56Z |
last_indexed |
2025-07-16T06:49:56Z |
_version_ |
1837785255170277376 |
fulltext |
ОРГАНИЧЕСКАЯ ХИМИЯ
UDC 54.057+547.853+547.677
І.О. Lebedyeva, М.V. Povstyanoy, V.М. Povstyanoy, A.B. Ryabitskii, O.G. Panasyuk
INTERACTION OF 4-SUBSTITUTED 5-CARBETHOXY-6-CHLOROMETHYLPYRIMIDIN-2-ONES
WITH HYDRAZINES AND HYDRAZIDE DERIVATIVES: SYNTHESIS AND STRUCTURE *
Reaction of 5-carbethoxy-6-chloromethyl-3,4-dihydropyrimidin-2(1H)-ones with N,N’-binucleophiles has been stu-
died on hydrazine hydrate, monosubstituted hydrazines and carboxylic acid hydrazides. It has been determined
that the reaction takes place as nucleophilic substitution of halogen on N,N’-binucleophile followed by the prima-
ry pyrimidine heterocyclisation into the pyrrolo[4,3-d]pyrimidine and pyridazino[4,5-d]pyrimidine derivatives.
INTRODUCTION . 3,4-Dihydropyrimidin-2(1Н)-
оnes (DHPMs) obtained via Biginelli reaction are tho-
roughly studied these days due to the wide spectrum
of their biological activity. In particular, DHPMs pos-
sess high efficiency against cardiovascular disorders
[1], cancer affected cells [2]. Biginelli compounds be-
long to the azaanalogs of the Hantzsch 1,4-dihydro-
pyridine calcium channel modulators of Nifedipine,
Nacardipine, Amlodipine type [3]. The strategy of Bigi-
nelli reaction is applied to obtain synthetic analogs of
Batzelladines A-D — potent HIV inhibitors [4].
However, being also of a practical interest, ring-con-
densed DHPM derivatives have been much less stu-
died which explains with only a few works devoted to
this subject [5, 6].
The most convenient synthetic approach towards
condensed DHPMs is a cyclocondensation of 5-al-
koxycarbonyl-6-halomethyl DHPMs with the variety
of N-, O- , S-nucleophilic reagents which allows for-
ming partially hydrogenated condensed azolopyrimi-
dine systems. Thus, the library of substituted tetra-
hydropyrrolo[4,3-d]pyrimidine-2,5-diones has been
synthesized in such a way. The study of their biolo-
gical activity has shown that such compounds are the
perspective objects of pharmaceutical and agricultu-
ral screening [7]. In this paper the research has been
extended employing such N,N’-binucleophilic rea-
gents as hydrazine, hydrazide and their monoalkyl
(aryl, acyl) substituted analogs employed in the he-
terocyclization process of initial DHPMs.
The first question on the heterocyclisation con-
sidered at this work concerns its regioselectivity. Pre-
vious data [5, 6] revealed that on the first stage of the
heterocyclization process, nucleophilic attack on the
halomethyl moiety takes place leading to the for-
mation of corresponding 6-aminomethyl DHPMs
(compound 2, scheme 1):
Such heterylamines bearing alkoxycarbonyl gro-
up at ortho-position are rather unstable, thus, they
easily undergo the second stage of heterocyclization
forming a new annelated azine ring (compound 3,
scheme 1).
© I.О. Lebedyeva, М .V. Povstyanoy, V.М . Povstyanoy, A.B. Ryabitskii, O.G. Panasyuk , 2010
* This work was supported by Fundamental Researchers State Fund (F25.3/023).
Scheme 1.
