Construction of a complementary quasiorder

For a monounary algebra A = (A, f) we study the lattice QuordA of all quasiorders of A, i.e., of all reflexive and transitive relations compatible with f. Monounary algebras (A, f) whose lattices of quasiorders are complemented were characterized in 2011 as follows: (*) f(x) is a cyclic element for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Jakubíková-Studenovská, D., Janičková, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2018
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/188347
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Construction of a complementary quasiorder / D. Jakubíková-Studenovská, L. Janičková // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 1. — С. 39-55. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188347
record_format dspace
fulltext
spelling irk-123456789-1883472023-02-24T01:27:27Z Construction of a complementary quasiorder Jakubíková-Studenovská, D. Janičková, L. For a monounary algebra A = (A, f) we study the lattice QuordA of all quasiorders of A, i.e., of all reflexive and transitive relations compatible with f. Monounary algebras (A, f) whose lattices of quasiorders are complemented were characterized in 2011 as follows: (*) f(x) is a cyclic element for all x ∊ A, and all cycles have the same square-free number n of elements. Sufficiency of the condition (*) was proved by means of transfinite induction. Now we will describe a construction of a complement to a given quasiorder of (A, f) satisfying (*). 2018 Article Construction of a complementary quasiorder / D. Jakubíková-Studenovská, L. Janičková // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 1. — С. 39-55. — Бібліогр.: 4 назв. — англ. 1726-3255 2010 MSC: 08A60, 08A02. http://dspace.nbuv.gov.ua/handle/123456789/188347 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a monounary algebra A = (A, f) we study the lattice QuordA of all quasiorders of A, i.e., of all reflexive and transitive relations compatible with f. Monounary algebras (A, f) whose lattices of quasiorders are complemented were characterized in 2011 as follows: (*) f(x) is a cyclic element for all x ∊ A, and all cycles have the same square-free number n of elements. Sufficiency of the condition (*) was proved by means of transfinite induction. Now we will describe a construction of a complement to a given quasiorder of (A, f) satisfying (*).
format Article
author Jakubíková-Studenovská, D.
Janičková, L.
spellingShingle Jakubíková-Studenovská, D.
Janičková, L.
Construction of a complementary quasiorder
Algebra and Discrete Mathematics
author_facet Jakubíková-Studenovská, D.
Janičková, L.
author_sort Jakubíková-Studenovská, D.
title Construction of a complementary quasiorder
title_short Construction of a complementary quasiorder
title_full Construction of a complementary quasiorder
title_fullStr Construction of a complementary quasiorder
title_full_unstemmed Construction of a complementary quasiorder
title_sort construction of a complementary quasiorder
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/188347
citation_txt Construction of a complementary quasiorder / D. Jakubíková-Studenovská, L. Janičková // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 1. — С. 39-55. — Бібліогр.: 4 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT jakubikovastudenovskad constructionofacomplementaryquasiorder
AT janickoval constructionofacomplementaryquasiorder
first_indexed 2025-07-16T10:22:06Z
last_indexed 2025-07-16T10:22:06Z
_version_ 1837798603489280000