Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials
The liner material is one of the key factors in the design of armor-piercing ammunition that effect the penetration efficiency. The performance of a shaped jet formed by the charge liner is determined by different properties of the material under the blasting action, in particular for the target wit...
Збережено в:
Дата: | 2019 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2019
|
Назва видання: | Проблемы прочности |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188307 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials / J.P. Yin, Z.X. Shi, J. Chen, B.H. Chang, J.Y. Yi // Проблеми міцності. — 2019. — № 1. — С. 97-107. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188307 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1883072023-02-23T01:27:20Z Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials Yin, J.P. Shi, Z.X. Chen, J. Chang, B.H. Yi, J.Y. Научно-технический раздел The liner material is one of the key factors in the design of armor-piercing ammunition that effect the penetration efficiency. The performance of a shaped jet formed by the charge liner is determined by different properties of the material under the blasting action, in particular for the target with explosive reactive armor, which diminishes the penetration power by dispersing the shaped jet. The performance of shaped jet elements from different materials is studied, AUTODYN finite element software and smooth particle hydrodynamics method are employed to simulate the formation of shaped jet elements from the three materials: Cu, PTFE, and PTFE/Cu and their penetration into target plates, which was verified in the experiment. A shaped jet for a Cu liner is shown to be formed under the action of a detonation wave, while PTFE and PTFE/Cu materials generate a dispersive particle jet. The head velocity of a Cu jet is found to be the lowest, the penetration depth is the deepest, and the penetration hole size is the smallest; the velocity of a PTFE particle jet is the highest and the penetration depth is the shallowest, the penetration hole size takes the mid-position; the head velocity and penetration depth of a PTFE/Cu jet take the mid-position, while the penetration hole is the largest. The PTFE/Cu jet possesses higher penetration performance as compared to the PTFE jet, and its hole-opening capability is improved as compared to the Cu jet. Облицовочный материал один из ключевых факторов при создании бронебойных боеприпасов, оказывающий влияние на эффективность внедрения. Работоспособность кумулятивного заряда, формируемого его облицовкой, определяется различными свойствами материала в условиях взрывной нагрузки, в частности для мишени с элементами динамической защиты, которые уменьшают проникающую способность, рассеивая кумулятивный заряд. Изучены рабочие характеристики элементов кумулятивного заряда из различных материалов. Конечноэлементное программное обеспечение AUTODYN и метод гидродинамики гладких частиц используются при моделировании формирования этих элементов и их внедрении в пластинымишени из трех материалов: Cu, ПТФЭ и ПТФЭ/Сu, что было проверено экспериментально. Показано, что кумулятивный заряд для медной облицовки формируется под действием детонационной волны, тогда как ПТФЭ и ПТФЭ/Cu материалы генерируют струю распыленных частиц. Установлено, что в головной части скорость струи частиц Сu наименьшая, глубина внедрения наибольшая, а размер отверстий наименьший, скорость струи частиц ПТФЭ наибольшая, глубина внедрения наименьшая, размер отверстий занимает среднее положение, скорость и глубина внедрения струи частиц ПТФЭ/Сu занимают среднее положение, тогда как отверстия имеют наибольший размер. Струя частиц ПТФЭ/Сu обладает более высокой эффективностью внедрения по сравнению со струей ПТФЭ, а ее проникающая способность выше, чем струи Cu. Облицювальний матеріал - один з ключових чинників при створенні бронебійних боєприпасів, який впливає на ефективність заглиблення. Працездатність кумулятивного заряду, який формується його облицюванням, визначається різними властивостями матеріалу в умовах вибухового навантаження, зокрема для мішені з елементами динамічного захисту, які зменшують проникаючу здатність, розсіюючи кумулятивний заряд. Вивчено робочі характеристики елементів кумулятивного заряду з різних матеріалів. Скінчнноелементне програмне забезпечення AUTODYN і метод гідродинаміки гладких частинок використовуються при моделюванні формування цих елементів і їх впровадженні в пластини-мішені