46 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 3
It should be noted that the regioselectivity of
condensed bicyclic five-membered DHPMs’ forma-
tion is well-defined for the systems where the new he-
terocycle obtaining employs mononucleophilic rea-
gents [5—7]. As nucleophilic compounds with a few
reactive centers are employed in the reaction it is ra-
ther complicated to envisage the regioselectivity of the
process, thus additional research on the structure of the
final compounds is required. Previous data [5, 6] re-
port on highly regioselective heterocyclization of
6-halomethyl 5-carbethoxyDHPMs into 4,6,7,8-
tetrahydropyrimido[4,5-d]pyridazine-2,5(1H,3H)-
diones (compound 3, scheme 1) upon their treatment
with hydrazine and its monosubstituted analogs. At
this work the reaction mixtures under different re-
action conditions were studied to follow the final
products’ formation. LC/MS data for the condensation
of compound 1a with an excess of hydrazine hydrate
has revealed the formation of all three products (com-
pounds 3a, 4a, 5, scheme 1) at different amount depen-
ding on the reaction conditions. Condensation of com-
pound 1a with hydrazine hydrate at MeOH for 8 h re-
vealed 70 % of mixture compounds 3a and 4a. The
analogous condensation in 1,4-dioxane revealed 15 %
of compounds 3a, 4a isomers’ mixture and 43 % of
compound 5. Dihydropyrimido[4,5-d]pyridazine-2,5
(1H ,3H)-dione (5) was also formed at the amount of
40 % as compound 3a was refluxed in acetic acid for 8 h.
The structure of molecule 5 (fig. 1) was determined with
X-ray diffraction experiments, 1H NMR, IR, elemental
analysis data (see experimental part for details). We
suggest that the formation of HC=N bond is explai-
ned by the mobility of the 6-C methylene group pro-
tons which has been previously studied [8].
The heterocyclization process of compounds 1a–
d with hydrazines or carboxylic acid hydrazides (EtOH
or 2-PrOH, reflux, 6–8 h) using TEA (triethylamine)
as catalyst leads to the formation of the mixture of
pyrimido[4,5-d]pyridazine-2,5-diones (3) (scheme 2)
and products of monosubstitution — 6-aminoalkyl
DHPMs (7) (scheme 2) (up to 50 %). It should be no-
ted that multiple tries to put the compound 7 into the
further heterocyclization to obtain bicyclic DHPMs
of 4 or 8 type (scheme 2) failed. Moreover, the at-
tempts aimed at the cyclisation of symmetrically sub-
stituted hydrazides and hydrazines with DHPMs we-
re not successful either. The reaction did not take pla-
ce even under harsh conditions (DMF, reflux, 8 h, or
sealed tube, 100—120 oC).
Fig. 1. Perspective view and labeling scheme
for the molecule 5.
Scheme 2.
ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 3 47
The structure of compound 3h was confirmed
with 1H NMR, 13C NMR, COSY, NOESY and HET-
COR data. Having used these methods we fully cor-
related chemical shifts of 1H NMR and 13C NMR
spectra. Hence, in 1H NMR spectrum the chemical
shift of CONH group proton is δ 10.01 ppm. It is
possible only when the compound has the structu-
re type of compound 3. In other cases (compounds 4,
8) the signal of NH protons should be expected in a
stronger field. Analogous shift of CONH group pro-
ton was determined in all compounds 3 of the pre-
sented library. Additionally, 2D long-range HET-
COR experiment (fig. 2) did not reveal spin-spin in-
teraction of carbon C5 with protons H8 which may
take place in case of the six-membered pyridazine ring
(3) rather than the five-membered one (4). The car-
bon spectrum was taken with the interrupted-proton
decoupling (splitted spectrum from NOE) together
with carbon spectra with selective decoupling of H8
protons to determine distant heteronuclear proton-
carbon coupling constants. The absence of carbonyl
C5 decoupling on the protons of methylene group
H8 was determined.
It should be mentioned that in some cases the
signal of chiral 4-CH of DHPMs (1a–d) and their
derivatives 3, 7 is presented with a broadened pseu-
do-singlet whereas splitted on 3-NH doublet is ex-
pected to take place (tabl. 1–3). The signals of IR
spectra for C=O, and N–H groups of compounds
1a–d and 3, 5, 7 are broadened in most cases due to
the intramolecular bonds of C=OЕN–H (tabl. 1–3).
A library of 7-substituted tetrahydropyrimi-
do[4,5-d]pyridazine-2,5-diones (3b–s) was synthesized
by interaction of halomethyl DHPMs (1a–d) with a
series of N,N’-nucleophiles. It was revealed that with
the change of reaction conditions (e.g. solvent sys-
tem, reaction time) the ratio of the final products
changes dramatically. Thus, as nucleophiles with a
few reaction centres employed in the reaction process
it is suggested to study the reaction conditions as well
as reaction mixtures in more detail. The structure of
the obtained compounds has been unambiguously
determined with the single crystal X-ray diffraction
analysis, NMR (1H, 13C, COSY, NOESY, HETCOR),
LC/MS, elemental analysis and IR spectroscopy.
