On (co)pure Baer injective modules

For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every modu...

Full description

Saved in:
Bibliographic Details
Date:2021
Main Author: Hamid, M.F.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2021
Series:Algebra and Discrete Mathematics
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/188708
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On (co)pure Baer injective modules / M.F. Hamid // Algebra and Discrete Mathematics. — 2021. — Vol. 31, № 2. — С. 219–226. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:For a given class of R-modules Q, a module M is called Q-copure Baer injective if any map from a Q-copure left ideal of R into M can be extended to a map from R into M. Depending on the class Q, this concept is both a dualization and a generalization of pure Baer injectivity. We show that every module can be embedded as Q-copure submodule of a Q-copure Baer injective module. Certain types of rings are characterized using properties of Q-copure Baer injective modules. For example a ring R is Q-coregular if and only if every Q-copure Baer injective R-module is injective.