з трьох матеріалів: Cu, ПТФЕ і ПТФЕ / Cu, що було перевірено експериментально. Показано, що кумулятивний заряд для мідного облицювання формується під дією детонаційної хвилі, тоді як ПТФЕ і ПТФЕ / Cu матеріали генерують струмінь розпорошених частинок. Встановлено, що в головній частині швидкість струменя частинок Cu найменша, глибина заглиблення найбільша, а розмір отворів менший, швидкість струменя частинок ПТФЕ найбільша, глибина заглиблення найменша, розмір отворів займає середнє положення, швидкість і глибина заглиблення струменя частинок ПТФЕ / Cu займають середнє положення, тоді як отвори мають найбільший розмір. Струмінь частинок ПТФЕ / Cu володіє більш високою ефективністю заглиблення в порівнянні зі струменем ПТФЕ, а її проникаюча здатність вище, ніж струменя Cu. 2019 Article Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials / J.P. Yin, Z.X. Shi, J. Chen, B.H. Chang, J.Y. Yi // Проблеми міцності. — 2019. — № 1. — С. 97-107. — Бібліогр.: 16 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/188307 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Yin, J.P. Shi, Z.X. Chen, J. Chang, B.H. Yi, J.Y. Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials Проблемы прочности |
description |
The liner material is one of the key factors in the design of armor-piercing ammunition that effect the penetration efficiency. The performance of a shaped jet formed by the charge liner is determined by different properties of the material under the blasting action, in particular for the target with explosive reactive armor, which diminishes the penetration power by dispersing the shaped jet. The performance of shaped jet elements from different materials is studied, AUTODYN finite element software and smooth particle hydrodynamics method are employed to simulate the formation of shaped jet elements from the three materials: Cu, PTFE, and PTFE/Cu and their penetration into target plates, which was verified in the experiment. A shaped jet for a Cu liner is shown to be formed under the action of a detonation wave, while PTFE and PTFE/Cu materials generate a dispersive particle jet. The head velocity of a Cu jet is found to be the lowest, the penetration depth is the deepest, and the penetration hole size is the smallest; the velocity of a PTFE particle jet is the highest and the penetration depth is the shallowest, the penetration hole size takes the mid-position; the head velocity and penetration depth of a PTFE/Cu jet take the mid-position, while the penetration hole is the largest. The PTFE/Cu jet possesses higher penetration performance as compared to the PTFE jet, and its hole-opening capability is improved as compared to the Cu jet. |
format |
Article |
author |
Yin, J.P. Shi, Z.X. Chen, J. Chang, B.H. Yi, J.Y. |
author_facet |
Yin, J.P. Shi, Z.X. Chen, J. Chang, B.H. Yi, J.Y. |
author_sort |
Yin, J.P. |
title |
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials |
title_short |
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials |
title_full |
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials |
title_fullStr |
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials |
title_full_unstemmed |
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials |
title_sort |
smooth particle hydrodynamics-based characteristics of a shaped jet from different materials |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2019 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188307 |
citation_txt |
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from Different Materials / J.P. Yin, Z.X. Shi, J. Chen, B.H. Chang, J.Y. Yi // Проблеми міцності. — 2019. — № 1. — С. 97-107. — Бібліогр.: 16 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT yinjp smoothparticlehydrodynamicsbasedcharacteristicsofashapedjetfromdifferentmaterials AT shizx smoothparticlehydrodynamicsbasedcharacteristicsofashapedjetfromdifferentmaterials AT chenj smoothparticlehydrodynamicsbasedcharacteristicsofashapedjetfromdifferentmaterials AT changbh smoothparticlehydrodynamicsbasedcharacteristicsofashapedjetfromdifferentmaterials AT yijy smoothparticlehydrodynamicsbasedcharacteristicsofashapedjetfromdifferentmaterials |
first_indexed |
2025-07-16T10:18:40Z |
last_indexed |
2025-07-16T10:18:40Z |
_version_ |
1837798388228161536 |
fulltext |
UDC 539.4
Smooth Particle Hydrodynamics-Based Characteristics of a Shaped Jet from
Different Materials
J. P. Yin,
1
Z. X. Shi, J. Chen, B. H. Chang, and J. Y. Yi
School of Mechatronic Engineering, North University of China, Taiyuan, China
1 yjp123@nuc.edu.cn
The liner material is one of the key factors in the design of armor-piercing ammunition that effect the
penetration efficiency. The performance of a shaped jet formed by the charge liner is determined by
different properties of the material under the blasting action, in particular for the target with
explosive reactive armor, which diminishes the penetration power by dispersing the shaped jet. The
performance of shaped jet elements from different materials is studied, AUTODYN finite element
software and smooth particle hydrodynamics method are employed to simulate the formation of
shaped jet elements from the three materials: Cu, PTFE, and PTFE/Cu and their penetration into
target plates, which was verified in the experiment. A shaped jet for a Cu liner is shown to be formed
under the action of a detonation wave, while PTFE and PTFE/Cu materials generate a dispersive
particle jet. The head velocity of a Cu jet is found to be the lowest, the penetration depth is the
deepest, and the penetration hole size is the smallest; the velocity of a PTFE particle jet is the highest
and the penetration depth is the shallowest, the penetration hole size takes the mid-position; the head
velocity and penetration depth of a PTFE/Cu jet take the mid-position, while the penetration hole is
the largest. The PTFE/Cu jet possesses higher penetration performance as compared to the PTFE jet,
and its hole-opening capability is improved as compared to the Cu jet.
Keywords: particle jet, smooth particle hydrodynamics, explosive reactive armor, liner
material, polytetrafluoroethylene (PTFE).
Introduction. Over the years, armoured and anti-armor technologies have been
developing against each other. Currently, among the artillery shells, rockets and missile
warheads, shaped charge is one of the effective ways to deal with the damage of advanced
protective armor. In recent years, several local wars have shown that armored vehicles and
tanks are still the main assault forces on the ground battlefield, and urban warfare has
become more and more common. So it is very important to destroy the enemy’s armored
vehicles protected by reactive armor and avoid the humanitarian condemnation caused by
unnecessary casualties cause to civilians [1]. In view of this background, how to improve
the comprehensive penetration performance of tandem anti-armor ammunition is one of the
hot spots in the world [2]. The literature shows that the key to solve this problem lies in the
control of the length, shape, quality, energy and so on of the damage elements, and the
choice of the liner material is very crucial, the suitable materials can improve the
comprehensive penetration performance of the damage elements in varying degrees [3–5].
At present, the traditional shaped charge uses metal, metal alloy material and large-density
material to make a liner, which can form a certain length of continuous and stable damage
element, which has the advantages of large impact force and large penetration depth to the
target, but it has some disadvantages such as weak reaming ability, small aperture of armor
breaking and limited killing power. At present, the design requirement of the tandem
warhead of the new anti-explosive reaction armor is to improve the reaming capacity of the
damage elements under the condition of ensuring a certain penetration depth, so as to open
up a channel for the target of subsequent damage elements to penetrate. Therefore, the use
of low density materials as shaped charge material has become one of the main research
directions of anti-armor ammunition [6, 7].
© J. P. YIN, Z. X. SHI, J. CHEN, B. H. CHANG, J. Y. YI, 2019
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1 97
Smooth particle hydrodynamics (SPH) is a mesh-free particle method, which not only
has the advantages of Lagrange method to calculate and describe the interface of matter
accurately, but also has the advantages of meshless method, it is applicable to the
calculation of various problems with large fluid deformation and moving boundaries [8].
Currently, particle jet has been carried out at home and abroad: König and Mostert [9] form
a particle jet with a polycarbonate material liner; Cornish et al. [10] show that the
penetration effect of particle jet is mainly affected by the particle jet shape and velocity; Li
et al. [11, 12] put forward the penetration model of particle jet, which makes up for the
deficiency of classical theory that the penetration depth of particle jets cannot be calculated.