EXPERIMENTAL PART. All chemicals were obtai-
ned from commercial sources and used without fur-
ther purification. Melting points (mp) were measured
on an electrothermal capillary melting point appara-
tus and are uncorrected. IR spectra were recorded
with a UR-20 spectrophotometer (KBr platelets). 1H
NMR spectra (400 MHz) were recordered on a Va-
rian GEMINI 2000 spectrometer using DMSO-d6 as
solvent and TMS as internal standard. 1H–1H COSY
spectra were acquired into 2048 (F2) and 512 (F1)
time-domain data matrix and 2048 (F2)x2048 (F1)
frequency-domain matrix after zero-filling. NOESY
spectra were acquired with parameters similar to
COSY spectra. Mixing times were determined prelimi-
nary from T1-measurement experiment for each sam-
ple by conventional inversion-recovery method. He-
teronuclear chemical shift correlation (HETCOR)
was used for determine 1H–13C attachment with the
2048 (F2)x256 (F1) time-domain matrix and 2048
(F2)x1024 (F1) frequency-domain matrix after zero-
filling. The average value of one bond constant JCH
was set to 140 Hz. HETCOR for determination long
range correlation had very similar parameters and
average value of mulitibond C–H coupling constant
was set to 8 Hz. HPLC-MS was carried out on a sys-
tem consisting of an Agilent 1100 Series high-pressu-
re liquid chromatograph equipped with a diode mat-
rix and Agilent LC/MSD SL mass-selective detector.
HPLC-MS parameters: column: Zorbax SB-C18, 1.8
µm, 4.6x30 mm; solvents: MeCN–H2O (95:5), 0.1 %
TFA; eluent flow: 3 mL⋅s–1; injected sample volume:
1 µL; UV detector: λ = 215, 254, 265 nm; ionization
method: chemical ionization under atmospheric pres-
Fig. 2. Fragment of compound 3h 2D long-range
HETCOR experiment.
Органическая химия
48 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 3
sure (APCI); ionization mode; simultaneous can-
ning of positive and negative ions in m/z range 100
—650. Elemental analysis was performed on Perkin–
Elmer C,H,N Analyzer. All crystallographic measure-
ments were performed at room temperature on a Bru-
ker Smart Apex II diffractometer operating in the
ω and ϕ scans mode. Full crystallographic details ha-
ve been deposited at Cambridge Crystallographic
Data Centre (CCDC). Any request to the CCDC for
these materials should quote the full literature cita-
tion and reference number CCDC757737.
Ethyl 4-aryl-6-( chloromethyl) -2-oxo-1,2,3,4-tet-
rahydropyrimidine-5-carboxylates ( 1a–d) have been
synthesized following the described methods [6, 9].
Full physical-chemical data on the compounds
1a–d presented at the tabl. 1.
General procedure for the synthesis of 7-sub-
stituted 2-methyl-4-aryl-4,6,7,8-tetrahydropyrimido-
[4,5-d]pyridazine-2,5(1H,3H) diones (3a–s) and ethyl
4-aryl-6-{[2-( substituted) hydrazino( acylhydrazino) ]-
methyl}-3,4-dihydropyrimidin-2( 1H) -one-5-carboxy-
lates ( 7a–h) . To suspension of 0.005 mole of 6-
chloromethylDHPM (1a–d) in 5—10 mL of EtOH
or 2-PrOH, corresponding hydrazine(hydrazide)
(0.0075 mole) and TEA (0.5 mL, 0.005 mole) were
added and the mixture was refluxed for 8 h. If
starting hydrazines or hydrazides were not soluble
enough, DMF was added dropwise until the com-
pounds dissolved. The precipitate usually was for-
med during reflux, in 24 h after cooling the reaction
mixture or after the reaction mixture was poured on-
to crushed ice (depending on the nature of hydrazine,
hydrazine or chloromethylDHPMs 1a–d). Final pro-
ducts 7a–h easily dissolve in methanol while com-
pounds 3b–s dissolve in the mixture 2-PrOH : DMF
1:1. Thus the reaction mixtures, containing high ratio
of both products were washed with warm MeOH
separating products of 7 type leaving products of 3
type for further crystallization. Depending on the
physical characteristics, compounds 3b–s were puri-
fied with recrystallization either from 2-PrOH : DMF
(4:1) or MeOH. It is worth mentioning that the crys-
tallisation of the reaction mixture led to obtaining
the product that forms the major amount of the
reaction mixture.
