Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell

A thermal-magnetic-elastic problem for a thin current-carrying conical frustum shell in a magnetic field is studied. The normal Cauchy form of nonlinear differential equations, which include in total eight basic unknown variables, are obtained by the variable replacement method. Using the Newmark’s...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Bian, Y.H., Zhang, C.
Format: Article
Language:English
Published: Інститут механіки ім. С.П. Тимошенка НАН України 2020
Series:Прикладная механика
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188220
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell / Y.H. Bian, C. Zhang // Прикладная механика. — 2020. — Т. 56, № 1. — С. 128-143. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188220
record_format dspace
spelling irk-123456789-1882202023-02-17T01:26:28Z Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell Bian, Y.H. Zhang, C. A thermal-magnetic-elastic problem for a thin current-carrying conical frustum shell in a magnetic field is studied. The normal Cauchy form of nonlinear differential equations, which include in total eight basic unknown variables, are obtained by the variable replacement method. Using the Newmark’s stable finite equidifferent formulas and the quasi-linearization method, the nonlinear partial differential equations are reduced to a sequence of quasi-linear differential equations, which can be solved by the discrete-orthogonalization method. The temperature field in a thin conical frustum shell and the integral eigenvalues are derived after considering Joule’s heat effect in an electromagnetic field and the thermal equilibrium equation. The change of stresses, displacements, and temperatures in the thin current-carrying conical frustum shell with variation of the electromagnetic parameters is discussed. It is proved that the stresses, strains, and temperatures in thin shells can be controlled by changing the electromagnetic and mechanical parameters by considering a specific example. These results are expected to be a theoretical reference for further analysis of this case. Вивчено термомагнітопружну задачу для тонкої конічної зрізаної оболонки, що проводить струм і перебуває у магнітному полі. Отримано методом заміни змінних нелінійні диференціальні рівняння нормального за Коші типу, які включають всього вісім невідомих змінних. За допомогою стійких скінченних формул Ньюмарка і методу квазілінеаризації нелінійні диференціальні рівняння з частинними похідними зведені до послідовності квазілінійних диференціальних рівнянь, які далі можуть розв'язуватися методом дискретної ортогоналізації. З розгляду теплового ефекту Джоуля в електромагнітному полі і рівняння теплової рівноваги визначено температурне поле в тонкій конічній зрізаній оболонці і інтегральні власні значення. На спеціальному прикладі проаналізовано зміну напружень, зміщень та температури зі зміною електромагнітних параметрів. Отримані результати матимуть теоретичне продовження в дослідженні поставленої задачі 2020 Article Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell / Y.H. Bian, C. Zhang // Прикладная механика. — 2020. — Т. 56, № 1. — С. 128-143. — Бібліогр.: 23 назв. — англ. 0032-8243 http://dspace.nbuv.gov.ua/handle/123456789/188220 en Прикладная механика Інститут механіки ім. С.П. Тимошенка НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A thermal-magnetic-elastic problem for a thin current-carrying conical frustum shell in a magnetic field is studied. The normal Cauchy form of nonlinear differential equations, which include in total eight basic unknown variables, are obtained by the variable replacement method. Using the Newmark’s stable finite equidifferent formulas and the quasi-linearization method, the nonlinear partial differential equations are reduced to a sequence of quasi-linear differential equations, which can be solved by the discrete-orthogonalization method. The temperature field in a thin conical frustum shell and the integral eigenvalues are derived after considering Joule’s heat effect in an electromagnetic field and the thermal equilibrium equation. The change of stresses, displacements, and temperatures in the thin current-carrying conical frustum shell with variation of the electromagnetic parameters is discussed. It is proved that the stresses, strains, and temperatures in thin shells can be controlled by changing the electromagnetic and mechanical parameters by considering a specific example. These results are expected to be a theoretical reference for further analysis of this case.
format Article
author Bian, Y.H.
Zhang, C.
spellingShingle Bian, Y.H.
Zhang, C.
Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell
Прикладная механика
author_facet Bian, Y.H.