However, most scholars mainly study particle jets theoretically and experimentally, and few
do numerical simulation researches. It is obvious that numerical simulation of shaped
particle jet is a difficult point in the field of simulation. When the Lagrangian finite element
method is used to simulate the formation process of particle jet, a series of problems such
as large mesh distortion and slip surface treatment will occur, eventually leading to the
decrease of calculation accuracy and even the final failure calculation is caused. The Euler
method does not have the problem of large mesh distortion, but it is difficult to accurately
describe all kinds of interfaces [13–15]. In this paper, Cu, PTFE and PTFE/Cu liners are
taken as the research objects. Based on SPH algorithm, numerical simulation and
experimental verification of particle jets forming and penetrating target plate with different
materials are carried out to study the forming performance and penetration performance of
particle jet with different materials under explosive loading, so as to provide a reference for
the design of the front-stage of the tandem anti-armor charge.
1. Finite Element Model of Particle Jets Forming with Different Materials.
1.1. Geometric Model and Finite Element Model. In this paper, a 40 mm caliber was
used to form the damage elements to penetrate 45# steel target plate. The shaped charge
structure was made of conical charge liner with equal wall thickness, and the top of the
cone was treated with a round angle. The initial parameters: the liner cone angle was 55�,
the charge height was 40 mm, the charge mass was 60 g, and the blast height was 130 mm.
In order to verify the damage performance of the PTFE/Cu jet damage element better, the
same shaped charge structure was designed to study the formation of jet damage element
and penetration of 45# steel target by Cu, PTFE, and PTFE/Cu liners, respectively. The
wall thickness of Cu charge liner was 1.1 mm, PTFE and PTFE/Cu charge liner was 3.5
mm. Because of the large material deformation when the charge explosive collapsed the
liner, the shape charge adopted the Eulerian algorithm to deal with the problem of large
deformation, and the target plate adopted the Lagrangian algorithm. The two algorithms
were coupled by fluid-solid coupling. The finite element models of the shape charges
forming particle jets and penetrating the target plate are shown in Fig. 1.
J. P. Yin, Z. X. Shi, J. Chen, et al.
98 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1
Fig. 1. Particle jet forming and penetrating target plate finite element model.
1.2. Material Models and Parameters. The liner materials used in the numerical
simulation were Cu, PTFE and PTFE/Cu, and the target material was 45# steel, the charge
was B charge. The constitutive relations and parameters of the main materials are given in
Tables 1 and 2, respectively.
Among them, �0 is density, D is B charge detonation velocity, A, B, R1 , R2 , and
� are the explosion parameters, E0 is C-J internal energy, and PC J� is C-J pressure
under dynamic test.
2. Different Materials Particle Jets Forming Performance.
2.1. Forming Process Numerical Simulation. By means of charge center initiation,
the process of particle jets forming of three different materials is shown in Figs. 2–4. It can
be seen that three different materials of particle jets forming process includes four stages:
shaped charge detonation process, charge liner collapse, particle jet initial formation and
particle jet stretching. The numerical simulation results showed that the detonation wave
reached the top of the charge liner at the beginning of 2 �s from the detonating shaped
charge and began to act on the liner to make it crush and shape, which caused the charge
liner to be completely crushed when it collapsed into 5 �s. At 5 �s, the liner was
completely crushed, and the particles of the charge shell were squeezed toward the center at
a high speed after compression, and the initial jet and pestle were formed after the collision
occur on the axis. 5~15 �s was the key time for jet formation. In this period, the crushed
powder particles would converge on the axis to form a jet and a pestle. At 20 �s, the basic
shape of the jet had been formed, and then the three kinds of jets had a slight difference.
The head expansion of the PTFE jet and the PTFE/Cu jet appeared over time, and the
particle of the jet material produced radial motion, the diameter gradually became larger
and finally formed a dispersed particle jet, while the Cu particle jet was elongated and
thinned over time, resulting in necking and fracture phenomena, but the particle jet
condensed in shape.
2.2. Forming Performance Analysis. In order to study the formability of different
materials’ particle jets, numerical simulation method was used to comparatively analyze the
forming process of Cu particle jet, PTFE particle jet and PTFE/Cu particle jet. The jet head
velocity of three kinds of materials is shown in Fig. 5.
Smooth Particle Hydrodynamics-Based Characteristics ...
