On dual Rickart modules and weak dual Rickart modules

Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Keskin Tütüncü, D., Orhan Ertas, N., Tribak, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2018
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/188359
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188359
record_format dspace
fulltext
spelling irk-123456789-1883592023-02-26T01:26:53Z On dual Rickart modules and weak dual Rickart modules Keskin Tütüncü, D. Orhan Ertas, N. Tribak, R. Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results. 2018 Article On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ. 1726-3255 2010 MSC: Primary 16D10; Secondary 16D80. http://dspace.nbuv.gov.ua/handle/123456789/188359 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Let R be a ring. A right R-module M is called d-Rickart if for every endomorphism φ of M, φ(M) is a direct summand of M and it is called wd-Rickart if for every nonzero endomorphism φ of M, φ(M) contains a nonzero direct summand of M. We begin with some basic properties of (w)d-Rickart modules. Then we study direct sums of (w)d-Rickart modules and the class of rings for which every finitely generated module is (w)d-Rickart. We conclude by some structure results.
format Article
author Keskin Tütüncü, D.
Orhan Ertas, N.
Tribak, R.
spellingShingle Keskin Tütüncü, D.
Orhan Ertas, N.
Tribak, R.
On dual Rickart modules and weak dual Rickart modules
Algebra and Discrete Mathematics
author_facet Keskin Tütüncü, D.
Orhan Ertas, N.
Tribak, R.
author_sort Keskin Tütüncü, D.
title On dual Rickart modules and weak dual Rickart modules
title_short On dual Rickart modules and weak dual Rickart modules
title_full On dual Rickart modules and weak dual Rickart modules
title_fullStr On dual Rickart modules and weak dual Rickart modules
title_full_unstemmed On dual Rickart modules and weak dual Rickart modules
title_sort on dual rickart modules and weak dual rickart modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2018
url http://dspace.nbuv.gov.ua/handle/123456789/188359
citation_txt On dual Rickart modules and weak dual Rickart modules / D. Keskin Tütüncü, N. Orhan Ertas, R. Tribak // Algebra and Discrete Mathematics. — 2018. — Vol. 25, № 2. — С. 200–214 . — Бібліогр.: 15 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT keskintutuncud ondualrickartmodulesandweakdualrickartmodules
AT orhanertasn ondualrickartmodulesandweakdualrickartmodules
AT tribakr ondualrickartmodulesandweakdualrickartmodules
first_indexed 2025-07-16T10:23:03Z
last_indexed 2025-07-16T10:23:03Z
_version_ 1837798663326269440