Zhang, C.
author_sort Bian, Y.H.
title Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell
title_short Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell
title_full Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell
title_fullStr Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell
title_full_unstemmed Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell
title_sort thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell
publisher Інститут механіки ім. С.П. Тимошенка НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188220
citation_txt Thermal-magnetic-elastic effect analysis of a thin current-carrying conical frustum shell / Y.H. Bian, C. Zhang // Прикладная механика. — 2020. — Т. 56, № 1. — С. 128-143. — Бібліогр.: 23 назв. — англ.
series Прикладная механика
work_keys_str_mv AT bianyh thermalmagneticelasticeffectanalysisofathincurrentcarryingconicalfrustumshell
AT zhangc thermalmagneticelasticeffectanalysisofathincurrentcarryingconicalfrustumshell
first_indexed 2025-07-16T10:09:17Z
last_indexed 2025-07-16T10:09:17Z
_version_ 1837797797116510208
fulltext 2020 П Р И К Л А Д Н А Я М Е Х А Н И К А Том 56, № 1 128 ISSN0032–8243. Прикл. механика, 2020, 56, № 1 Y . H . B i a n , C . Z h a n g THERMAL-MAGNETIC-ELASTIC EFFECT ANALYSIS OF A THIN CURRENT-CARRYING CONICAL FRUSTUM SHELL Key Laboratory of Mechanical Reliability for Heavy Equipments and Large Structures of Hebei Province, College of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao, China; e-mail: yh_bian@sina.com Abstract. A thermal-magnetic-elastic problem for a thin current-carrying conical frus- tum shell in a magnetic field is studied. The normal Cauchy form of nonlinear differential equations, which include in total eight basic unknown variables, are obtained by the variable replacement method. Using the Newmark’s stable finite equidifferent formulas and the qua- si-linearization method, the nonlinear partial differential equations are reduced to a sequence of quasi-linear differential equations, which can be solved by the discrete-orthogonalization method. The temperature field in a thin conical frustum shell and the integral eigenvalues are derived after considering Joule’s heat effect in an electromagnetic field and the thermal equilibrium equation. The change of stresses, displacements, and temperatures in the thin current-carrying conical frustum shell with variation of the electromagnetic parameters is discussed. It is proved that the stresses, strains, and temperatures in thin shells can be con- trolled by changing the electromagnetic and mechanical parameters by considering a specif- ic example. These results are expected to be a theoretical reference for further analysis of this case. Key words: thermal-magnetic-elasticity, thin conical frustum shell, coupling effect, Lo- rentz force, quasi-linearization method, discrete-orthogonalization method. 1. Introduction. Applications of electromagnetic elastic structures are broad in modern technological fields, such as aerospace industry, electromagnetic emission, power supply equipment, magnetoacoustic processing, etc. The objects moving in the applied magnetic field will come under the interaction of an electromagnetic field, a temperature field, and a mechani- cal field. The more complex mechanics behaviors have been shown, and the operations of the system are influenced. Therefore, the researches on the thermal-magnetic-elastic prob- lem have both theoretically and practically important significance. In recent years, electro- magnetic elastic mechanics has developed very quickly. Many important achievements have been obtained, such as Pao and Yeh [1] (1973); Ambartsumyan [2] (1977); Moon [3] (1984); Van de Ven [4] (1986); Ulitko, Mol’chenko, Kovalchuk [5] (1994); Mol’chenko, Grigorenko [6] (2010); Mol’chenko [7 – 12] (1989, 2012, 2013, 2014, 2015, 2016); Bian [13] (2015); Zheng, Zhang, Zhou [14] (2005); Qin [15, 16] (2003, 2009); Pratiher [17] (2011); Ootao, Ishihara [18] (2013); Kuang [19] (2014); Soni, Jain, Joshi [20] (2017); Moham- madimehr, Rostami [21] (2018), and others. These research achievements laid a good foun- dation for studies on electromagnetic elastic mechanics and its applications. However, these researches fasten mostly on the problems about the vibration and stability of magnetoelastic bodies, studies on magnetoelastic stress-strain problems of current-carrying plates and shells, especially, studies on a thermal-magnetic-elastic problem with considering tempera- ture fields have rarely been seen. Therefore, the thermal-magnetic-elastic stress-strain analy- sis for current-carrying plates and shells is recently one of the interested topics studied. 