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1 99
T a b l e 1
Constitutive Relations and Parameters of Main Materials
Material Density
(g/cm3)
State
equation
Strength model
Shear modulus
(GPa)
Yield stress
(MPa)
Cu 8.93 Shock 46.00 90
PTFE 2.16 Shock 2.33 50
PTFE/Cu 3.05 Shock 1.37 46
45# steel 7.85 Linear 81.80 352
T a b l e 2
Basic Parameters of Shape Charge
�0 ,
g/cm3
D ,
km/s
A,
MPa
B,
MPa
R1 R2 � E0 ,
kJ/m3
PC J� ,
GPa
1.717 7.98 524,230 7678 4.2 1.1 0.34 8.5�106 29.5
It can be seen from the variation curves of velocity and time of three kinds of particle
jet head that when the detonation wave of the explosive was transmitted to the charge liner,
100 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1
J. P. Yin, Z. X. Shi, J. Chen, et al.
Fig. 2. Cu particle jet forming process diagram.
Fig. 3. PTFE particle jet forming process diagram.
Fig. 4. PTFE/Cu particle jet forming process diagram.
the liner was quickly crushed to form the particle jet head. And with the continuous action
of detonation wave pressure, the material and energy of the liner flowed into the particle jet
continuously, particle jet head continued to accelerate until it reached the maximum
velocity, the maximum flow head velocity of PTFE particle jet reached 6998 m/s at 9 �s,
and that of modified PTFE particle jet head reached the maximum value of 6463 m/s at
8 �s, the Cu particle jet head velocity reached a maximum of 5554 m/s at 8 �s. After that,
the effect of detonation wave decreased and with the decreasing of material and energy
inflow. The velocity of particle jet head gradually decreased, and finally tended to stabilize.
At 60 �s, the head velocity of PTFE particle jet was 6607 m/s, PTFE/Cu particle jet head
velocity was 6463 m/s, Cu particle jet head velocity was 5554 m/s. The head velocity of
PTFE/Cu was lower than that of PTFE, with a small decreasing which was beneficial to its
penetrating ability.
2.3. Forming Experimental Verification. In the experiment, 40 mm shell free shaped
charge was used, and the combination of two pulse X-ray machines of 450KV produced by
HP company was used. The two pulsed X-ray tubes were arranged in 45� confluence, and
the shaped charge was arranged vertically, and ensured that the particle jet after forming
could pass through the two X-ray tube sink axis. By setting different light time of two
pulse X-ray machines, two X-ray photographs at different times can be obtained by one
test [16].
X-ray experiments on the particle jets forming process of Cu, PTFE, PTFE/Cu liners
were carried out, and the morphologies of the three materials particles were observed as
shown in Fig. 6. By comparing the observed jet morphologies with the simulation results, it
was found that all three materials (Cu, PTFE, and PTFE/Cu) could form a good-shaped
particle jet damage element. The Cu particle jet was compact, the PTFE particle jet was
evacuated, while the diameter of PTFE/Cu particle jet was significantly larger than those of
others. The experimental results were in good agreement with the numerical simulations. In
addition, it can be seen from the clarity comparison of Fig. 6a–c that the Cu particle jet is
most clearly followed by the PTFE/Cu particle jet, and the PTFE particle jet is the clearest
since the Cu particle jet density is much larger than the density of the protective plate
density of X-ray film. While the PTFE/Cu particle jet density is similar to that of the
protective plate of X-ray film, and the sharpness is reduced accordingly.
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1 101
Smooth Particle Hydrodynamics-Based Characteristics ...
Fig. 5. Head velocity variation curve of three kinds of particle jet.
3. Study on Penetration Performance of Particles with Different Materials.
3.1. Penetration Process Numerical Simulation. In order to further study the
penetration ability of modified PTFE particle jet, numerical simulation method was used to
simulate the Cu particle jet, PTFE particle jet, and PTFE/Cu particle jet penetrating 45#
steel targets in Figs. 7–9.
