On a common generalization of symmetric rings and quasi duo rings

Let J(R) denote the Jacobson radical of a ring R. We call a ring R as J-symmetric if for any a, b, c ∈ R, abc = 0 implies bac ∈ J(R). It turns out that J-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these ri...

Full description

Saved in:
Bibliographic Details
Date:2020
Main Authors: Subedi, T., Roy, D.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2020
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188519
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On a common generalization of symmetric rings and quasi duo rings/ T. Subedi, D. Roy // Algebra and Discrete Mathematics. — 2020. — Vol. 29, № 2. — С. 249–258. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine