MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines

The GALDI mass spectrometry studies have shown the noticeable distinction in behavior of similar structure phthalocyanine complexes of zirconium and hafnium containing dibenzoylmethane groups as out-of-plane ligands. The hafnium phthalocyanine PcHfDbm₂ is an association prone and form different type...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Chernii, V.Ya., Severinovskaya, O.V., Kovalska, V.B., Tretyakova, I.N., Losytskyy, M.Yu., Yarmoluk, S.M., Volkov, S.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України 2012
Назва видання:Украинский химический журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/187797
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines / V.Ya. Chernii, O.V. Severinovskaya, V.B. Kovalska, I.N. Tretyakova, M.Yu. Losytskyy, S.M. Yarmoluk, S.V. Volkov // Украинский химический журнал. — 2012. — Т. 78, № 11. — С. 20-25. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-187797
record_format dspace
spelling irk-123456789-1877972023-01-27T01:26:36Z MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines Chernii, V.Ya. Severinovskaya, O.V. Kovalska, V.B. Tretyakova, I.N. Losytskyy, M.Yu. Yarmoluk, S.M. Volkov, S.V. Неорганическая и физическая химия The GALDI mass spectrometry studies have shown the noticeable distinction in behavior of similar structure phthalocyanine complexes of zirconium and hafnium containing dibenzoylmethane groups as out-of-plane ligands. The hafnium phthalocyanine PcHfDbm₂ is an association prone and form different types of associates ([(PcHfDbm)₂]⁺, [PcHfDbm+PcHfDbm₂]⁺) in positive ion mode and ([(PcHfDbm₂)₂]⁻) in negative ion mode, while for zirconium phthalocyanine PcZrDbm₂ no associates were observed. Furthermore two pathways of fragmentation are suggested for these complexes. The first pathway occurs for both PcZrDbm₂ and PcHfDbm₂ in positive and negative ion modes, while second one only for PcHfDbm₂ in negative ion mode. Interaction of phthalocyanines with fibrillogenic protein insulin was studied by MALDI mass spectrometry. In presence of PcZrDbm₂ and PcHfDbm₂ the disappearance of peaks of low-molecular aggregates of insulin is observed, that points at interaction of phthalocyanines with protein early aggregates. GALDI мас-спектрометричними дослідженнями показано суттєву різницю в поведінці фталоціанінових комплексів цирконію та гафнію з дибензоїлметанатними позаплощинними лігандами, що мають подібну структуру. Фталоціанін гафнію PcHfDbm₂ має схильність до асоціації і утворює різні типи асоціатів ([(PcHfDbm)₂]⁺, [PcHfDbm + PcHfDbm₂]⁺) у режимі реєстрації позитивних іонів і ([(PcHfDbm₂)₂]⁻) — у режимі реєстрації негативних іонів, а для фталоціаніну цирконію PcZrDbm₂ асоціати не спостерігалися. Запропоновано два шляхи фрагментації для цих комплексів. Перший шлях має місце для PcZrDbm₂ і PcHfDbm₂ у режимі реєстрації позитивних і негативних іонів, в той час як другий — тільки для PcHfDbm₂ у режимі реєстрації негативних іонів. MALDI масспектрометрією було вивчено взаємодію фталоціанінів з фібрилогенним білком інсуліном. У присутності PcZrDbm₂ і PcHfDbm₂ спостерігається зникнення піку низькомолекулярних агрегатів інсуліну, що вказує на взаємодію фталоціанінів з початковими агрегатами білків. GALDI масс-спектрометрическимиисследованиями показана существенная разница в поведении имеющих подобную структуру фталоцианиновых комплексов циркония и гафния с дибензоилметанатными внеплоскостными лигандами. Фталоцианин гафния PcHfDbm₂ имеет склонность к ассоциации и образует разные типы ассоциатов ([(PcHfDbm)₂]⁺, [PcHfDbm + PcHfDbm₂]⁺) в режиме регистрации положительных ионов и ([(PcHfDbm₂)₂]⁻) — в режиме регистрации отрицательных ионов, а дляфталоцианина циркония PcZrDbm₂ ассоциаты ненаблюдались. Предложены два пути фрагментации этих комплексов. Первый путь характерен для PcZrDbm₂ и PcHfDbm₂ в режиме регистрации положительных и отрицательных ионов, тогда как второй — только для PcHfDbm₂ в режиме регистрации отрицательных ионов. MALDI масс-спектрометрией изучено взаимодействие фталоцианинов с фибриллогенным белком инсулином. В присутствии PcZrDbm₂ и PcHfDbm₂ наблюдается исчезновение пика низкомолекулярных агрегатов инсулина, что свидетельствует о взаимодействии фталоцианинов с первоначальными агрегатами белков. 2012 Article MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines / V.Ya. Chernii, O.V. Severinovskaya, V.B. Kovalska, I.N. Tretyakova, M.Yu. Losytskyy, S.M. Yarmoluk, S.V. Volkov // Украинский химический журнал. — 2012. — Т. 78, № 11. — С. 20-25. — Бібліогр.: 11 назв. — англ. 0041–6045 http://dspace.nbuv.gov.ua/handle/123456789/187797 543.51:546.(831+832):667.287.5 en Украинский химический журнал Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Неорганическая и физическая химия
Неорганическая и физическая химия
spellingShingle Неорганическая и физическая химия
Неорганическая и физическая химия
Chernii, V.Ya.
