Maximal subgroup growth of a few polycyclic groups
We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let Gk = ⟨x1, x2, . . . , xk | xixjxi⁻¹ for all i < j⟩, so Gk = ℤ⋊(ℤ⋊(ℤ⋊• • •⋊ℤ)). Then for all integers k ≥ 2, we calculate mn(Gk), the number of maximal subgroups of Gk of index n, exactly. Also, for infinitely...
Saved in:
Date: | 2021 |
---|---|
Main Authors: | Kelley, A., Wolfe, E. |
Format: | Article |
Language: | English |
Published: |
Інститут прикладної математики і механіки НАН України
2021
|
Series: | Algebra and Discrete Mathematics |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/188749 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Maximal subgroup growth of a few polycyclic groups / A. Kelley, E. Wolfe // Algebra and Discrete Mathematics. — 2021. — Vol. 32, № 2. — С. 226-235. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
Maximal subgroup growth of a few polycyclic groups
by: Kelley, A., et al.
Published: (2022) -
Groups with Few Nonmodular Subgroups
by: De Mari, F.
Published: (2004) -
On the crossing of maximal subgroups of finite groups
by: R. V. Borodich
Published: (2019) -
Second Maximal Subgroups of a Sylow p-Subgroup and the p-Nilpotency of Finite Groups
by: Y. Xu, et al.
Published: (2014) -
On groups with formational subnormal strictly 2-maximal subgroups
by: V. S. Monakhov, et al.
Published: (2021)