129 In this paper, a thermal-magnetic-elastic problem for a thin current-carrying conical frustum shell in a magnetic field is studied. Based on the nonlinear magnetoelastic kinetic equations, geometric equations, physical equations, and electrodynamics equations of a thin shell under the interaction of an electromagnetic field, a temperature field, and a mechanical field, the fundamental equations for the nonlinear stress-strain problem under the action of the coupling field are given. The temperature field in a thin conical frustum shell and the integral eigenvalues are derived after considering Joule’s heat effect in an electromagnetic field and the thermal equilibrium equation. The stresses, displacements, and temperatures of the thin conical frustum shell in a magnetic field are computed. The effect of the side cur- rent, electromagnetic induction density, etc. on the stresses, displacements, and temperatures in the thin conical frustum shell is analyzed. 2. Fundamental Equations. Under the precondition of symmetrical loads, the thin conical frustum shell can be re- garded axisymmetric. An orthogonal curvilinear coordinate system , ,s   is shown in Fig. 1. By satisfying the magnetoelastic supposition of the thin shell [7] and using elastic mechanics theories, Ohm’s law and Maxwell equations in electromagnetic basic theories, the fundamental equations for the thin conical frustum shell can be derived as follows: The magnetoelastic kinetic equations are given by 2 2 ( ) cos ( ) ;s s s rN u N r F f r h s t           (1) 2 2 ( ) sin ( ) ;srQ w N r F f r h s t             (2) 23 2 ( ) sin cos . 12 s s s s s rM r h M r N M r Q s r t                (3) The electrodynamics equations are given by ( )1 ; B rE t r s         (4) 1 ( ) 2 s s s s B B Bw u E B B B t t s rh                      . (5) The relations between the displacements and the strains are given by 21 ; 2s s u s      cos sin ; u w r r    (6a, b) ;s s s     cos ;sr   .s w s      (7a, b, c) The relations between the internal forces and the strains are given by [ (1 ) ];s N s TN D        [ (1 ) ];N s TN D        (8a, b) [ (1 ) ];s M s TM D        [ (1 ) ],M s TM D        (9a, b) where  is the electrical conductivity of the material;  is the permeability of the material; h is the thickness of the thin shell; t is the time variable; r is the radius of the section round;  is the angle between the normal of the neutral surface and the rotation axis; sB 130 and sB are the values of sB on the outer and inner surfaces of the thin conical frustum shell, respectively; s and  are the strains in the corresponding directions; s and  are the bending strains; u , w , and s are the displacements and the angle of rotation in the corresponding directions; E is the electric field intensity in the  -direction; B is the magnetic induction intensity in the  -direction; sF and F are the surface forces in the corresponding directions on the thin shell; sf and f are the Lorentz forces in the corre- sponding directions;  is the mass density of the medium; sN , N , sQ , sM , and M are the internal forces and moments in the corresponding directions in the thin conical frustum shell; 2( / (1 ))ND Eh   and 3 2( / [12(1 )])MD Eh   are the tensile and bending rigidi- ties of the thin conical frustum shell, respectively; E is elastic modulus;  is Poisson’s ratio; T and T are the integral eigenvalues of the temperature field T along the thickness of the thin conical frustum shell, that is 2 2 1 ( , , , )d h T T h T s t h         ; 2 3 2 12 ( , , , ) d h T T h T s t h          , (10a, b) where T is the linear expansion coefficient of the material; ( , , , )T s t  is the tempera- ture distributing function in the thin shell. For obtaining normal Cauchy form nonlinear partial differential equations, let u , w , s , sN , sQ , sM , B , and E be the basic unknown variables. We