Severinovskaya, O.V.
Kovalska, V.B.
Tretyakova, I.N.
Losytskyy, M.Yu.
Yarmoluk, S.M.
Volkov, S.V.
MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines
Украинский химический журнал
description The GALDI mass spectrometry studies have shown the noticeable distinction in behavior of similar structure phthalocyanine complexes of zirconium and hafnium containing dibenzoylmethane groups as out-of-plane ligands. The hafnium phthalocyanine PcHfDbm₂ is an association prone and form different types of associates ([(PcHfDbm)₂]⁺, [PcHfDbm+PcHfDbm₂]⁺) in positive ion mode and ([(PcHfDbm₂)₂]⁻) in negative ion mode, while for zirconium phthalocyanine PcZrDbm₂ no associates were observed. Furthermore two pathways of fragmentation are suggested for these complexes. The first pathway occurs for both PcZrDbm₂ and PcHfDbm₂ in positive and negative ion modes, while second one only for PcHfDbm₂ in negative ion mode. Interaction of phthalocyanines with fibrillogenic protein insulin was studied by MALDI mass spectrometry. In presence of PcZrDbm₂ and PcHfDbm₂ the disappearance of peaks of low-molecular aggregates of insulin is observed, that points at interaction of phthalocyanines with protein early aggregates.
format Article
author Chernii, V.Ya.
Severinovskaya, O.V.
Kovalska, V.B.
Tretyakova, I.N.
Losytskyy, M.Yu.
Yarmoluk, S.M.
Volkov, S.V.
author_facet Chernii, V.Ya.
Severinovskaya, O.V.
Kovalska, V.B.
Tretyakova, I.N.
Losytskyy, M.Yu.
Yarmoluk, S.M.
Volkov, S.V.
author_sort Chernii, V.Ya.
title MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines
title_short MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines
title_full MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines
title_fullStr MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines
title_full_unstemmed MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines
title_sort maldi mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines
publisher Інститут загальної та неорганічної хімії ім. В.І. Вернадського НАН України
publishDate 2012
topic_facet Неорганическая и физическая химия
url http://dspace.nbuv.gov.ua/handle/123456789/187797
citation_txt MALDI mass spectrometry of zirconium and hafnium dibenzoylmethanate phthalocyanines / V.Ya. Chernii, O.V. Severinovskaya, V.B. Kovalska, I.N. Tretyakova, M.Yu. Losytskyy, S.M. Yarmoluk, S.V. Volkov // Украинский химический журнал. — 2012. — Т. 78, № 11. — С. 20-25. — Бібліогр.: 11 назв. — англ.
series Украинский химический журнал
work_keys_str_mv AT cherniivya maldimassspectrometryofzirconiumandhafniumdibenzoylmethanatephthalocyanines
AT severinovskayaov maldimassspectrometryofzirconiumandhafniumdibenzoylmethanatephthalocyanines
AT kovalskavb maldimassspectrometryofzirconiumandhafniumdibenzoylmethanatephthalocyanines
AT tretyakovain maldimassspectrometryofzirconiumandhafniumdibenzoylmethanatephthalocyanines
AT losytskyymyu maldimassspectrometryofzirconiumandhafniumdibenzoylmethanatephthalocyanines
AT yarmoluksm maldimassspectrometryofzirconiumandhafniumdibenzoylmethanatephthalocyanines
AT volkovsv maldimassspectrometryofzirconiumandhafniumdibenzoylmethanatephthalocyanines
first_indexed 2025-07-16T09:32:55Z
last_indexed 2025-07-16T09:32:55Z
_version_ 1837795509705637888
fulltext УДК 543.51:546.(831+832):667.287.5 V.Ya.Chernii, O.V.Severinovskaya, V.B.Kovalska, I.N.Tretyakova, M.Yu.Losytskyy, S.M.Yarmoluk, S.V.Volkov MALDI MASS SPECTROMETRY OF ZIRCONIUM AND HAFNIUM DIBENZOYLMETHANATE PHTHALOCYANINES * The GALDI mass spectrometry studies have shown the noticeable distinction in behavior of similar structure phthalocyanine complexes of zirconium and hafnium containing dibenzoylmethane groups as out-of-plane ligands. The hafnium phthalocyanine PcHfDbm2 is an association prone and form different types of associates ([(PcHfDbm)2]+, [PcHfDbm+PcHfDbm2]+) in positive ion mode and ([(PcHfDbm2)2]– ) in nega- tive ion mode, while for zirconium phthalocyanine PcZrDbm2 no associates were observed. Furthermore two pathways of fragmentation are suggested for these complexes. The first pathway occurs for both PcZrDbm2 and PcHfDbm2 in positive and negative ion modes, while second one only for PcHfDbm2 in negative ion mode. Interaction of phthalocyanines with fibrillogenic protein insulin was studied by MALDI mass spectro- metry. In presence of PcZrDbm2 and PcHfDbm2 the disappearance of peaks of low-molecular aggregates of insulin is observed, that points at interaction of phthalocyanines with protein early aggregates. INTRODUCTION. Due to the unique optical, se- miconductor and photochemical properties phtha- locyanine macrocycles have a good prospects for application in various fields of science and techno- logy and thus are extensively studied [1]. Generally for the modification of the structure and hence pro- perties of phthalocyanine systems the imposition of central metal atom or substituents on the periphery of the macrocycle is used [2—4]. In recent years the approach of modification of phthalocyanine thro- ugh the incorporation of out-of-plane ligands is widely developed. Presence of ligands in this positi- on noticeably affects the π-electron conjugated sys- tem of macrocycle that changes electron structure of macrocycle and its spatial characteristics. The phthalocyanines PcZrDbm2 and PcHf- Dbm2 containing dibenzoylmethane as out-of-pla- ne ligand were firstly synthesized and characterized using several physico-chemical methods. The data of X-ray analysis, 1H NMR spectroscopy and ab- sorption electronic spectroscopy demonstrated the very similarity of molecule spatial structures and characteristics of zirconium and hafnium phthalo- cyanines [5]. At the same time the GALDI (graphi- te activated laser desorbtion/ionization) mass spect- rometry method has shown the noticeable differen- ce in behavior of these complexes. The compound PcHfDbm2 has the pronounced tendency to asso- ciation [5] in the gas phase and formation of high molecular weight products, the same tendency to association was also observed for some other phtha- locyanines [6]. In opposite, in spectra of PcZrDbm2 the peaks of ions with masses higher than molecu- lar mass are not observed. This distinction between the behavior of Zr and Hf phthalocyanines