Normal automorphisms of the metabelian product of free abelian Lie algebras
Let M be the metabelian product of free abelian Lie algebras of finite rank. In this study we prove that every normal automorphism of M is an IA-automorphism and acts identically on M′.
Збережено в:
Дата: | 2020 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2020
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/188565 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Normal automorphisms of the metabelian product of free abelian Lie algebras / N.Ş. Öğüşlü // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 230–234. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-188565 |
---|---|
record_format |
dspace |
fulltext |
|
spelling |
irk-123456789-1885652023-03-07T01:26:52Z Normal automorphisms of the metabelian product of free abelian Lie algebras Öğüşlü, N.Ş. Let M be the metabelian product of free abelian Lie algebras of finite rank. In this study we prove that every normal automorphism of M is an IA-automorphism and acts identically on M′. 2020 Article Normal automorphisms of the metabelian product of free abelian Lie algebras / N.Ş. Öğüşlü // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 230–234. — Бібліогр.: 5 назв. — англ. 1726-3255 DOI:10.12958/adm1258 2010 MSC: 17B01, 17B40. http://dspace.nbuv.gov.ua/handle/123456789/188565 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let M be the metabelian product of free abelian Lie algebras of finite rank. In this study we prove that every normal automorphism of M is an IA-automorphism and acts identically on M′. |
format |
Article |
author |
Öğüşlü, N.Ş. |
spellingShingle |
Öğüşlü, N.Ş. Normal automorphisms of the metabelian product of free abelian Lie algebras Algebra and Discrete Mathematics |
author_facet |
Öğüşlü, N.Ş. |
author_sort |
Öğüşlü, N.Ş. |
title |
Normal automorphisms of the metabelian product of free abelian Lie algebras |
title_short |
Normal automorphisms of the metabelian product of free abelian Lie algebras |
title_full |
Normal automorphisms of the metabelian product of free abelian Lie algebras |
title_fullStr |
Normal automorphisms of the metabelian product of free abelian Lie algebras |
title_full_unstemmed |
Normal automorphisms of the metabelian product of free abelian Lie algebras |
title_sort |
normal automorphisms of the metabelian product of free abelian lie algebras |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2020 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/188565 |
citation_txt |
Normal automorphisms of the metabelian product of free abelian Lie algebras / N.Ş. Öğüşlü // Algebra and Discrete Mathematics. — 2020. — Vol. 30, № 2. — С. 230–234. — Бібліогр.: 5 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT ogusluns normalautomorphismsofthemetabelianproductoffreeabelianliealgebras |
first_indexed |
2025-07-16T10:40:22Z |
last_indexed |
2025-07-16T10:40:22Z |
_version_ |
1837799752931999744 |