On the edge-Wiener index of the disjunctive product of simple graphs

The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Azari, M., Iranmanesh, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2020
Schriftenreihe:Algebra and Discrete Mathematics
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/188549
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the edge-Wiener index of the disjunctive product of simple graphs / M. Azari, A. Iranmanesh // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 1–14. — Бібліогр.: 24 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-188549
record_format dspace
spelling irk-123456789-1885492023-03-08T01:26:59Z On the edge-Wiener index of the disjunctive product of simple graphs Azari, M. Iranmanesh, A. The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. 2020 Article On the edge-Wiener index of the disjunctive product of simple graphs / M. Azari, A. Iranmanesh // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 1–14. — Бібліогр.: 24 назв. — англ. 1726-3255 DOI:10.12958/adm242 2010 MSC: 05C76, 05C12, 05C38 http://dspace.nbuv.gov.ua/handle/123456789/188549 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles.
format Article
author Azari, M.
Iranmanesh, A.
spellingShingle Azari, M.
Iranmanesh, A.
On the edge-Wiener index of the disjunctive product of simple graphs
Algebra and Discrete Mathematics
author_facet Azari, M.
Iranmanesh, A.
author_sort Azari, M.
title On the edge-Wiener index of the disjunctive product of simple graphs
title_short On the edge-Wiener index of the disjunctive product of simple graphs
title_full On the edge-Wiener index of the disjunctive product of simple graphs
title_fullStr On the edge-Wiener index of the disjunctive product of simple graphs
title_full_unstemmed On the edge-Wiener index of the disjunctive product of simple graphs
title_sort on the edge-wiener index of the disjunctive product of simple graphs
publisher Інститут прикладної математики і механіки НАН України
publishDate 2020
url http://dspace.nbuv.gov.ua/handle/123456789/188549
citation_txt On the edge-Wiener index of the disjunctive product of simple graphs / M. Azari, A. Iranmanesh // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 1. — С. 1–14. — Бібліогр.: 24 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT azarim ontheedgewienerindexofthedisjunctiveproductofsimplegraphs
AT iranmanesha ontheedgewienerindexofthedisjunctiveproductofsimplegraphs
first_indexed 2025-07-16T10:39:12Z
last_indexed 2025-07-16T10:39:12Z
_version_ 1837799680101056512
fulltext “adm-n3” — 2021/1/3 — 11:48 — page 1 — #7 © Algebra and Discrete Mathematics RESEARCH ARTICLE Volume 30 (2020). Number 1, pp. 1–14 DOI:10.12958/adm242 On the edge-Wiener index of the disjunctive product of simple graphs M. Azari∗ and A. Iranmanesh Communicated by D. Simson Abstract. The edge-Wiener index of a simple connected graph G is defined as the sum of distances between all pairs of edges of G where the distance between two edges in G is the distance between the corresponding vertices in the line graph of G. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. Introduction Throughout this paper, we consider connected finite graphs without any loops or multiple edges. Let G be such a graph with vertex set V (G) and edge set E(G). A topological index (also known as graph invariant) is any function on a graph that does not depend on a labeling of its vertices. Several hundreds of different invariants have been employed to date with various degrees of success in QSAR/QSPR studies. We refer the reader to [12] for review. The oldest topological index is the one put forward in 1947 by Harold Wiener [23] nowadays referred to as the Wiener index. Wiener used his index for the calculation of the boiling points of alkanes. The Wiener ∗Corresponding author. 2010 MSC: 05C76, 05C12, 05C38. Key words and phrases: distance in graphs, edge-Wiener index, disjunctive product of graphs. https://doi.org/10.12958/adm242 “adm-n3” — 2021/1/3 — 11:48 — page 2 — #8 2 Edge-Wiener index of the disjunctive product index W (G) of a graph G is defined as the sum of distances between all pairs of vertices of G, W (G) = ∑ {u,v}⊆V (G) d(u, v |G), where d(u, v |G) denotes the distance between the vertices u and v of G which is defined as the length of any shortest path in G connecting them. We denote d(u, v |G) simply by d(u, v) when no ambiguity is present. Details on the mathematical properties of the Wiener index and its appli- cations in chemistry can be found in [8, 10,11,13–15]. Motivated by definition of the Wiener index, the edge-Wiener index was introduced based on distance between all pairs of edges in a graph in 2009 [9, 19, 21]. The edge-Wiener index of a graph G is defined as We(G) = ∑ {f,g}⊆E(G) de(f, g |G), where de(f, g |G) denotes the distance between the edges f and g of G which is defined as the ordinary distance between the corresponding vertices in the line graph L(G) of G. So, We(G) = W (L(G)). It has been proved that [19], for each pair of edges f = uv and g = zt of G, de(f, g |G) = { min{d(u, z), d(u, t), d(v, z), d(v, t)}+ 1 if f 6= g, 0 if f = g. For details on the theory of the edge-Wiener index and its applications see [2, 22,24] and specially the recent paper [18]. Many graphs are composed of simpler graphs via various graph opera- tions also known as graph products. These composite graphs have more complicated structures than their components. So, in general, computing their topological invariants is more difficult than computing the topological invariants of their components. So, it is important to understand how cer- tain invariants of such composite graphs are related to the corresponding invariants of their components. The edge-Wiener index of some graph operations have been computed before [1, 3–7]. In this paper, we study the behavior of the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles. We refer the reader to [17] for details on the properties and applications of graph operations. “adm-n3” — 2021/1/3 — 11:48 — page 3 — #9 M. Azari, A. Iranmanesh 3 1. Definitions and preliminaries For a simple connected graph G, let NG(u) denote the open neighbor- hood of a vertex u in G which is the set of all vertices of G adjacent with u. The cardinality of NG(u) is called the degree of u in G and denoted by dG(u). If there is no