A way of computing the Hilbert series

Let S = K[x1, x2, . . . , xn] be a standard graded K-algebra for any field K. Without using any heavy tools of commutative algebra we compute the Hilbert series of graded S-module S/I, where I is a monomial ideal.

Збережено в:
Бібліографічні деталі
Дата:2018
Автор: Haider, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2018
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/188346
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A way of computing the Hilbert series / A. Haider // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 1. — С. 35-38. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188346
record_format dspace
spelling irk-123456789-1883462023-02-24T01:27:20Z A way of computing the Hilbert series Haider, A. Let S = K[x1, x2, . . . , xn] be a standard graded K-algebra for any field K. Without using any heavy tools of commutative algebra we compute the Hilbert series of graded S-module S/I, where I is a monomial ideal. 2018 Article A way of computing the Hilbert series / A. Haider // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 1. — С. 35-38. — Бібліогр.: 4 назв. — англ. 1726-3255 2010 MSC: Primary 13P10; Secondary 13F20, 68R05, 05E40. http://dspace.nbuv.gov.ua/handle/123456789/188346 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let S = K[x1, x2, . . . , xn] be a standard graded K-algebra for any field K. Without using any heavy tools of commutative algebra we compute the Hilbert series of graded S-module S/I, where I is a monomial ideal.
format Article
author Haider, A.
spellingShingle Haider, A.
A way of computing the Hilbert series
Algebra and Discrete Mathematics
author_facet Haider, A.
author_sort Haider, A.
title A way of computing the Hilbert series
title_short A way of computing the Hilbert series
title_full A way of computing the Hilbert series
title_fullStr A way of computing the Hilbert series
title_full_unstemmed A way of computing the Hilbert series
title_sort way of computing the hilbert series
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/188346
citation_txt A way of computing the Hilbert series / A. Haider // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 1. — С. 35-38. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT haidera awayofcomputingthehilbertseries
AT haidera wayofcomputingthehilbertseries
first_indexed 2025-07-16T10:22:02Z
last_indexed 2025-07-16T10:22:02Z
_version_ 1837798599848624128
fulltext “adm-n1” — 2018/4/2 — 12:46 — page 35 — #37 Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 25 (2018). Number 1, pp. 35–38 c© Journal “Algebra and Discrete Mathematics” A way of computing the Hilbert series Azeem Haider Communicated by I. P. Shestakov Abstract. Let S = K[x1, x2, . . . , xn] be a standard graded K-algebra for any field K. Without using any heavy tools of com- mutative algebra we compute the Hilbert series of graded S-module S/I, where I is a monomial ideal. Let S = K[x1, x2, . . . , xn] be a standard graded K-algebra for a field K. We present a way of computing the Hilbert series of a graded S-module S/I, when I is a monomial ideal of S. There are some known ways of computing the Hilbert series (for example [3]). Unlike any other method we compute Hilbert series of S/I by skipping heavy tools of commutative algebra. If I ⊂ S is a monomial ideal which is minimally generated by mono- mials {u1, u2, . . . , us}, Sd/Id is the dth graded component of S/I and H(S/I, d) = dimK Sd/Id is the dimension of Sd/Id as a K linear space, called the Hilbert function of S/I. The series HS/I(t) = ∞ ∑ d=0 H(S/I, d)td is called the Hilbert Series of S/I. To know more about Hilbert series of general graded modules and related results see [1], [2] or [4]. 