The process of Cu particle jet penetrating the target plate is depicted in Fig. 7. Starting
from detonating shape charge, the head of Cu particle jet destructive element started to
penetrate 45# steel target plate at the speed of 4743 m/s at the time of 31 �s. After the
penetration of Cu particle jet for 50 �s, the penetration depth reached 69 mm. As time goes
on, after 40 �s penetration time, penetration depth increased by only 22 mm and reached 91
mm, the penetration velocity of the target plate significantly decreased, and the Cu particle
jet appeared obvious accumulation phenomenon. At this time, the maximum velocity of Cu
particle jet was 1878 m/s, but it can also slowly penetrated the target plate. After 25 �s, the
remaining velocity was 712.5 m/s, and the deposition of Cu particle jet became more
serious and their penetration ability was almost lost. At this time, the penetration depth of
Cu damage element reached 98.4 mm.
The process of PTFE particle jet penetrating the target plate is shown in Fig. 8. From
the beginning of charge detonation warhead, the PTFE particle jet was 6 �s earlier than Cu
particle jet damage element. At 25 �s, the PTFE particle jet began to penetrate the target
plate at 5575 m/s velocity. The penetration depth reached 21 mm after the PTFE particle jet
penetrates the target plate 30 �s. At this time, there was an obvious jet accumulation
phenomenon, but the maximum velocity of the damage element was 2538 m/s, and the
remaining velocity was higher. Therefore, the damage element continued to penetrate the
target, and after 30 �s penetration, the penetration depth was increased only by 1.1 to
102 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1
J. P. Yin, Z. X. Shi, J. Chen, et al.
a
b
c
Fig. 6. Test results of damage elements forming of different materials: particle jet formation of Cu
liner at 18.6 �s (a), PTFE liner at 20 �s (b), and PTFE/Cu liner at 20 �s (c).
22.1 mm. PTFE particle jet damage element almost lost penetration ability. Because the
PTFE head diameter was larger than that of Cu particle jet, and the accumulation
phenomenon of perforation in particle jet was more obvious, so the perforation diameter of
the PTFE particle jet reached 17.4 mm, which was 7.2 mm higher than that of the Cu
particle jet. The maximum penetration depth of PTFE particle jet damage element was
22.1 mm.
The process of PTFE/Cu particle jet penetrating the target plate is shown in Fig. 9.
From the start of detonation shape charge, the PTFE/Cu particle jet damage element was
2 �s later than the PTFE particle jet damage element. At the time of 27 �s, the PTFE/Cu
particle jet started to penetrate the target plate at a speed of 5263 m/s. And after 33 �s, the
penetration depth reached 27 mm, when the PTFE/Cu particle jet began to pile up in the
channel of the target plate, but the highest velocity of the damage element was 1748 m/s,
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1 103
Smooth Particle Hydrodynamics-Based Characteristics ...
Fig. 7. The process of Cu particle jet penetrating the target plate.
Fig. 8. The process PTFE particle jet penetrating the target plate.
and the remaining velocity was high, so the damaged element continued to penetrate the
target. After penetration 30 �s, the penetration depth increased only 3.3 mm, and finally
reached 30.3 mm; while PTFE/Cu particle jet almost lost its penetrating depth. Because the
head diameter of PTFE/Cu particle jet was larger than PTFE particle jet, and the
accumulation of perforation in PTFE/Cu particle jet was more obvious, the perforation
diameter of PTFE/Cu particle jet was 19.6 mm, which was 2.2 mm higher than PTFE
particle jet. The maximum penetration depth of PTFE/Cu particle jet was 30.3 mm.
3.2. Penetration Performance Analysis. From the numerical simulation results, we
can see that the process of particle jet penetrating the target plate can be divided into three
stages: pit opening stage, quasi-steady penetration stage and penetration termination stage.
The results of numerical simulation showed that the process of particle material jet
penetrating the target plate was consistent with the general law. From the start of detonating
the shape charge, the particle jet passed through the forming and stretching process, and
moved to the target plate and began to penetrate the target plate.