in the gas phase was firstly reported in [5]. The detailed studies of this phenomenon is considered to be of interest since due to the very close chemical pro- perties of Zr and Hf, their compounds usually pos- sess the similar properties and behavior. The electro- and photocatalytic, electrochro- mic properties and biological activity of zirconium and hafnium phthalocyanines containing out-of- plane ligands were reported previously [7, 8]. Re- cently it was shown that phthalocyanines with out- of-plane ligands are able to redirect the reaction of insulin fibrillization and this way to prevent the formation of amyloid fibrils. The PcZrDbm2 was reported among the compounds possessing high anti-fibrillogenic properties [9]. In the current paper the detailed studies of PcZrDbm2 and PcHfDbm2 phthalocyanines by the GALDI mass spectrometry method and the suppo- sed mechanisms of fragmentation of macrocycles are reported. To clarify the mechanism of anti-fib- rillogenic activity of phthalocyanines with out-of- Неорганическая и физическая химия © V.Ya.Chernii, O.V.Severinovskaya, V.B.Kovalska, I.N.Tretyakova, M.Yu.Losytskyy, S.M.Yarmoluk, S.V.Volkov, 2012 * This work was supported by STCU-NASU project 5508. 20 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2012. Т. 78, № 11 plane ligands the interacti- on of PcZrDbm2 and PcHf- Dbm2 with fibrillogenic pro- tein insulin was characteri- zed using MALDI mass spec- trometry method. EXPERIMENTAL PROCE- DURE. Phthalocyanine com- plexes PcZrDbm2 and PcHf- Dbm2 were obtained by ex- change reaction between di- benzoylmethane and phtha- locyanines of zirconium and hafnium dichlorides. Synthe- sis, structure and properties of these complexes are descri- bed in the article [5]. Mass-spectroscopic stu- dies were carried out on Au- toflex II (Bruker Daltonics, Germany) mass spectrome- ter, with nitrogen laser (λ =337 nm). Spectra were obtained by GALDI method for free PcZrDbm2 and PcHfDbm2 and by MALDI method for insu- lin — phthalocyanine mixture. Spectra were recor- ded using different registration modes (positive/ne- gative, linear/reflectrone) and processed using mMass program [10]. Solutions of phthalocyanines and insulin were prepared according to the methodic used in studies of anti-fibrillogenic activity of insulin [9]. Stock so- lutions of phthalocyanines PcZrDbm2 and PcHf- Dbm2 of 0.01 mg/ml concentration were prepared in THF. Stock solution of bovine insulin (Sigma- Aldrich) of 1 mg/ml concentration was prepared in 0.1 M HCl. The working solutions were obtained by mi- xing the phthalocyanines and insulin solutions in 1:1 volume ratio. As a matrix for studies of insu- lin-containing samples the saturated solution of sinapic acid (Sigma-Aldrich) was used. The matrix and working solution were mixed in 1:1 ratio. The samples of 4 µl volume were put to standard steel target. RESULTS AND DISCUSSION. Mass spectro- metry studies of PcZrDbm2 and PcHfDbm2. For amplifying of the ionization the phthalocyanines PcZrDbm2 and PcHfDbm2 were characterized by GALDI method. In positive and negative linear modes except the peaks of molecular ions and pro- ducts of fragmentation or association the wide range of side signals was observed (table). Thus for the increasing of spectra resolution and removing of the peaks of short-living components the reflec- tron mode was used. The masses of main fragments of phthalocyanines are presented in the table. POSITIVE REFLECTRON M ODE. In the posi- tive ion mode the spectra of PcZrDbm2 and PcHfDbm2 are similar in the range below molecular ion mass. In this region, peaks of molecular ions 1047.6 Da [PcZrDbm2] + and 1138.0 Da [PcHf- Dbm2] + were observed (fig. 1, peaks 3, 3*); as well as the peaks of highest intensity that belong to fragments containing