obtain: 2 2(1 ) sin cos 1 (1 ) ; 2s s T u v v v N w u v s Eh r r             (11) ;s w s     (12) 2 3 12(1 ) cos (1 ) ;s s s T v v M v s rEh           (13) 2 2 cos cos sin cos ( 1) ( ) ;s s T s s N u v N Eh u w Eh F f h s r r r r t                       (14) 2 2 sin cos sin cos ( ) ;s s T s Q w vN Eh u w Eh Q F f h s r r r r t                        (15) 3 3cos cos sin cos ( 1) 12 12 s s s T s s T s M Eh Eh v M v M s r r r r                                     23 2 ; 12 s s s s h N Q t        (16) 1 ( ) ; 2 s s s s B B Bw u E B B B s t t rh                      (17) cos . BE E s t r         (18) 131 3. Computational Method. Equations (11) – (18) can be written as boundary-value problems: 0( , ) ( );Ns s s s s      N F N (19) 1 0 1( ) ;D s N d 2 2( ) ,ND s N d (20a, b) where T{ , , , , , , , }s s s su w N Q M B E N is eight-dimensional vector; 1D and 2D are given orthogonal matrixes that the ranks are 8k  and (8 ) 8 ( 8)k k   ; 1d and 2d are given vectors. Eq. (19) is a set of nonlinear partial differential equations with eight basic unknown var- iables, the difficulties are how to solve directly the equations. First, Newmark’s stable finite equidifferent formulas [7] are used to find the derivatives with respect to time in Eqs. (11) – (18) for a time step length:  2 1 0,5 ; ( ) t t t t t t tu u u u u tt                0,5 ( ),t t t t t tu u t u u        (21a, b) where t is the time difference step length;  is the parameter of the scheme, when 0,25,  Newmark’s arithmetic operators for linear dynamic system are unconditionally stable [22]. After differencing, Eqs. (11) – (18) can be expressed as 0 d ( , ) ( ); d Ns s s s s    N F N (22) 1 0 1( ) ;D s N d 2 2( ) .ND s N d (23a, b) In order to solve the nonlinear problem described by Eq. (22), with an iterative method, thus, nonlinear problems can be turned into a series of linear problems. Taken iterative equations are [7] ( 1) ( ) ( ) ( 1) ( )( , ) ( , )( ); k k k k kd s s ds     N F N Γ N N N (24) ( 1) 1 0 1( ) ;kD s N d ( 1) 2 2( )k ND s N d ( 0, 1, 2 . . .),k  (25a, b) where ( )( , )ksΓ N is Jacobi’s matrix. By using Eqs. (11) – (18), we have the linear iterative equations: ( 1)kdu ds   2 ( 1) ( ) 2 ( 1) ( ) ( 1) ( 1) ( 1)1 1 sin cos ( ) (1 ) ; 2 k k k k k k k s s s s TN w u Eh r r                     (26) ( 1) ( 1) ; k k s dw ds     (27) ( 1) 2 ( 1) ( 1) ( 1) 3 12(1 ) cos (1 ) ; k k k ks s s T d M ds rEh                (28) 132 ( 1) ( 1)( 1) ( 1) ( 1)d cos cos sin ( 1) d k kk k ks s T N v N Eh Eh u w s r r r                  2 ( 1) ( 1) 2 ( ) ; k k s s u F f h t          (29) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)cos sin cos sink k k k k ks s s T dQ Q vN Eh Eh u w ds r r r r                      2 ( 1) ( 1) 2 ( ) ; k k w F f h t           (30) ( 1)d d k sM s   3 ( 1) ( 1) ( 1) ( 1) ( ) ( ) ( 1) ( ) ( )cos cos ( 1) 12 k k k k k k k k k s s T s s s s s s Eh v M N N N r r                          3 ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( ) 2 2 sin sin cos 2 ( ) 12 k k k k k k k k k s s s s s s s s s Eh M M M r r                        2 ( 1)3 3 ( 1) ( ) ( )( ) ( 1) ( ) ( 1) 2 sin 12 12 k k k kk k k k s s s s sT T T Eh h Q r t                      ; (31) ( 1) ( 1) ( 1) ( ) ( ) ( 1) ( ) ( 1) ( )1 ( ) 2 k k k k k k k k k s s dB w u u u E B B B B B ds t t t t                              ;s sB B rh    (32) ( 1)( 1) ( 1)cos . kk kBdE E ds t r         (33) The Lorentz forces in Eqs. (26) – (33) can be written as ( 1) ( 1) ( 1) ( ) ( ) ( 1) ( ) ( )( )k k k k k k k k s clf h J B h E B E B E B                ( 1) ( ) ( ) ( ) ( 1) ( )1 ( ) 2 k k k k k k s s w w w h B B B B B t t t                    (34) ( 1) ( ) ( ) ( ) 2 ( ) ( 1) ( ) 2( ) 2 2( ) ; k k k k k k ku u u h B B B B t t t                ( 1) ( 1) 2 21 1 1 ( ) ( ) ( ) 2 12 4 k k cl s s s s s s w f h J B B h B B B B t                        133 ( 1) ( ) ( ) ( 1) ( ) ( 1) ( )1 1 ( ) ( ) 2 2 k k k k k k k s s s s u u u B B E B B B B B t t t                          (35) ( 1) ( ) ( ) ( ) ( 1) ( )( ) 12 k k k k k ks s s s s h B B B B B t t t                       . 