confusion, we simply use N(u) and d(u) instead of NG(u) and dG(u), respectively. Let ∆(G) denote the number of all triangles (3-cycles) in G and M1(G) denote the first Zagreb index of G which is one the oldest topological indices introduced by Gutman and Trinajstić [16] as follow. M1(G) = ∑ u∈V (G) d(u)2 = ∑ uv∈E(G) ( d(u) + d(v) ) . (1) It is easy to check that, ∑ uv∈E(G) |N(u) ∩N(v)| = 3∆(G) (2) and ∑ u,v∈V (G) |N(u) ∩N(v)| = M1(G). (3) Using the inclusion–exclusion principle and then (1), (2), and (3), one can easily get the following equations. ∑ uv∈E(G) |N(u) ∪N(v)| = M1(G)− 3∆(G) (4) and ∑ u,v∈V (G) |N(u) ∪N(v)| = 4ne−M1(G), (5) where n and e denote the order and size of the graph G, respectively. Here, we introduce some useful notations which will be used throughout the paper. ν(G) = ∑ uv∈E(G) |N(u) ∪N(v)|2 , (6) ν∗(G) = ∑ u,v∈V (G) |N(u) ∪N(v)|2 , (7) “adm-n3” — 2021/1/3 — 11:48 — page 4 — #10 4 Edge-Wiener index of the disjunctive product µ(G) = ∑ uv∈E(G) ∑ z∈V (G)\(N(u)∪N(v)) ∣ ∣N(z) \ ( N(u) ∪N(v) )∣ ∣ , (8) and µ∗(G) = ∑ u,v∈V (G) ∑ z∈V (G)\(N(u)∪N(v)) ∣ ∣N(z) \ ( N(u) ∪N(v) ) ∣ ∣ . (9) 2. Results and discussion Let G1 and G2 be two simple connected graphs. We denote by V (Gi) and E(Gi), the vertex set and edge set of Gi, respectively, where i ∈ {1, 2}. The disjunctive product G1 ∨ G2 of graphs G1 and G2 is a graph with the vertex set V (G1) × V (G2) and two vertices (u1, u2) and (v1, v2) of G1 ∨ G2 are adjacent if and only if u1 and v1 are adjacent in G1 or u2 and v2 are adjacent in G2. The disjunctive product of two graphs is also known as their co-normal product or OR product. The distance between the vertices u = (u1, u2) and v = (v1, v2) of G1 ∨G2 is given by d(u, v|G1 ∨G2) =      0 if u1 = v1, u2 = v2, 1 if u1v1 ∈ E(G1) or u2v2 ∈ E(G2), 2 otherwise. In this section, we compute the edge-Wiener index of the disjunctive product of G1 and G2. Throughout the section, for notational convenience, we let G = G1 ∨G2 be the disjunctive product of a pair of graphs G1 and G2, and n1, e1, n2, e2 denote the order of G1, size of G1, order of G2, size of G2, respectively. At first, we consider three subsets of E(G) as follows. E1 ={(u1, u2)(v1, v2) | u1v1 ∈ E(G1), u2, v2 ∈ V (G2)}, E2 ={(u1, u2)(v1, v2) | u2v2 ∈ E(G2), u1, v1 ∈ V (G1)}, E3 ={(u1, u2)(v1, v2) | u1v1 ∈ E(G1), u2v2 ∈ E(G2)}. It is clear that, E(G) = ⋃3 i=1Ei and |E(G)| = |E1|+ |E2| − 2 |E3| = e1n 2 2 + e2n 2 1 − 2e1e2. (10) Since all distinct vertices of G are either at distance 1 or 2, so all distinct edges of G are either at distance 1, 2, or 3. Therefore, we can partition the set of all pairs of edges of G into three sets as follows. A ={{f, g} | de(f, g |G) = 1}, “adm-n3” — 2021/1/3 — 11:48 — page 5 — #11 M. Azari, A. Iranmanesh 5 B ={{f, g} | de(f, g |G) = 2}, C ={{f, g} | de(f, g |G) = 3}. In order to find the edge-Wiener index of G, we should compute the cardinality of the above sets. It is clear that, |A|+ |B|+ |C| = ( |E(G)| 2 ) = ( e1n 2 2 + e2n 2 1 − 2e1e2 2 ) . (11) By (11), it is enough to find the cardinality of the sets A and C. In the following proposition, we compute the cardinality of the set A. Proposition 1. The cardinality of the set A