Full physical-chemical data on the compounds
3b–s and 7a–h are given in the tabl. 2 and 3 cor-
respondingly.
Synthesis of 4-( 3-nitrophenyl) -4,6-dihydropyrimi-
do[4,5-d]pyridazine-2,5( 1H,3H) -dione ( 5) . 0.05 mo-
le of compound 3a was heated under reflux in 5 mL
AcOH for 6 h and then allowed to stand at ambient
temperature for 48 h. Yellow crystalline precipitate
formed was filtered off, washed with 10 mL of EtOH
to give pure compound 5.
Crystal data: C13H11N5O4, M 301.27, triclinic,
space group P-1, а = 7.9891(9), b = 8.2345(9), c =
10.5430(12) Ao , α = 102.894(5)o, β = 109.131(5)o, γ
= 91.500(4)o, V = 635.03(12) Ao 3, Z = 2, dc = 1.576
g⋅cm–3, µ = 0.121 mm–1, F(000) = 312, crystal size ca.
0.22x0.30x0.46 mm. The intensities of 6193 reflections
were collected (2243 unique reflections, Rmerg =
0.0296) within the range of 2.11 ≤ θ ≤ 26.42o using
MoKα-radiation (λ = 0.71078 Ao ). The multiscan ab-
sorption correction (the ratio of minimum to maxi-
mum apparent transmission is 0.799250) was applied.
The structure was solved by direct methods and re-
fined by the full-matrix least-squares technique in the
anisotropic approximation for non hydrogen atoms
using the SHELXS97 and SHELXL97 programs [4,
5]. All hydrogene atoms were located from difference
Fourier sinthesys and refined isotropically. In the
refinement 2243 reflections (1637 reflections with I ≤
2σ(I)) were used. Convergence was obtained at R1 =
0.0677 and wR2 = 0.1096, for all reflection and R1 =
0.0436 and wR2 = 0.0974, GOF = 1.019 for observed
(243 parameters; observed/variable ratio 6.74; the
largest and minimal peaks in the final difference map
0.19 and –0.27 e/Ao 3, weighting scheme is as follows:
ω = 1/[σ2(Fo2) + (0.0475P)2 + 0.2689P], where Р =
= (Fo2 + 2Fc2)/3).
Yield 83 %, mp 253 oC. ІR (KBr): 1330, 1530
(NO2); 1620 (C=C); 1670 (C=O); 2300–3280 (NH).
1H NMR (400 MHz, DMSO-d6): 13.02 [s, 1 H, CO-
NH], 8.18 [m, 3 H, Ar], 8.05 [s, 1 H, CH=N], 7.79 [d,
3J(H,H) = 8.0 Hz, 1 H, Ar], 7.66 [m, 1 H, Ar], 5.56 [d,
3J(H,H) = 2.6 Hz, 1 H, CHNH], 3.27 [s, 3 H, NCH3].
Anal. Calcd. For C13H11N5O4: C 51.83; N 23.25.
Found: C 51.82; N 23.24.
РЕЗЮМЕ. Исследована реакция взаимодействия
5-карбэтокси-6-хлорметил-3,4-дигидропиримидин-2-
(1Н)-онов с N,N’-динуклеофилами на примерах гидра-
зингидрата, монозамещенных гидразинов и гидразидов
карбоновых кислот. Установлено, что реакция проте-
кает как нуклеофильное замещение галогена N,N’-динук-
леофилом с последующей гетероциклизацией исходного
пиримидина в производные пирроло[4,3-d]пиримидина
и пиридазино[4,5-d]пиримидина.