4. Electromagnetic Temperature Effect. By using the electrodynamics equations and generalized Ohm’s law, and considering the side electric current sclJ and clJ , we obtain [7]: ;s scl s v w J J E B B t t             .cl s w u J J E B B t t               (36a, b) Because of Joule’s heat effect in the electromagnetic field, the heat source is certainly produced in the current-carrying conical frustum. Considering the thin shell discussed and the electromagnetic field of low frequency, so the skin effect is not obvious. We can consid- er approximately that the distribution of the electric current density is symmetrical in the thin shell. Thus, the heat source power can be expressed as [23] 2 22 0,86 0,86 .sJ JJ Q       (37) Without considering external heat source and the local temperature effect of the conical frustum ends, considering only the heat exchange between the outer, inner surfaces of the conical frustum and the exterior. We consider that the distribution of the heat source power density along the thickness of the thin shell is symmetrical. At the neutral surface 0  , the heat flux 0q  ; at the outer surface 2h  , the heat flux 2q Q h , and wT T . Thus, the equation of the temperature distribution in the  -direction can be written as 22 4 1 4 8 2 T f w T F F Q h hc T T T h h                     , (38) where T is the heat exchange coefficient of the material; c is the specific heat capacity of the material; F is the surface heat exchange coefficient of the material; wT is the surface temperature of the thin shell; fT is the temperature of the medium bordering upon the thin shell; wT is the change rate of the surface temperature. Using Eqs. (10), (36), (37), and (38), we obtain: ( 1)k T   22 ( 1) ( ) ( ) 2 2 ( 1) ( ) ( ) 2 2 243 2 ( ) 2 400 k k k k k kT cl s T h w w w J E E E B t t t                                       2 2( 1) ( ) ( ) ( ) ( ) 2 ( 1) ( ) ( ) 22 ( ) 2 3 ( ) k k k k k k k ku u u u B B B B t t t t                           ( 1) ( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( )2 2 k k k k k k k k k k k k s w u w u w u w u B B B B B t t t t t t t t                                    134 ( 1) ( 1) ( ) ( ) ( 1) ( ) ( 1) ( )2 2 k k k k k k k k cl cl s w u u u J E J B B B B t t t t                              ( ) ( 1) ( ) 2 ( 1) ( ) ( )2 k k k k k k s w w w B E E E t t t                    (39) ( ) ( ) ( 1) ( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( ) ( )2 k k k k k k k k k k k ku u u u E B E B E B E B t t t t                           ( 1)4 2 ; 3 2 kT T w F F hc T h               ( 1) 0k T   . (40) The ( 1)k T  and ( 1)k T  are substituted in Eqs. (26) – (33), the thermal-magnetic-elastic coupling equations for the thin conical frustum shell are obtained. All unknown variables can be found by the discrete-orthogonalization method. 5. Numerical Results and Discussion. Fig. 1 shows a thin cantilever conical frustum shell made of aluminum in a magnetic field  , 0, 0 .sBB It bears the mechanical load  0, 0, ,FF alternating electric current that the density is  0, , 0clJclJ is exteriorly imported the shell. Let 71GPa;E  0,34;  32670kg m ;  7 13,63 10 (Ω m) ;    61,256 10 H m;   934J ( k C);c g   237 W ( m C);T    2235W ( m C );F    5 12,35 10 C ;T     2sin A m ;clJ J t   2 110 sec ;    2 0 0( ) tan N m ;F F s s    0 100;F   12;  32 10 m;h   0 0,25 m;r  4;  0 0,35 m;s  0,85 m.Ns  The boundary conditions are 0s s : 0u  , 0w  , 0s  , 0,1 sin T;B t  (41a-d) Ns s : 0sN  , 0sQ  , 0sM  , 0.B  (42a-d) Fig. 1. A thin cantilever conical frustum shell in a magnetic field. 135 The initial conditions are 0 ( , ) 0 t s t  N ; 0 0 0 0 ( , ) ( , ) ( , ) ( , ) 0;st t t t u s t w s t s t B s t         (43a-e) 0 0 0 ( , ) ( , ) ( , ) 0.st t t u s t w s t s t      (44a-c) In order to acquire stabilizing computational process, mass coordinate m s is taken. Programming Eqs. (26) – (33) and conducting computations for the known data and the boundary and initial conditions yield the eight basic unknown variables u , w , s , sN , sQ , sM , B , and E . Then the relations and variation laws between the mechanical and electromagnetic variables can be determined by changing the relevant parameters. Fig. 2 shows the deflection distribution in the thin conical frustum shell for 22 MA/mJ  , 0,1T,sB  and 11msec,t  the mechanical load being the same as above. According to Fig. 2, the coupling action effect of different loads can be seen. Fig. 3 and fig. 4 Fig. 2. Effects of the coupling action on the deflection in the thin conical frustum shell. Fig. 3. Curves of the deflection distribution for 0,2T,sB  10 msec,t  and different values of .J 136 Fig. 4. The deflection at 0,6 ms  versus t for 0,2TsB  and different values of J . Fig. 5. The deflection at 0,6 ms  versus t for 2MA/m3J and different values of .sB Fig. 6. Effects of the temperature on the stress in the thin conical frustum shell. 