The results of numerical simulation showed that the head velocity of particle jet
decreased rapidly when it reached the target plate during the pit-opening stage, and the
energy of the pit opening was mainly derived from the material of the particle jet head. The
PTFE particle jet began to penetrate the target plate at 6680 m/s at 24 �s, and then
completed the pit opening after 11 �s. The PTFE/Cu particle jet began to penetrate the
target plate at a velocity of 6102 m/s at 25 �s, and then completed the pit opening at the
time of 29 �s. At the time of 29 �s, the jet began to penetrate the target plate at a velocity
of 5263 m/s and completed the hole opening at 3 �s.
It can also be seen that the pit opening time of PTFE and PTFE/Cu jets is much longer
than that of Cu jet. This was due to the fact that the head of PTFE and PTFE/Cu jets were
not condensed, resulting in the dispersion of energy during the opening of pits. At the same
time, its density was much less than that of Cu penetration ability, so the opening time was
prolonged. Since then, because of the continuous impact of high velocity of subsequent
particle jet on the target plate, the target material had also been impacted and eroded into
the quasi-steady penetration stage, and as the penetration deepens, with the further decrease
of particle jet velocity, the particle jet gradually lost its penetration ability, and the piling
phenomenon occurred, which led to the end of penetration. At 70 �s, there was obvious jet
accumulation phenomenon in PTFE particle jet. The penetration ability of the jet particles
104 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1
J. P. Yin, Z. X. Shi, J. Chen, et al.
Fig. 9. PTFE/Cu particle jet penetrating the target plate process.
is weakened and accumulate in the penetration channel, when the maximum penetration
depth is 22.1 mm. At 85 �s, there was obvious particle jet accumulation phenomenon in
PTFE/Cu particle jet, and the maximum penetration depth was 29.1 mm; at 110 �s, there
was an obvious accumulation of Cu particle jet, and the maximum penetration depth was
92.4 mm. The penetration depth of the three jets was shown in Fig. 10.
3.3. Penetration Experimental Verification. It is a complex reaction process for
particle jet damage elements to penetrate the target plate. Numerical simulation could not
completely describe the real situation, in order to obtain a more realistic penetration effect,
an experimental study on the penetration of 45# steel armor by particle jet damage elements
formed by three different materials under explosive loading was carried out. Different
materials particle jets penetration target plate are shown in Fig. 11. The penetration depth of
Cu particle jet was 97.5 mm, the perforation aperture was 12.1 mm; PTFE particles flow
penetration depth was 19.0 mm, perforated aperture was 18.3 mm; the modified PTFE
particle jet penetration depth was 27.7 mm and the perforation aperture was 20.6 mm. The
experimental results were in good agreement with the numerical simulation. Cu particle jet
penetration results, PTFE particle jet penetration results, and PTFE/Cu particle jet penetration
results are shown below.
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1 105
Smooth Particle Hydrodynamics-Based Characteristics ...
Fig. 10. Penetration depth variation curves of three materials particle jets penetrating target.
a b c
Fig. 11. Target plate penetration by particle jets from different materials: (a) Cu; (b) PTFE; (c)
PTFE/Cu.
C o n c l u s i o n s
1. In this study of particle jets from three different materials, the numerical simulation
and X-ray observations revealed that Cu, PTFE, and PTFE-Cu liners can form a particle jet
damage element with a good shape. The Cu particle jet was compact, that of PTFE was
evacuated, while the PTFE/Cu particle jet had the largest penetration diameter. The head
velocity of Cu particle jet damage element was the lowest, that of PTFE was the highest,
while that of PTFE/Cu particle jet was intermediate.
2. The head diameters of PTFE/Cu and PTFE particle jet damage elements were 3 and
2.7 mm, respectively. Thus, the PTFE/Cu particle jet had the best reaming ability of the
target penetration, which was favorable for opening up the channel for the rear stage in the
tandem shape charge.
3. Study on the penetration performance of PTFE particle jet in three different materials,
the penetration depth of PTFE particle jet damage element to 45# steel was 19.0 and 27.7 mm
for PTFE/Cu particle jet, the penetration depth of PTFE/Cu damage element was 45.8%
higher than that of PTFE particle jet; the perforation diameter of PTFE particle jet was
18.3 mm, the perforation diameter of PTFE/Cu particle jet was 20.6 mm, and the perforation
diameter of the PTFE/Cu increased by 12.6%, as compared to that of the PTFE particle jet,
which shows that PTFE/Cu particle jet damage element has the highest damage performance.