2010 MSC: Primary 13P10; Secondary 13F20, 68R05, 05E40. Key words and phrases: monomial ideal, Hilbert series. “adm-n1” — 2018/4/2 — 12:46 — page 36 — #38 36 A way of computing the Hilbert series For any monomials u = n ∏ i=0 xaii and v = n ∏ i=0 xbii in S, we define the intersecting multiplication as u ∗ v = n ∏ i=0 x max{ai,bi} i . (1) Considering this sort of multiplication allowing us to associate a monomial ideal I = (u1, u2, . . . , us) ⊂ S to a unique polynomial called intersecting polynomial in the following way PS/I = (1− u1) ∗ (1− u2) ∗ . . . ∗ (1− us). Simplifying we get PS/I = 1− s ∑ i=1 (ui)+ s ∑ 16i1<i2 (ui1 ∗ui2)− . . .+(−1)s(ui1 ∗ui2 ∗ . . .∗uis). (2) In the polynomial PS/I we have 2s number of monomial terms with half positive and half negative coefficient. For simplicity, we denote monomials with coefficient +1 by v1, v2, . . . , v2s−1 and monomials with coefficient −1 by w1, w2, . . . , w2s−1 . Using these notations we can write (2) as PS/I = 2s−1 ∑ i=1 (vi − wi). (3) Note that if an ideal J = (I, u), for monomial u /∈ I, then PS/J = PS/I − u ∗ PS/I . Once we obtained the intersecting polynomial PS/I , we can write Hilbert series of S/I as described in the following theorem. Theorem 1. If PS/I = ∑2s−1 i=1 (vi − wi) is the intersecting polynomial of S/I for monomial ideal I ⊂ S, then HS/I(t) = 2s−1 ∑ i=1 ( tdeg(vi) − tdeg(wi) ) (1− t)n . Proof. If I = (u1, u2, . . . , us) ⊂ S is a monomial ideal, then by inclusion exclusion principal we can see that the dimension of dth graded component of I is H(I, d) = s ∑ i=1 |ui|d− s ∑ 16i1<i2 |ui1 ∗ui2 |d− . . .+(−1)s+1|ui1 ∗ui2 ∗ . . .∗uis |d, “adm-n1” — 2018/4/2 — 12:46 — page 37 — #39 A. Haider 37 where |u|d = ( n− 1 + d− deg(u) n− 1 ) is the dimension of dth graded com- ponent of an ideal generated by a monomial u ∈ S. Now H(S/I, d) = H(S, d)−H(I, d), for all d and H(S, d) = |1|d, hence H(S/I, d) = |1|d − s ∑ i=1 |ui|d + s ∑ 16i1<i2 |ui1 ∗ ui2 |d − . . .+ (−1)s|ui1 ∗ ui2 ∗ . . . ∗ uis |d. (4) If we replace each monomial term in the intersecting polynomial defined in (2) by the corresponding dth graded component of ideal generated by that monomial, then we obtain H(S/I, d) as in (4). Hence we can write Hilbert function H(S/I, d) in terms of (3) as H(S/I, d) = 2s−1 ∑ i=1 (|vi|d − |wi|d) = 2s−1 ∑ i=1 (( n− 1 + d− deg(vi) n− 1 ) − ( n− 1 + d− deg(wi) n− 1 )) and the corresponding Hilbert series is HS/I(t) = ∞ ∑ d=0   2s−1 ∑ i=1 (|vi|d − |wi|d)   = 2s−1 ∑ i=1 ( tdeg(vi) − tdeg(wi) ) (1− t)n . We give an example to illustrate our method. Example. If I = (x21x3, x1x2x 2 3, x 2 2x 3 3) ⊂ S = K[x1, x2, x3], then the corresponding intersecting polynomial is PS/I = (1− x21x3) ∗ (1− x1x2x 2 3) ∗ (1− x22x 3 3) = 1− x21x3 − x1x2x 2 3 − x22x 3 3 + x21x2x 2 3 + x21x 2 2x 3 3 + x1x 2 2x 3 3 − x21x 2 2x 3 3. The monomials with coefficient +1 and −1 in PS/I are v1 = 1, v2 = x21x2x 2 3, v3 = x21x 2 2x 3 3, v4 = x1x 2 2x 3 3 “adm-n1” — 2018/4/2 — 12:46 — page 38 — #40 38 A way of computing the Hilbert series and w1 = x21x3, w2 = x1x2x 2 3, w3 = x22x 3 3, w4 = x21x 2 2x 3 3, respectively. Now by using Theorem 1 we can write Hilbert series of S/I, that is; HS/I(t) = t0 − t3 + t5 − t4 + t7 − t5 + t6 − t7 (1− t)3 = 1 + t+ t2 − t4 − t5 (1− t)2 . References [1] A. Ya. Belov, V. V. Borisenko, V. N. Latyshev, Monomial algebras, Journal of Mathematical Sciences, Vol. 87, Issue 3, November 1997, pp. 3463-3575. [2] W. Bruns and J. Herzog, Cohen–Macaulay rings, Revised Edition, Cambridge University Press, 1998. [3] M. Stillman and D. Bayer, Computations of Hilbert functions, J. Symbolic Com- putations, 14, 1992, pp. 31-50. [4] V.A. Ufnarovskij, Combinatorial and asymptotic methods in algebra, (Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 57, pp. 5-177, 1990). Translation: Algebra VI. Encycl. Math. Sci. 57, 1995, pp. 1-196. Contact information A. Haider Department of Mathematics, Jazan University, Jazan, Saudi Arabia E-Mail(s): aahaider@jazanu.edu.sa Received by the editors: 09.03.2016 and in final form 23.03.2017.