one Dbm ligand 824.7 Da [PcZrDbm]+ and 915.0 Da [PcHfDbm]+ (fig. 1, peaks 1, 1*); and less intensive peaks of their potas- sium adducts 864.1 Da [PcZrDbm+K]+ and 954.5 Da [PcHfDbm+K]+ (peaks 2, 2*). The higher in- tensity of peaks of fragments [PcMDbm]+ and their ability to form potassium adducts, allow sugges- ting the higher stability of [PcMDbm]+ comparing with molecular ions [PcMDbm2]+. The noticeable difference between spectra of PcZrDbm2 and PcHfDbm2 exists in the region ex- ceeding the molecular ion mass. In spectrum of phtha- locyanine PcHfDbm2 the peaks of dimer [(PcHf- Dbm)2] + (1826.7 Da, fig. 1, peak 4*), its potassium adduct [(PcHfDbm)2+K]+ (1869.2 Da, fig. 1, peak 5*), and [PcHfDbm+PcHfDbm2] + associate (2051.7 Da, Mass of main ions PcZrL2 and PcHfL2 (Da), detected on different registration modes (L = Dbm) Fragments Nominal ion mass, Da LP+ LP– RP+ RP– Zr Hf Zr Hf Zr Hf Zr Hf [Dbm] 223.3 223.6 223.0 223.1 Fragmentation [PcMO] 619.3 708.0 619.2 708.9 617.9 707.7 [PcML] 825.8 915.2 826.6 914.4 824.7 915.0 824.8 914.9 [PcML+K] 862.0 954.0 864.1 954.5 [PcML2] 1048.7 1138.3 1049.8 1137.8 1047.6 1138.0 1047.7 1137.7 Association [(PcML)2] 1828.8 1826.7 [(PcML)2+K] 1868.0 1869.2 [PcML+PcML2] 1875.0 2051.0 2051.7 [(PcML2)2] 2276.5 2278.5 2275.0 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2012. Т. 78, № 11 21 fig. 1; peak 6*) are present. At the same time, for the PcZrDbm2 the peaks of association products are not observed (table). This indicates the pronounced ability of hafnium phthalocyanine to association in gas phase comparing with its zirconium analogue. Supposed mechanism of fragmentation of PcZr- Dbm2 and PcHfDbm2 and mechanism of PcHf- Dbm2 association are presented at fig. 2. NEGATIVE ION REFLECTRON MODE. The spec- tra of PcZrDbm2 and PcHfDbm2 in negative ion mode have more complicate character comparing with that in positive mode (fig. 3). In spectra besi- des the peaks of molecular ions [PcM Dbm2] - (1047.7 and 1137.7 Da for Zr and Hf complexes; peaks 4, 4*) and fragmentation products [PcMDbm]- (824.8 and 914.9 Da for Zr and Hf complexes; peaks 3, 3*) also the peaks of fragments [PcMO] – (617.9 and 707.7 Da for Zr and Hf complexes; peaks 2, 2*) and ligand [Dbm] –(223.0 Da; peaks 1, 1*) are observed (table). Except this, the noise peaks and peaks of associates of fragments with water are present in spectra. Morphology of the peaks points on metal ion content in these fragments. Instead of associate peaks [(PcHfDbm) 2] and [PcHfDbm+ +PcHfDbm2] observed in positive ion mode spectrum of PcHfDbm2, in negative mode spectrum only peak of the mole- cular ion dimer [(PcHfDbm2)2] – (2275.0 Da; fig. 3, peak 5*) was detected (table). The spectrum of PcHfDbm2 contains the pe- aks of oxo form fragments [PcHfDbmO2] –, [PcHf- DbmO]- and [PcHfO2] – with mass 946.8, 930.3, 722.9 Da correspondingly (fig. 4). Formation of frag- ments of same composition is not detected for PcZrDbm2. As it was mentioned above, in low mo- lecular region of spectra of both phthalocyanines the peak of ligand [Dbm] – (223.0 Da) is observed. Basing on the presented data the two path- Неорганическая и физическая химия Fig. 1. Mass spectra of PcZrDbm2 and PcHfDbm2 in positive ion reflectron registration mode (1–3 — signals that correspond to PcZrDbm2; 1*–6* — signals that correspond to PcHfDbm2). F ig. 2. Supposed mechanism of fragmentation for both phthalocyanines (PcMDbm 2 and further association of PcHfDbm2 in positive ion reflectron registration mode. 22 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2012. Т. 78, № 11 ways of fragmentation of phthalocyanines could be suggested. The first mechanism is the elimination of out-of-plane ligand Dbm without it destruction (fig. 5, pathway 1). The second mechanism is the elimination