137 show the deflection distribution in the thin conical frustum shell ( 10 msec)t  and the varia- tion of the deflection at 0,6 ms  with time for 0,2TsB  and different electric current density, respectively. The deflection in the thin shell increases with increase in the electric current density. Fig. 5 shows the variation of the deflection at 0,6 ms  with time for 23MA/mJ  and different magnetic induction intensity. Initially, the deflection varies a little with increase in the magnetic induction intensity. As time goes on, the deflection rapid- ly increases with the magnetic induction intensity. Fig. 6 shows the distribution of the nor- mal stress s  and s  in the s -direction on the inner and outer surfaces of the shell for 25MA/m ,J  0,3 T,sB  and 9 msec.t  According to Fig. 6, the effect of the temperature on the stress of the thin shell is relatively remarkable. Fig. 7 shows the distribution of the nor- mal stresses s  and s  in the s -direction on the inner and outer surfaces of the shell for 0,2T,sB  10 msec,t  and different electric current density. Fig 8 shows the distribution Fig. 7. Curves of the stresses s  and s  distribution for 0,2T,sB  10 msec,t  and different values of .J Fig. 8. Curves of the stresses  s and  s distribution for 2MA/m3J , msec10t , and different values of sB . 138 of the normal stresses s  and s  in the s -direction on the inner and outer surfaces of the shell for 23MA/m ,J  10 msect  , and different magnetic induction intensity. Fig. 9 shows the variation of the normal stress s  in the s -direction on the outer surface at the fixed end ( 0,35m)s  with time for 23MA/mJ  and different magnetic induction inten- sity. Initially, the stress varies a little with increase in the magnetic induction intensity. As time goes on, the stress rapidly increases with the magnetic induction intensity, peaking general- ly at 29 msec.t  Fig. 10 shows the distribution of the normal stress s  and s  in the s -direction on the inner and outer surfaces of the shell for 23MA/m ,J  0,2T,sB  10 msec,t  and differ- ent thickness of the shell. According to Fig. 10, the effect of the thickness on the stress of the thin shell is very remarkable. Fig. 9. The normal stress  s at the fixed end ( 0,35m)s  versus t for 2MA/m3J and different values of .sB Fig. 10. Curves of the stresses s  and s  distribution for 2MA/m3J , T2.0sB , msec10t , and different values of h . 139 Fig. 11. The electric field intensity at the free end ( 0,85m)s  versus t for 0,2TsB  and different values of .J Fig. 12. Curves of the electric field intensity distribution for 23MA/m ,J  18msect  , and different values of .sB Fig. 13. The Lorentz force f at 0,6 ms  versus t for 0,2TsB  and different values of .J 140 Fig. 11 shows the variation of the electric field intensity E at the free end ( 0,85m)s  with time for 0,2TsB  and different electric current density. Initially, the value of the E is small, and the E varies a little with increase in the electric current density. As time goes on, the E rapidly increases with the electric current density and changing tempestuous. It predicates that coupling effect is increasingly stronger. Fig. 12 shows the distribution of the electric field intensity in the thin conical frustum shell for 23MA/mJ  , 18msect  , and different magnetic induction intensity. According to Fig. 12, the distribution of the electric field intensity in the thin shell is asymmetric. The electric field intensity varies tempestuous- ly with increase in the magnetic induction intensity. Fig. 13 shows the variation of the Lo- rentz force f at 0,6 ms  with time for 0,2TsB  and different electric current densi- ty. According to Fig. 13, as time goes on, the Lorentz force rapidly increases, peaking gen- erally at 25msect  . The Lorentz force varies tempestuously with increase in the electric current density. Fig. 14 shows the temperature