Calculation of function for population dynamics model with continuous-time age

In this article, we present an approach to identify functions in population process model with continuous-time age. The main consideration was given to functions identification of birth, mortality, migration and specific function “becoming mature”. Such functions could be defined analytically or by...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Zagorodni, Yu., Voytenko, V.
Формат: Стаття
Мова:English
Опубліковано: Інститут кібернетики ім. В.М. Глушкова НАН України 2008
Назва видання:Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/18676
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Calculation of function for population dynamics model with continuous-time age / Yu. Zagorodni, V. Voytenko // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2008. — Вип. 1. — С. 61-67. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-18676
record_format dspace
spelling irk-123456789-186762011-04-08T12:03:51Z Calculation of function for population dynamics model with continuous-time age Zagorodni, Yu. Voytenko, V. In this article, we present an approach to identify functions in population process model with continuous-time age. The main consideration was given to functions identification of birth, mortality, migration and specific function “becoming mature”. Such functions could be defined analytically or by using specific numeric procedure. A numerical example is given to demonstrate the method, along with computer application to population analysis in Canada and Ukraine. В статті запропонований підхід до визначення функцій – параметрів моделі популяційної динаміки з неперервним віком. Головна увага приділяється ідентифікації функцій народжуваності, смертності та спеціальної функції швидкості дорослішання. Ці функції можуть бути визначенні аналітично, або за допомогою спеціальної чисельної процедури. Для демонстрації моделі розглянутий приклад порівняльного аналізу моделей динаміки населення України та Канади. 2008 Article Calculation of function for population dynamics model with continuous-time age / Yu. Zagorodni, V. Voytenko // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2008. — Вип. 1. — С. 61-67. — Бібліогр.: 9 назв. — англ. XXXX-0060 http://dspace.nbuv.gov.ua/handle/123456789/18676 en Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this article, we present an approach to identify functions in population process model with continuous-time age. The main consideration was given to functions identification of birth, mortality, migration and specific function “becoming mature”. Such functions could be defined analytically or by using specific numeric procedure. A numerical example is given to demonstrate the method, along with computer application to population analysis in Canada and Ukraine.
format Article
author Zagorodni, Yu.
Voytenko, V.
spellingShingle Zagorodni, Yu.
Voytenko, V.
Calculation of function for population dynamics model with continuous-time age
Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
author_facet Zagorodni, Yu.
Voytenko, V.
author_sort Zagorodni, Yu.
title Calculation of function for population dynamics model with continuous-time age
title_short Calculation of function for population dynamics model with continuous-time age
title_full Calculation of function for population dynamics model with continuous-time age
title_fullStr Calculation of function for population dynamics model with continuous-time age
title_full_unstemmed Calculation of function for population dynamics model with continuous-time age
title_sort calculation of function for population dynamics model with continuous-time age
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/18676
citation_txt Calculation of function for population dynamics model with continuous-time age / Yu. Zagorodni, V. Voytenko // Математичне та комп'ютерне моделювання. Серія: Технічні науки: зб. наук. пр. — Кам’янець-Подільський: Кам'янець-Подільськ. нац. ун-т, 2008. — Вип. 1. — С. 61-67. — Бібліогр.: 9 назв. — англ.