of fragment of out-of-plane ligand, in this case the oxygen atoms persist bound to haf- nium atom (fig. 5, pathway 2). The first fragmenta- tion mechanism is observed for both phthalocyani- nes in positive (fig. 2) and negative ion modes (fig. 5, pathway 1), while the second mechanism occurs only for PcHfDbm2 in negative registration mode (fig. 5, pathway 2). M ALDI M ASS SPECTRO- M ETRY STUDIES OF INSULIN IN THE PRESENCE PcZ rDbm2 AND PcH fDbm2 IN POSITIVE ION REFLECTRON M ODE. For current studies, the insulin and its complexes with PcZrDbm2 and PcHfDbm2 are prepared in acidic medium (0.1 M HCl, pH 1.8) according to methodic used for fibrillization reaction. At low pH the insulin molecules tran- sit to partially unfolded confor- mation, which is prone to asso- ciation. This is required for the start of protein aggregation and passing of fibrillization reacti- on [11]. The MALDI mass spec- trum of insulin in positive ion mode contains peak of molecu- lar ion about 5730 Da, and ran- ge of decreasing intensity pe- aks of insulin aggregates: dimer, trimer and tetramer about 11460, 17190 and 22920 Da correspon- dingly (fig. 6, top). The formati- on of range of oligomers by in- sulin at pH 2 was earlier confir- med by nano-flow electro spray mass spectrometry [11]. In spectra of phthalocyani- ne — insulin mixtures only in- tensive peaks of molecular ions of individual insulin and PcZr- Dbm2 or PcHfDbm2 are obser- ved (fig. 6, bottom). The peaks of insulin-PcMDbm2 complexes are not detected neither in line- ar non in reflectron mode. It could be concluded that insulin with phthalocyanines do not form com- plexes stable upon mass spectrometry experiment. However, in presence of phthalocyanines the noticeable changes in mass spectra of insulin occur. The addition of PcZrDbm2 or PcHfDbm2 cause the disappearance of peaks of low-molecular protein aggregates (dimer, trimer and tetramer). It is sup- posed that phthalocyanine molecules interact with early aggregates causing either their degradation to monomeric insulin or promote the further protein association and formation of high weight insulin Fig. 3. Mass spectra of PcZrDbm2 and PcHfDbm2 in negative ion reflectron registration mode (1–4 — signals that correspond to PcZrDbm2; 1*–5* — signals that correspond to PcHfDbm2). F ig. 4. The region of mass 700—1150 of PcHfDbm 2 spectrum in negative ion reflectron registration mode. ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2012. Т. 78, № 11 23 aggregates that are not detectable by MALDI method. The interaction of phthalo- cyanines containing out-of plane ligands with insulin during the passing of fibrillization process is under investigation now. CONCLUSIONS. The studies by GALDI mass spectrometry me- thod have shown that PcHfDbm2 is association prone and forms different types of associates both in positive ([(PcHfDbm)2] +, [PcHf- Dbm+PcHfDbm2] +) and negati- ve ([(PcHfDbm2)2] -) ion modes, whi- le for phthalocyanine PcZrDbm2 the formation of associates is not observed. Two pathways of fragmen- tation of the phthalocyanines are suggested. The first one is the eli- mination of out-of-plane ligand Неорганическая и физическая химия Fig. 5. Mechanisms of fragmentation of PcHfDbm2 that occur in negative ion reflectron registration mode (1 — elimination of out-of-plane ligand, 2 — destruction of out-of-plane ligand). F ig. 6. Mass spectra of insulin (top) and insulin in presence of PcHfDbm2 (bottom). 