is given by |A| = 1 2 [ n2(n 2 2 − 4e2)M1(G1) + n1(n 2 1 − 4e1)M1(G2) (12) +M1(G1)M1(G2) + 8n1n2e1e2 − 2(e1n 2 2 + e2n 2 1 − 2e1e2) ] . Proof. Clearly, A is the set of all pairs of adjacent edges of G. So |A| = ∑ u∈V (G) ( d(u) 2 ) = 1 2 ∑ u∈V (G) ( d(u)2 − d(u) ) = 1 2 M1(G)− |E(G)| . By Theorem 3 in [20], the first Zagreb index of the disjunctive product of G1 and G2 is given by M1(G) =n2(n 2 2 − 4e2)M1(G1) + n1(n 2 1 − 4e1)M1(G2) +M1(G1)M1(G2) + 8n1n2e1e2. Now using (10), we can get (12). Now we start to find the cardinality of the set C. Suppose f = (u1, u2)(v1, v2) is an arbitrary edge of G and let C(f) be the set of all edges of G which are at distance 3 from f , C(f) = {g ∈ E(G) | de(f, g |G) = 3}. In the following lemma, we compute the cardinality of the set C(f). Lemma 1. For every arbitrary edge f = (u1, u2)(v1, v2) of G, the cardi- nality of the set C(f) is given by |C(f)| = 1 2 [ ( n2 − |N(u2) ∪N(v2)| )2 (13) “adm-n3” — 2021/1/3 — 11:48 — page 6 — #12 6 Edge-Wiener index of the disjunctive product × ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) )∣ ∣ + ( n1 − |N(u1) ∪N(v1)| )2 × ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ − ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ × ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ ] . Proof. Let f = (u1, u2)(v1, v2) be an arbitrary edge of G and let g = (z1, z2)(t1, t2) be an arbitrary element of C(f). By definition of the distance de, we have 1 + min{d ( (u1, u2), (z1, z2) ) , d ( (u1, u2), (t1, t2) ) , d ( (v1, v2), (z1, z2) ) , d ( (v1, v2), (t1, t2) ) } = de(f, g|G) = 3. Hence, min{d ( (u1, u2), (z1, z2) ) , d ( (u1, u2), (t1, t2) ) , d ( (v1, v2), (z1, z2) ) , d ( (v1, v2), (t1, t2) ) } = 2. Since all distinct vertices of G are either at distance 1 or 2, so d ( (u1, u2), (z1, z2) ) = d ( (u1, u2), (t1, t2) ) = d ( (v1, v2), (z1, z2) ) = d ( (v1, v2), (t1, t2) ) = 2. This implies that, zi and ti are adjacent neither to ui nor to vi in Gi, where i ∈ {1, 2}. Consequently, |C(f)| = 1 2 ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∑ z2∈V (G2)\(N(u2)∪N(v2)) [ ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ ( n2 − |N(u2) ∪N(v2)| ) + ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ ( n1 − |N(u1) ∪N(v1)| ) − ∣ ∣N(z1) \ ( N(u1) ∪N(v1) )∣ ∣ ∣ ∣N(z2) \ ( N(u2) ∪N(v2) )∣ ∣ ] . = 1 2 [ ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ “adm-n3” — 2021/1/3 — 11:48 — page 7 — #13 M. Azari, A. Iranmanesh 7 ∑ z2∈V (G2)\(N(u2)∪N(v2)) ( n2 − |N(u2) ∪N(v2)| ) + ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) )∣ ∣ ∑ z1∈V (G1)\(N(u1)∪N(v1)) ( n1 − |N(u1) ∪N(v1)| ) − ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) )∣ ∣ ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) )∣ ∣ ] . Now, (13) is obtained after simplifying the above expression. Let f = (u1, u2)(v1, v2) be an edge of G. Then, (u1, v2)(v1, u2) is also an edge of G. We denote the edge (u1, v2)(v1, u2) by f̄ . Lemma 2. For every arbitrary edge f = (u1, u2)(v1, v2) of G, ∣ ∣C(f̄) ∣ ∣ = |C(f)|. Proof. The cardinality of C(f̄) can easily be obtained by changing the role of the vertices u2 and v2 in (13). On the other hand, one can easily check that changing the role