series Математичне та комп'ютерне моделювання. Серія: Фізико-математичні науки
work_keys_str_mv AT zagorodniyu calculationoffunctionforpopulationdynamicsmodelwithcontinuoustimeage
AT voytenkov calculationoffunctionforpopulationdynamicsmodelwithcontinuoustimeage
first_indexed 2025-07-02T19:37:18Z
last_indexed 2025-07-02T19:37:18Z
_version_ 1836565176089837568
fulltext Серія: Технічні науки. Випуск 1 61 4. Дутка В. А. Комп’ютерне формування температурного поля твердосплав- ного різця для його індукційного паяння та гартування // Сверхтвердые материалы. – 2008. – № 2. – C.72-78. 5. Попова Л. Е., Попов А. А. Диаграммы превращения аустенита в сталях и бета-раствора в сплавах титана: Справочник термиста. – М.: Металлур- гия, 1991. – 503 с. 6. Лахтин Ю. М. Металловедение и термическая обработка металлов. – М.: Металлургия, 1984. – 360 с. 7. Жук Я. О., Червінко О. П., Васильєва Л. Я. Уточнена модель структурних перетворень в тонкому сталевому циліндрі при тепловому опроміненні торця. – Доп. НАН України. – 2007. – № 4. – С.53-58. The numerical technique for estimation of quench hardness and thick- ness of hardened case of tool holder after induction brazing and case- hardening in solution of salt and alkali is proposed. The results for cases of case-hardening in quencher at temperature 300, 200 and 100 ºC are pre- sented. It is shown that by variation of the cooling properties of quencher the high hardness of hardened surface can to obtain. Key words: computer simulation, case-hardening in solution of salt and alkali, quench hardness, hardened case. Отримано: 05.06.2008 Yu. Zagorodni1, V. Voytenko2 1Kyiv National University of Taras Shevchenko 2King’s University College, Canada CALCULATION OF FUNCTION FOR POPULATION DYNAMICS MODEL WITH CONTINUOUS-TIME AGE In this article, we present an approach to identify functions in po- pulation process model with continuous-time age. The main conside- ration was given to functions identification of birth, mortality, migra- tion and specific function “becoming mature”. Such functions could be defined analytically or by using specific numeric procedure. A numerical example is given to demonstrate the method, along with computer application to population analysis in Canada and Ukraine. Key words: population dynamics, the birth rate, functions identification, continuous-time age. 1. Model description of population dynamics with continuous-time age Population models are used in biology and ecology to model the dy- namics of wildlife or human populations. In common, population is as an aggregate of elements of one biological type subject to particular changes [6]. For social systems, element of population is a person or group of per- © Yu. Zagorodni, V. Voytenko, 2008 Математичне та комп’ютерне моделювання 62 sons (for example, a family, region, county, state, etc). Demographic event means any changes in person status as an element of social system. These changes can cause transfer a particular person from one to another social group. Group usually means aggregate of population elements with similar features (for example, age, income, nationality, etc). Then element transfer from one group to another group defines a process of migration. We can name the group open, if a number of elements could be changed dramati- cally [7]. In common, we can consider any cells aggregate as population. Some other samples from biological population are cultural plants, wild animals, bacterial cells, virus particles, etc. Most of publications provide useful theoretical basis for analyzing the sensitivity of stable population distribution and rate of growth to changes in the fundamental parameters [2, 3, 4]. In most cases, features which formed population group are continuous by their nature, for exam- ple age, weight and other values (measured by real numbers) [6, 7]. They are interesting from practical and theoretical points of view. In contrast of features described by finite functions, we consider continuous functions for description density of distribution for particular feature. From a mathematical point of view the model is a linear system of partial differential equations, where