24 ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2012. Т. 78, № 11 Dbm without its destruction, that is observed for both PcZrDbm2 and PcHfDbm2. The second one is the destruction of Dbm ligand with its partial eli- mination that occurs only for PcHfDbm2 in negati- ve ion mode. The presence of PcZrDbm2 and PcHfDbm2 causes the disappearance of peaks of low-molecular associates of insulin, existing in the MALDI spec- tra of free protein. That points on ability of phtha- locyanines to interact with insulin early aggregates. The formation of stable upon ionization in gas phase phthalocyanine complexes with monomer or aggregated insulin is not detected. РЕЗЮМЕ. GALDI масс-спектрометрическими исследованиями показана существенная разница в по- ведении имеющих подобную структуру фталоциани- новых комплексов циркония и гафния с дибензоил- метанатными внеплоскостными лигандами. Фтало- цианин гафния PcHfDbm2 имеет склонность к ассоци- ации и образует разные типы ассоциатов ([(PcHf- Dbm)2] +, [PcHfDbm + PcHfDbm2] +) в режиме регис- трации положительных ионов и ([(PcHfDbm2)2] -) — в режиме регистрации отрицательных ионов, а для фталоцианина циркония PcZrDbm2 ассоциаты не наблюдались. Предложены два пути фрагментации этих комплексов. Первый путь характерен для PcZr- Dbm2 и PcHfDbm2 в режиме регистрации положи- тельных и отрицательных ионов, тогда как второй — только для PcHfDbm2 в режиме регистрации отри- цательных ионов. MALDI масс-спектрометрией изу- чено взаимодействие фталоцианинов с фибриллоген- ным белком инсулином. В присутствии PcZrDbm2 и PcHfDbm2 наблюдается исчезновение пика низкомо- лекулярных агрегатов инсулина, что свидетельствует о взаимодействии фталоцианинов с первоначальны- ми агрегатами белков. РЕЗЮМЕ. GALDI мас-спектрометричними дос- лідженнями показано суттєву різницю в поведінці фта- лоціанінових комплексів цирконію та гафнію з дибен- зоїлметанатними позаплощинними лігандами, що ма- ють подібну структуру. Фталоціанін гафнію PcHf- Dbm2 має схильність до асоціації і утворює різні типи асоціатів ([(PcHfDbm)2] +, [PcHfDbm + PcHfDbm2] +) у режимі реєстрації позитивних іонів і ([(PcHfDbm2)2] -) — у режимі реєстрації негативних іонів, а для фтало- ціаніну цирконію PcZrDbm2 асоціати не спостеріга- лися. Запропоновано два шляхи фрагментації для цих комплексів. Перший шлях має місце для PcZrDbm2 і PcHfDbm2 у режимі реєстрації позитивних і негатив- них іонів, в той час як другий — тільки для PcHfDbm2 у режимі реєстрації негативних іонів. MALDI мас- спектрометрією було вивчено взаємодію фталоціані- нів з фібрилогенним білком інсуліном. У присутності PcZrDbm2 і PcHfDbm2 спостерігається зникнення пі- ку низькомолекулярних агрегатів інсуліну, що вказує на взаємодію фталоціанінів з початковими агрега- тами білків. REF ERENCES 1. De La Torre G., Claessens C.G., Torres T . // Chem. Comm. -2007. -20. -P. 2000—2015. 2. Chen Y ., Hanack M ., Blau W .J. et al. // J. Mat. Sci. -2006. -41, № 8. -P. 2169—2185. 3. Chen Y ., Hanack M ., Araki Y . et al. // Chem. Soc. Rev. -2005. -34. -P. 517—529. 4. O’Flaherty S .M ., Hold S .V ., Cook M .J. et al. // Adv. Mater. -2003. -15, № 1. -P. 19—32. 5. Chernii V.Y a., Bon V.V., Tretyakova I.N. et al. // Dyes Pigments. -2012. -94, № 2. -P. 187—194. 6. Garcia-Iglesias M ., Cid J.-J., Y um J.-H. et al. // Ener- gy Environ. Sci. -2011. -4. -P. 189—194. 7. Krasnov Y u S., Kolbasov G.Y a., Tretyakova I.N. al. // Solid State Ionics. -2009. -180, № 14–16. -P. 928—933. 8. Tomachynski L ., Chernii V ., Gorbenko H. et al. // Chem. & Biodiversity. -2004. -1. -P. 862—867. 9. Kovalska V., Losytskyy M ., Chernii V . et al. // Bioorg. Med. Chem. -2012. -20, № 1. -P. 330—334. 10. Strohalm M ., Kavan D., Novak P. et al. // Anal. Chem. -2010. -82. -P. 4648—4651. 11. Nettleton E.J., T ito P., Sunde M . et al. // Biophys J. -2000. -79. -P. 1053—1065. V.I. Vernadskii Institute of General and Inorganic Chemistry, Received 21.09.2012 NAS of Ukraine, Kyiv А.А. Chuiko Institute of Surface Chemistry, NAS of Ukraine, Kyiv Institute of Molecular Biology and Genetics, NAS of Ukraine, Kyiv ISSN 0041-6045. УКР. ХИМ . ЖУРН . 2012. Т. 78, № 11 25