Acknowledgments. The authors would like to acknowledge the financial support from
the Project supported by the National Natural Science Foundation of China under Grant
No. 11572291 and Talent Project of Joint Cultivation Base for Postgraduate Students in
Shanxi Province No. 20160033.
1. W. Cai, Study on Warhead Separation Technology, Nanjing University of Technology
(2008).
2. J. P. Yin and Z. J. Wang, Ammunition Theory, Beijing Institute of Technology Press,
Beijing (2014).
3. C. Y. Hong, New Advanced Technology of Ordnance Industry, Ordnance Industries
Press (1994).
4. M. Held, “Liners for shaped charges,” J. Battlefield Technol., 4, No. 3, 1–7 (2001).
5. D. Alistar, “Some metallurgical aspects of shaped charge liners,” J. Battlefield
Technol., 1, No. 1, 1–3 (1998).
6. B. H. Chang, J. P. Yin, Z. Q. Cui, and T. X. Liu, “Numerical simulation of modified
low-density jet penetrating shell charge,” Int. J. Simul. Model., 14, No. 3, 426–437
(2015).
7. M. Held, Initiation Criteria of High Explosives, Attacked with Projectiles of Different
Densities: 27th International Annual Conference of ICT (June 25–28, 1996,
Karlsruhe, Germany), TDW (1996).
8. Z. M. Guo and M. B. Liu, “Mechanism research of shaped charge jet with SPH,”
Ordnance Mater. Sci. Eng., 36, No. 4, 37–40 (2013).
9. P. J. König and F. J. Mostert, “The design and performance of non-initiating shaped
charges with granular jets against ERA,” in: Proc. of the 20th Int. Symp. on Ballistics
(September 23–27, 2002, Orlando, FL), Vol. 2, DEStech (2002), pp. 858–863.
10. R. Cornish, J. T. Mills, J. P. Curtis, and D. Finch, “Degradation mechanisms in shaped
charge jet penetration,” Int. J. Impact Eng., 26, No. 1, 105–114 (2001).
11. R. J. Li, Z. W. Shen, and T. S. Liu, “Deep penetration mechanism of jet produced by
shaped charge with porous liner at low-standoff distance,” Chinese J. Energ. Mater.
(Hanneng Cailiao), 16, No. 4, 424–427 (2008).
J. P. Yin, Z. X. Shi, J. Chen, et al.
106 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1
12. R. J. Li, Study on the Jet Mechanisms of Shaped Charge with Porous Liner and Its
Applications, University of Science and Technology of China (2008).
13. M. B. Liu, G. R. Liu, Z. Zong, and K. Y. Lam, “Computer simulation of high
explosive explosion using smoothed particle hydrodynamics methodology,” Comput.
Fluids, 32, No. 3, 305–322 (2003).
14. L. Li, “Application of SPH method in 3D numerical simulation of charged charge jet,”
Explos. Shock Waves, 32, No. 3, 316–322 (2012).
15. Y. B. Liu, The Mechanism of Formation and Penetration of Shaped Charge Particle
Jets, University of Science and Technology of China (2012).
16. J. Chen, J. P. Yin, Y. Y. Han, et al., “Numerical simulation of low density particle jets
formation based on SPH method,” Chinese J. Energ. Mater. (Hanneng Cailiao), 25,
No. 9, 756–762 (2017).
Received 15. 03. 2018
Smooth Particle Hydrodynamics-Based Characteristics ...
ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2019, ¹ 1 107
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Error
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /CMYK
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 1200
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages false
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 1200
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages false
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages false
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/CreateJDFFile false
/Description <<
/ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
/BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
/HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
/HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
/HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
/LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
/RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
/SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
/SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
/UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
/ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /ConvertToCMYK
/DestinationProfileName ()
/DestinationProfileSelector /DocumentCMYK
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure false
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles false
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /DocumentCMYK
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /UseDocumentProfile
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|