РЕЗЮМЕ. Досліджено реакцію взаємодії 5-карбет-
окси-6-хлорометил-3,4-дигідропіримідин-2(1Н)-онів з N,
N’-динуклеофілами на прикладах гідразингідрату, моно-
Органическая химия
54 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т. 76, № 3
заміщених гідразину і гідразидів карбонових кислот.
Встановлено, що реакція проходить як нуклеофільне
заміщення галогену N,N’-динуклеофілом з наступною ге-
тероциклізацією вихідного піримідину в похідні піро-
ло[4,3-d]піримідину та піридазино[4,5-d]піримідину.
1. Barrow J.C., Nantermet P.G., Selnick H.G. et al. //
J. Med. Chem. -2000. -43, -Р. 2703—2718.
2. Dallinger D., Kappe C.O. // Nature Protocols. -2007.-
№ 2. -Р. 317—321.
3. Kappe C.O., Fabian W .M .F., Semon M .A . // Tetra-
hedron. -1997. -53. -P. 2803—2816.
4. Patil A.D., Kumar N.V ., Kokke W .C. et al. // J. Org.
Chem. -1995. -60. -Р. 1182—1188.
5. George T ., Tahilramani R., M ehta D.V . // Synthesis.
-1975. -Р. 405—407.
6. Perez R ., Beryozkina T., Z bruyev O.I. et al. // J.
Comb. Chem. -2002. -№ 4. -Р. 501—510.
7. Fedorchyuk M .I., Onyschenko S .O., Lebedyeva I.O.,
Povstyanoy V.M . // Tavr. Nauk. Vistn. -2009. -63.
-P. 37—42.
8. Khromov-Borisov N.V., Savchenko A.M . // Zh. Obshch.
Khim. -1952. -22. -P. 1680—1692.
9. Chiba T ., Sato H., Kato T. // Heterocycles. -1984.
-22. -P. 493—496.
Kherson National Technical University Received 23.11.2009
Spoluka Chemical Company, Kiev
Ukrainian State University of Chemical Engineering, Dnepropetrovsk
Institute of Organic Chemistry, NAS of Ukraine, Kiev
УДК 547.722:541.127
В.В. Кравченко, А.Ф. Луцюк, А.А. Котенко
ВЛИЯНИЕ СТРУКТУРЫ ЧЕТВЕРТИЧНЫХ ТРИАЛКИЛВИНИЛАММОНИЕВЫХ СОЛЕЙ
НА СКОРОСТЬ ИХ РЕАКЦИЙ С ТРИЭТИЛАМИН-N-ОКСИДОМ В АЦЕТОНИТРИЛЕ
Изучена кинетика реакций триэтиламин-N-оксида с рядом виниламмониевых солей Z–CH= CRN+(CH3)3⋅Hal–
в ацетонитриле при 25—55 oС. Проведена количественная оценка влияния структуры активирующей группы
Z и метильного заместителя R в α-положении к уходящей группе на скорость протекания исследуемых
процессов. На основании полученных данных сделан вывод о реализации механизма присоединения-элими-
нирования в обменных процессах с участием триалкилвиниламмониевых солей.
Исследование кинетики и механизма реакций
несимметричного фрагментарного обмена в вини-
лониевых солях представляет значительный ин-
терес, поскольку на их основе могут быть реали-
зованы эффективные каталитические системы для
процессов SNVin-замещения [1].
В настоящей работе была поставлена задача
количественно оценить влияние структуры акти-
вирующей группы и метильной группы в α-поло-
жении к уходящей группе в субстрате на скорость
реакции фрагментарного обмена в винилониевых
солях. С этой целью в данной работе была изуче-
на кинетика реакций ряда виниламмониевых со-
лей ZCH=CRN+(CH3)3⋅X– с триэтиламин-N-ок-
сидом в ацетонитриле при 25—55 oС:
Полученные константы скорости второго по-
рядка (первого по каждому из реагентов) приве-
дены в таблице. На основании этих данных раз-
личные активирующие группировки Z по интен-
сивности их воздействия на подвижность уходя-
щей триметиламмониевой группы можно распо-
ложить в следующий ряд:
© В.В. Кравченко, А.Ф. Луцюк, А.А. Котенко , 2010
где
, .
ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2010. Т . 76, № 3 55
|