of these two vertices does not influence the result. So ∣ ∣C(f̄) ∣ ∣ = |C(f)|. In the following proposition, we obtain the cardinality of the set C. Proposition 2. The cardinality of the set C is given by |C| = 1 4 [( n2 2(n 2 2 − 10e2) + ν∗(G2)− 2ν(G2) (14) + 6n2 ( M1(G2)− 2∆(G2) ) ) µ(G1) + ( n2 1(n 2 1 − 10e1) + ν∗(G1)− 2ν(G1) + 6n1 ( M1(G1)− 2∆(G1) ) ) µ(G2) + ( n2 2e2 + ν(G2)− 2n2 ( M1(G2)− 3∆(G2) ) ) µ∗(G1) + ( n2 1e1 + ν(G1)− 2n1 ( M1(G1)− 3∆(G1) ) ) µ∗(G2) − µ(G1)µ ∗(G2)− µ(G2)µ ∗(G1) + 2µ(G1)µ(G2) ] . “adm-n3” — 2021/1/3 — 11:48 — page 8 — #14 8 Edge-Wiener index of the disjunctive product Proof. For every f ∈ E(G), there exist |C(f)| elements in C. Furthermore, for every pair of edges f, g in G, g ∈ C(f) if and only if f ∈ C(g). Hence, |C| = 1 2 ∑ f∈E(G) |C(f)| = 1 2 [ ∑ f∈E1 |C(f)|+ ∑ f∈E2 |C(f)| − ∑ f∈E3 ( |C(f)|+ ∣ ∣C(f̄) ∣ ∣ ) ] . Using Lemma 2, we obtain |C| = 1 2 [ ∑ f∈E1 |C(f)|+ ∑ f∈E2 |C(f)| − 2 ∑ f∈E3 |C(f)| ] . (15) Now, we compute ∑ f∈Ei |C(f)|, for every i ∈ {1, 2, 3}. By definition of the set E1 and (13), we have ∑ f∈E1 |C(f)| = 1 2 ∑ u1v1∈E(G1) ∑ u2,v2∈V (G2) [ ( n2 − |N(u2) ∪N(v2)| )2 ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ + ( n1 − |N(u1) ∪N(v1)| )2 ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ − ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ ] . By simplifying the above expression, we obtain ∑ f∈E1 |C(f)| = 1 2 [ ∑ u2,v2∈V (G2) ( n2 − |N(u2) ∪N(v2)| )2 ∑ u1v1∈E(G1) ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ + ∑ u1v1∈E(G1) ( n1 − |N(u1) ∪N(v1)| )2 ∑ u2,v2∈V (G2) ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ “adm-n3” — 2021/1/3 — 11:48 — page 9 — #15 M. Azari, A. Iranmanesh 9 − ∑ u1v1∈E(G1) ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ ∑ u2,v2∈V (G2) ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ ] . Now using (4)−(9), we obtain ∑ f∈E1 |C(f)| = 1 2 [( n4 2 + ν∗(G2)− 2n2 ( 4n2e2 −M1(G2) ) ) µ(G1) + ( n2 1e1 + ν(G1)− 2n1 ( M1(G1)− 3∆(G1) ) ) µ∗(G2) − µ(G1)µ ∗(G2) ] . (16) By definition of the set E2 and (13), we have ∑ f∈E2 |C(f)| = 1 2 ∑ u2v2∈E(G2) ∑ u1,v1∈V (G1) [ ( n2 − |N(u2) ∪N(v2)| )2 ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ + ( n1 − |N(u1) ∪N(v1)| )2 ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ − ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ ] . By symmetry, we obtain ∑ f∈E2 |C(f)| = 1 2 [( n4 1 + ν∗(G1)− 2n1 ( 4n1e1 −M1(G1) ) ) µ(G2) + ( n2 2e2 + ν(G2)− 2n2 ( M1(G2)− 3∆(G2) ) ) µ∗(G1) − µ(G2)µ ∗(G1) ] . (17) By definition of the set E3 and (13), we have ∑ f∈E3 |C(f)| = 1 2 ∑ u1v1∈E(G1) ∑ u2v2∈E(G2) [ ( n2 − |N(u2) ∪N(v2)| )2 “adm-n3” — 2021/1/3 — 11:48 — page 10 — #16 10 Edge-Wiener index of the disjunctive product ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) )∣ ∣ + ( n1 − |N(u1) ∪N(v1)| )2 ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) ) ∣ ∣ − ∑ z1∈V (G1)\(N(u1)∪N(v1)) ∣ ∣N(z1) \ ( N(u1) ∪N(v1) ) ∣ ∣ ∑ z2∈V (G2)\(N(u2)∪N(v2)) ∣ ∣N(z2) \ ( N(u2) ∪N(v2) )∣ ∣ ] . Using (4), (6), and (8), we obtain ∑ f∈E3 |C(f)| = 1 2 [( n2 2e2 + ν(G2)− 2n2 ( M1(G2)− 3∆(G2) ) ) µ(G1) + ( n2 1e1 + ν(G1)− 2n1 ( M1(G1)− 3∆(G1) ) ) µ(G2) − µ(G1)µ(G2) ] . (18) Now by (15)−(18), we can get (14). Now, we are ready