distribution in the thin conical frustum Fig. 14. Curves of the temperature distribution for 0,2T,sB  19 msec,t  and different values of .J Fig. 15. The temperature at the free end ( 0,85m)s  versus t for 0,2TsB  and different values of .J 141 shell for 0,2T,sB  19 msect  , and different electric current density. According to Fig. 14, the value of the temperature at the fixed end ( 0,35m)s  is the highest. Fig. 15 shows the variation of the temperature at the free end ( 0,85m)s  with time for 0,2TsB  and dif- ferent electric current density. Initially, the temperature varies a little with increase in the electric current density. As time goes on, the temperature rapidly increases with the electric current density. The results show that the temperature in the thin conical frustum shell can be controlled by changing the electric current density. Fig. 16 shows the temperature distri- bution in the thin conical frustum shell for 25MA/m ,J  0,2T,sB  and different mo- ment. Fig. 17 shows the temperature distribution in the thin conical frustum shell for 23MA/mJ  , 0,2T,sB  7 msect  , and different thickness of the shell. According to Fig. 17, the effect of the thickness on the temperature of the thin shell is very remarkable. Fig. 16. Curves of the temperature distribution for 25MA/m ,J  0,2T,sB  , and different moment. Fig. 17. Curves of the temperature distribution for 23MA/m ,J  0,2T,sB  7 msec,t  and different values of .h 142 6. Conclusions. A thermal-magnetic-elastic problem for a thin current-carrying conical frustum shell in a magnetic field is studied. Using Newmark’s stable finite equidifferent formulas and the quasi-linearization method, we have reduced nonlinear partial differential equations with eight basic unknown variables to normal Cauchy form linear ordinary differential equations, which can be solved by the discrete-orthogonalization method. Numerical solutions for magnetoelastic stresses and deformations in a thin conical frustum shell under the interac- tion of an electromagnetic field, a temperature field, and a mechanical field have been ob- tained. This lays the analytical foundation for practical applications of the thermal- magnetic-elastic problems on plates and shells. By the results, we now know that: (1) the effect of an electromagnetic field of low intensity on the temperatures, defor- mations, and stresses of structures and components is weak, this effect becoming stronger with increase in the electromagnetic field intensity; it is shown that the thermal-magnetic- elastic analysis on the structures and components in an electromagnetic field is necessary and very important; (2) the deformations and stresses in a thin conical frustum shell nonlinearly increase with the electric current density or magnetic induction intensity; (3) the stress, strain, and temperature in plates and shells can be controlled by changing the electromagnetic and mechanical parameters; (4) when the electric current density is large, the electromagnetic heat effect can not be ignored; when the electric current density is enough, the thermal stress will dominate. Acknowledgements. This research was partially supported by a grant from the National Natural Science Foundation of China, the Foundation of Key Laboratory of Nonlinear Continuum Mechan- ics, Institute of Mechanics of Chinese Academy of Sciences. The authors gratefully acknowledge these supports. РЕЗЮМЕ. Вивчено термомагнітопружну задачу для тонкої конічної зрізаної оболонки, що проводить струм і перебуває у магнітному полі. Отримано методом заміни змінних нелінійні дифе- ренціальні рівняння нормального за Коші типу, які включають всього вісім невідомих змінних. За допомогою стійких скінченних формул Ньюмарка і методу квазілінеаризації нелінійні диференціаль- ні рівняння з частинними похідними зведені до послідовності квазілінійних диференціальних рів- нянь, які далі можуть розв’язуватися методом дискретної ортогоналізації. З розгляду теплового ефек- ту Джоуля в електромагнітному полі і рівняння теплової рівноваги визначено температурне поле в тонкій конічній зрізаній оболонці і інтегральні власні значення. На спеціальному прикладі проаналі- зовано зміну напружень, зміщень та температури зі зміною електромагнітних параметрів. Отримані результати матимуть теоретичне продовження в дослідженні поставленої задачі. 1. Y.H. Pao, C.S. Yeh, “A linear theory for soft ferromagnetic elastic bodies,” Int. J. Eng. Sci., 11, No. 4, 415 – 436 (1973). 2. S.A. Ambartsumyan, G.E. Bagdasaryan, M.V. Belubekyan. Magnetoelasticity of Thin Shells and Plates [in Russian], Nauka, Moscow (1977). 3. F.C. Moon. Magneto-Solid Mechanics, John Wiley & Sons, New York (1984). 4. A.A.F. Van de Ven, M.J.H. Couwenberg. “Magneto-elastic stability of a superconducting ring in its own field,” J. Eng. Math., 20, 251 – 270 (1986). 5. A.T. Ulitko, L.V. Mol’chenko, V.F. Kovalchuk. Magnetoelasticity under Dynamic Loading: A Work- book [in Ukrainian], Lybid’, Kyiv (1994). 6. L.V. Mol’chenko, Ya.M. Grigorenko. Fundamental Theory of Magnetoelasticity for Elements of Thin Plates and Shells: A Textbook [in Ukrainian], Kyiv University (2010). 7. L.V. Mol’chenko. Nonlinear Magnetoelasticity of Thin Current-Carrying Shells [in Russian], Vyshcha Shkola, Kyiv (1989). 8. L.V. Mol’chenko, I.I. Loos. “Influence of the boundary conditions on the stress state of a flexible cylin- drical shell of variable stiffness in a magnetic field,” Int. Appl. Mech., 48, No. 1, 94 – 100 (2012). 143 9. L.V. Mol’chenko, I.I. Loos. “The stress state of a flexible orthotropic spherical shell subject to external current and mechanical force in a magnetic field,” Int. Appl. Mech., 49, No. 5, 528 – 533 (2013). 10. L.V. Mol’chenko, I.I. Loos, L.N. Fedorchenko. “Influence of extraneous current on the stress state of an orthotropic ring plate with orthotropic conductivity,” Int. Appl. Mech., 50, No. 6, 683 – 687 (2014). 11. L.V. Mol’chenko, I.I. Loos. “Axisymmetric magnetoelastic deformation of flexible orthotropic shells of revolution with orthotropic conductivity,” Int. Appl. Mech., 51, No. 4, 434 – 442 (2015). 12. L.V. Mol’chenko, I.I. Loos, L.N. Fedorchenko. “Deformation of a flexible orthotropic spherical shell of variable stiffness in a magnetic field,” Int. Appl. Mech., 52, No. 1, 56 – 61 (2016). 13. Y.H. Bian. “Analysis of nonlinear stresses and strains in a thin current-carrying elastic plate,” Int. Appl. Mech., 51, No. 1, 108 – 120 (2015). 14. X.J. Zheng, J.P. Zhang, Y.H. Zhou. “Dynamic stability of a cantilever conductive plate in transverse impulsive magnetic field,” Int. J. Solids Struct., 42, No. 8, 2417 – 2430 (2005). 15. Z.M. Qin, L. Librescu, D. Hasanyan, et al. “Magnetoelastic modeling of circular cylindrical shells im- mersed in a magnetic field,” Int. J. Eng. Sci., 41, No. 17, 2005 – 2046 (2003). 16. Z.M. Qin, D.J. Hasanyan, L.Librescu. “Electroconductive cylindrical thin elastic shells carrying electric current and immersed in a magnetic field: Implications of the current-magnetic coupling on the shells’ instability,” Int. J. of Appl. Electromagnetics and Mechanics, 31, No. 2, 79 – 96 (2009). 17. B. Pratiher. “Non-linear response of a magneto-elastic translating beam with prismatic joint for higher resonance conditions,” International Journal of Non-Linear Mechanics, 46, No. 5, 685 – 692 (2011). 18. Y. Ootao, M. Ishihara. “Transient thermoelastic analysis of a laminated hollow cylinder constructed of isotropic elastic and magneto-electro-thermoelastic materials,” Advances in Materials Science and Applications, 2, No. 2, 48 – 59 (2013). 19. Z.B. Kuang. “An applied electro-magneto-elastic thin plate theory,” Acta Mechanica, 225, No. 4, 1153 – 1166 (2014). 20. S. Soni, N.K. Jain, P.V. Joshi. “Analytical modeling for nonlinear vibration analysis of partially cracked thin magneto-electro-elastic plate coupled with fluid,” Nonlinear Dynamics, 90, No. 1, 137 – 170 (2017). 21. M. Mohammadimehr, R. Rostami. “Bending and vibration analyses of a rotating sandwich cylindrical shell considering nanocomposite core and piezoelectric layers subjected to thermal and magnetic fields,” Applied Mathematics and Mechanics, 39, No. 2, 219 – 240 (2018). 22. R.E. Nickell. “On the stability of approximation operators in problems of structural dynamics,” Int. J. Solids Struct., 7, No. 3, 301 – 319 (1971). 23. M.A. Mihaeev. Basis of Heat Transfer [in Chinese], High Education Press, Beijing (1958). From the Editorial Board: The article corresponds completely to submitted manuscript. Поступила 17.04.2018 Утверждена в печать 05.11.2019