the state variables are the population densities in each spatial patch, together with a boundary condition of inte- gral type, the birth equation [1, 5]. A population is divided into Np ∈ N groups which correspond to the special characteristics of population (for example, features of welfare, professional features, etc). The main func- tion (state variable) of this model is continuous piecewise differentiate function np (t, τ), which characterises a density of population in time t by age τ on the set of time parameters [ ][ ] pNpTVt ,1,,0,0),( max ==∈ ττ . Then a common number of elements for all groups by age features for particular group p could be defined by the next equation: ∫= max 0 ),()( τ ττ dtntN pp . Then a model could be described using the next system equations for each group pNp ,1= :           = = − ∂ ∂ −= ∂ ∂ ∫ ).(),0( ,),(),()0,( ),,(),( ),( )( ),( max 0 τϕτ ττ τ ττ τ p pp pp p p p n dssthstQtn thtd tn tl t tn (1) Серія: Технічні науки. Випуск 1 63 Also consider the main model parameters as functions which charac- terise population dynamics: – function of mortality in time t of people in age τ – ),( τtd p , as an addition of 2 processes mortality and migration: ( ) ( ) ( )τττ ,,, tmtstd ppp += ; – function of new beings birth rate for parents in age τ – ),( τtQ ; – auxiliary function of “becoming mature” speed (motion down the axis of age [ ]max,0 ττ ∈ ) )(tl p – function of migration speed ),( τtmp by condition of group open- ness pNp ,1= . So, function ),( τtnp is differentiate on the set of Zd VVV /= , where VVZ ∈ – terminal set of transition points, where the system can be changed (functions )(tl p and ),( τtd p could have breaks). Let’s assume { }zN zzzZ TTTV ,...,, 10= , where 00 =zT , and 0≥zN – number of breaks on a time set [ ]Tt ,0∈ . In the break points, next conditions should apply: ( ) ( ) ( ) ( ) .,10, ,,0,0 ,00 zii i zpi i zp i zpi i zp Nidc TdzTd TlcTl =≥ −=+ −=+ ττ (2) Let’s assume )(),( tdtd pp ≡τ . Then analytical solution of system (1) could be presented like that: ( ) .)()( ,),(),( ,)(),( 0 0 0)(0 ∫ ∫ = = −= − t pp t pp pp tD pp dssltL dssdstD tLFeNtn p τ ττ (3) Let’s consider the next function as a solution (3): ( ) ( ) ( )( ) ( ) ( )( ).)()(exp),( ,)()(exp)( 2),(0 20 τττ τττ τ −+−−= −+−−=− − tLbtLaeNtn tLbtLatLF pppp tD pp pppppp p (4) Then edge condition will be described as: ( )∫ −−= max 0 2)(2exp),(1 τ dssbsastLastQ pppp . (5) Математичне та комп’ютерне моделювання 64 It is possible with the next function of new beings birth rate: ( ) ( )    ≥− < = −− ., ;,0 ),( 000 0 0 ssessQ ss stQ ssq (6) Assume 160 =s – the average age of reproductive period start for human population. If we make substitution (6) to the edge condition (5), we will get the next ratio: ( ) ( ) ( )( ) ( )( ).expexp exp2 ,)(2 2 max 2 0 0 0 τrasra qsra Q btLaq pp p ppp +−−+− −+ = −= (7) where rba pp ,, – constant positive values. We can study population dynamics trajectories using equations (5-7). In this case, very important role plays numerical and analytical calcula- tions of integral functions )(tLp and )(tDp . 2. Target setting of model functions identification and its solution algorithm As we can see from described model above (1-7), functions ),( τtd p , ),( τtQ , )(tl p and their parameters characterise population dynamics. We will try to calculate these functions in order to identify particular popula- tion dynamics. First of all, we should apply the next restrictions: maxmaxmax ),(0,)(0,),(0 QtQltldtd ppp ≤≤≤≤≤≤ ττ . Functions could be define explicitly (for example, as functions (8)), or in a numerical form using defined computational procedure. After such functions definitions, population dynamics, as functions np (t, τ) could be defined on the set of [ ][ ] pNpTVt ,1,,0,0),( max ==∈ ττ using functions (3,5,7). But it isn’t true for all possible types of model (1). In this case we have to build a difference scheme for definition of mesh functions xp (ti, τj) – discrete analog of np (t, τ)functions which define on the grid ( ){ }τττ jhihtMjNitW jtiji ===== ;;,1,,1:, , where M h N Tht max, τ τ == . Difference scheme will become as: ( ) ( ) ( )11 ,,1, −+ +      −−= jipi t jipiti t jip txl h htxdhl h htx τττ ττ , (8) where ( ) ( ) piiii NpNiMjtddtll ,1,1,0,,1,, =−==== . Серія: Технічні науки. Випуск 1 65 Edge and initial condition will be: ( ) ( ) ( ) ( ) ( ) ., ,,,, 0 0 0 jjp M j jipjipip tx txtQhtx τϕτ τττ τ = = ∑ = A scheme (8) will work correctly if: 01 ≥−− iti t dhl h h τ or maxmax dhl h ht τ τ + ≤ . For analytical solution (5) functions )(tLp and )(tDp should be de- fined as: ( ) ( ) ( ) ( ), , 0 0 ∑ ∑ = = = = i i M i iptip M i iptip tdhtD tlhtL where       = t i i h tM . 3. A numerical example of parameters definition for Canada-Ukraine demographic model The data taken from population censuses [8, 9] are among the basic sources of demographic figures which constitute the fundament of a number of analyses. Compared with others, they have the advantage of providing results from the past based on real data. Using this data, we tried to identify functions in models of demographical processes with continuous-time age. Taking a model described above into consideration, we suggested the next set of model functions (1): ( )0110 sin)( wtwlltl p ++= ; ( )τττ twdddtd p 3210 sin),( ++= . (9) Using computer application of such simulation process, we obtained the next parameters value, for Ukraine and Canada respectively: Table 1 Model parameters value for Ukraine and Canada № Parameter Ukraine Canada 1 N0 899 373,6 2 ap 0,00023 0,00015 3 bp 0,00027 0,00012 4 l0 0,726 1,3 5 w0 0,436 0,00016 6 w1 0,0506 0,00016 Математичне та комп’ютерне моделювання 66 Continuation of table 1 № Parameter Ukraine Canada 7 D 0,31952 0,117 8 d2 0,00667 0,00003 9 d1 0,00017 0,00001 10 d2 0,00002 0,00003 11 w3 0,6 0,04899 12 Tz 1 2,547 68,75 13 c1 0,004 0,08 14 d1 1,525 0,43515 Fig. 1. Dynamics of birth-rate level in Canada (line 1 – statistics, line 2 – experimental) In conclusion, we have to admit one transfer point for Ukraine. Point of break of functions is 547,21 =zT , which is approximately a year of 1994. Such point of break in Canada was observed at 18,71 =zT , when function )(1 td was decreased, probably because of migration wave. Coef- ficients of population loss functions are considerably small, which ex- plained by compensation mortality by migrations. Thus, using model (1) and function (2-7) we can investigate qualita- tive and quantitative characteristics of population dynamics and make comparable analysis on this basis. Literature: 1. Caswell, H. Sensitivity analysis of transient population dynamics // Ecol. Lett. – 2007. – 10. – P.1-15. Серія: Технічні науки. Випуск 1 67 Fig. 2. Dynamics of mortality level in Ukraine (line 1 – statistics, line 2 – experimental) 2. Caswell, H. Matrix Population Models – Construction, Analysis and Interpre- tation // 2nd ed. Sinauer Associates. – 2001. – Sunderland, MA. 3. Metz J. A. J. & Diekmann,O. The Dynamics of Physiologically Structured Populations. – Springer-Verlag, Heidelberg, 1986. 4. Michod, R. E. &Anderson, W. W. On calculating demo-graphic parameters from age frequency data // Ecology. – 1980. – 61. – P.265-269. 5. Ovide Arino, Eva Sanchez, Rafael Bravo de la Parra, Pierre Auger. A Singular Perturbation in an Age-Structured Population Model // SIAM Journal on Applied Mathematics. – 2000. – Vol. 60. – No. 2 (Dec., 1999 – Feb., 2000). – P. 408-436. 6. Poluektov O. Dynamic theory of biological populations. – Moscow: Science, 1974. – 456 с. 7. Staroverov O. O. Basics of mathematical demography. – Мoscow: Science, 1997. – 158 p. 8. Statistic Canada, http://www.statcan.ca 9. Statistics Ukraine, http://www.ukrstat.gov.ua В статті запропонований підхід до визначення функцій – парамет- рів моделі популяційної динаміки з неперервним віком. Головна увага приділяється ідентифікації функцій народжуваності, смертності та спеціальної функції швидкості дорослішання. Ці функції можуть бути визначенні аналітично, або за допомогою спеціальної чисельної про- цедури. Для демонстрації моделі розглянутий приклад порівняльного аналізу моделей динаміки населення України та Канади. Ключові слова: популяційна динаміка, темп народжуваності, ідентифікація функцій, неперервний вік. Отримано: 05.06.2008 http://www.statcan.ca http://www.ukrstat.gov.ua