to compute the edge-Wiener index of the disjunctive product of G1 and G2. Theorem 1. Assume that G1 and G2 are simple connected graphs, G1∨G2 is the disjunctive product of G1 and G2, and n1, e1, n2, e2 denote the order of G1, size of G1, order of G2, size of G2, respectively. Under the notation introduced earlier, the edge-Wiener index We(G1 ∨ G2) of the disjunctive product G1 ∨G2 of G1 and G2 is given by We(G1 ∨G2) = 1 4 [( n2 2(n 2 2 − 10e2) + ν∗(G2)− 2ν(G2) (19) + 6n2 ( M1(G2)− 2∆(G2) ) ) µ(G1) + ( n2 1(n 2 1 − 10e1) + ν∗(G1)− 2ν(G1) + 6n1 ( M1(G1)− 2∆(G1) ) ) µ(G2) + ( n2 2e2 + ν(G2)− 2n2 ( M1(G2)− 3∆(G2) ) ) µ∗(G1) + ( n2 1e1 + ν(G1)− 2n1 ( M1(G1)− 3∆(G1) ) ) µ∗(G2) “adm-n3” — 2021/1/3 — 11:48 — page 11 — #17 M. Azari, A. Iranmanesh 11 − µ(G1)µ ∗(G2)− µ(G2)µ ∗(G1) + 2µ(G1)µ(G2) − 2n2(n 2 2 − 4e2)M1(G1)− 2n1(n 2 1 − 4e1)M1(G2) − 2M1(G1)M1(G2) + 4 ( e1n 2 2 + e2n 2 1 − 2e1e2 )2 − 16n1n2e1e2 ] . Proof. Let G = G1 ∨G2. By applying Propositions 1-2, Lemmas 1-2, and definition of the edge-Wiener index We(G), we get We(G) = ∑ {f,g}⊆E(G) de(f, g |G) = ∑ {f,g}∈A∪B∪C de(f, g |G) = ∑ {f,g}∈A de(f, g |G) + ∑ {f,g}∈B de(f, g |G) + ∑ {f,g}∈C de(f, g |G) = |A|+ 2 |B|+ 3 |C| = 2(|A|+ |B|+ |C|)− |A|+ |C| . Now, using (11), (12), and (14), we can get (19). Let Pn and Cn denote the n−vertex path and cycle, respectively. It can be verified by a direct calculation that, for every n > 2, M1(Pn) = 4n− 6; ∆(Pn) = 0; ν(Pn) = { 4 if n = 2, 16n− 30 if n > 3; ν∗(Pn) = { 10 if n = 2, 2(8n2 − 27n+ 31) if n > 3; µ(Pn) = { 0 if n = 2, 2(n− 3)(n− 4) if n > 3; µ∗(Pn) = { 0 if n = 2, 2(n− 3)(n2 − 6n+ 10) if n > 3. Also for every n > 3, M1(Cn) = 4n; ∆(Cn) = { 1 if n = 3, 0 if n > 4; ν(Cn) = { 27 if n = 3, 16n if n > 4; ν∗(Cn) = { 160 if n = 4, 2n(8n− 13) if n 6= 4; “adm-n3” — 2021/1/3 — 11:48 — page 12 — #18 12 Edge-Wiener index of the disjunctive product µ(Cn) = { 0 if n 6 4, 2n(n− 5) if n > 5; µ∗(Cn) = { 0 if n 6 4, 2n(n− 4)2 if n > 5. Now using (19), we easily arrive at: Corollary 1. For every integers n > 2 and m > 3, We(Pn ∨ Cm) =                                      150 if n = 2, m = 3, 432 if n = 2, m = 4, m(m3 + 3m2 +m− 9) if n = 2, m > 5, 1 2(18n 4 + 24n3 − 39n2 − 45n+ 72) if n > 3, m = 3, 8(2n4 + 7n3 − 2n2 − 30n+ 38) if n > 3, m = 4, 1 2m [ n4(3m− 5) + 2n3(3m2 − 18m+ 44) + n2(3m3 − 42m2 + 280m− 722) − n(11m3 − 152m2 + 1038m− 2524) + 2(7m3 − 103m2 + 683m− 1583) ] if n > 3, m > 5. Acknowledgments The authors would like to thank the referee for insightful comments and valuable suggestions. The partial support by the Center of Excellence of Algebraic Hyper-structures and its Applications of Tarbiat Modares University (CEAHA) is gratefully acknowledged by the second author. References [1] M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin., V. 100, 2011, pp. 113-128. [2] M. Azari and A. Iranmanesh, Computing Wiener-like topological invariants for some composite graphs and some nanotubes and nanotori, In: I. Gutman, (Ed.), Topics in Chemical Graph Theory, Univ. Kragujevac, Kragujevac, 2014, pp. 69-90. [3] M. Azari and A. Iranmanesh, The second edge-Wiener index of some composite graphs, Miskolc Math. Notes, V. 15, N. 2, 2014, pp. 305-316. [4] M. Azari and A. Iranmanesh, Edge-Wiener type invariants of splices and links of graphs, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., V. 77, N. 3, 2015, pp. 143-154. “adm-n3” — 2021/1/3 — 11:48 — page 13 — #19 M. Azari, A. Iranmanesh 13 [5] M. Azari and A. Iranmanesh, Clusters and various versions of Wiener-type invari- ants, Kragujevac J. Math., V. 39, N. 2, 2015, pp. 155-171. [6] M. Azari, A. Iranmanesh and A. Tehranian, Computation of the first edge Wiener index of a composition of graphs, Studia Univ. Babes Bolyai Chem., V. 55, N. 4, 2010, pp. 183-196. [7] M. Azari, A. Iranmanesh and A. Tehranian, A method for calculating an edge version of the Wiener number of a graph operation, Util. Math., V. 87, 2012, pp. 151-164. [8] F. Cataldo, O. Ori and A. Graovac, Wiener index of 1-pentagon fullerenic infinite lattice, Int. J. Chem. Model., V. 2, , 2010, pp. 165-180. [9] P. Dankelman, I. Gutman, S. Mukwembi and H. C. Swart, The edge Wiener index of a graph, Discrete Math., V. 309, 2009, pp. 3452-3457. [10] M. R. Darafsheh and M. H. Khalifeh, Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer, Ars Combin., V. 100, 2011, pp. 289-298. [11] M. V. Diudea, Wiener index of dendrimers, MATCH Commun. Math. Comput. Chem., V. 32, 1995, pp. 71-83. [12] M. V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York, 2001. [13] T. Došlić, Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes N. Y., V. 48, 2005, pp. 47–55. [14] T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp., V. 1, N. 1, 2008, pp. 66-80. [15] A. Graovac and T. Pisanski, On the Wiener index of a graph, J. Math. Chem., V. 8, 1991, pp. 53-62. [16] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., V. 17, 1972, pp. 535-538. [17] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, John Wiley & Sons, New York, 2000. [18] A. Iranmanesh and M. Azari, Edge-Wiener descriptors in chemical graph theory: A survey, Curr. Org. Chem., V. 19, N. 3, 2015, pp. 219-239. [19] A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of the Wiener index, MATCH Commun. Math. Comput. Chem., V. 61, 2009, pp. 663-672. [20] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., V. 157, 2009, pp. 804–811. [21] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin., V. 30, 2009, pp. 1149-1163. [22] M. J. Nadjafi-Arani, H. Khodashenas and A. R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat. Ser. III, V. 47, 2012, pp. 21-29. [23] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., V. 69, N. 1, 1947, pp. 17–20. “adm-n3” — 2021/1/3 — 11:48 — page 14 — #20 14 Edge-Wiener index of the disjunctive product [24] H. Yousefi-Azari, M. H. Khalifeh and A. R. Ashrafi, Calculating the edge Wiener and edge Szeged indices of graphs, J. Comput. Appl. Math., V. 235, N. 16, 2011, pp. 4866-4870. Contact information Mahdieh Azari Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran E-Mail(s): azari@kau.ac.ir Ali Iranmanesh Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P. O. Box: 14115-137, Tehran, Iran E-Mail(s): iranmanesh@modares.ac.ir Received by the editors: 27.06.2016 and in final form 27.09.2017. mailto:azari@kau.ac.ir mailto:iranmanesh@modares.ac.ir M. Azari, A. Iranmanesh