Разрезы в неориентированных графах. II

Предложены 2 алгоритма преобразования текущей базы полиматроида в новую для улучшения значения целевой функции. Установлена эквивалентность задачи максимального разреза на заданном графе и задачи нахождения минимального разреза, отделяющего источник и сток в сети, построенной относительно некоторой...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Шарифов, Ф.А., Гуляницкий, Л.Ф.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут кібернетики ім. В.М. Глушкова НАН України 2020
Schriftenreihe:Кибернетика и системный анализ
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/190454
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Разрезы в неориентированных графах. II / Ф.А. Шарифов, Л.Ф. Гуляницкий // Кибернетика и системный анализ. — 2020. — Т. 56, № 5. — С. 70–79. — Бібліогр.: 8 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-190454
record_format dspace
fulltext
spelling irk-123456789-1904542023-06-08T18:29:42Z Разрезы в неориентированных графах. II Шарифов, Ф.А. Гуляницкий, Л.Ф. Системний аналіз Предложены 2 алгоритма преобразования текущей базы полиматроида в новую для улучшения значения целевой функции. Установлена эквивалентность задачи максимального разреза на заданном графе и задачи нахождения минимального разреза, отделяющего источник и сток в сети, построенной относительно некоторой базы расширенного полиматроида. Сформулированы необходимые и достаточные условия оптимальности решения задачи максимального разреза на неориентированных графах в терминах теории потоков. Запропоновано два алгоритми перетворення поточної бази поліматроїда до нової з метою поліпшення значення цільової функції. Встановлено еквівалентність задачі максимального розрізу на заданому графі і задачі знаходження мінімального розрізу, що відокремлює джерело і стік в мережі, побудованої відносно деякої бази розширеного поліматроїда. Сформульовано необхідні та достатні умови оптимальності розв'язування задачі максимального розрізу на неорієнтованих графах в термінах теорії потоків. To improve the value of the objective function, two algorithms are proposed for transforming the current base into a new one. It is shown that the maximum cut problem on an undirected graph can be reduced to finding the base of the extended polynomial, for which the value of the minimum cut that separates the source and the sink is maximum. The necessary and sufficient conditions for optimality of the solution of the maximum cut problem on non-oriented graphs in terms of flow theory are formulated. 2020 Article Разрезы в неориентированных графах. II / Ф.А. Шарифов, Л.Ф. Гуляницкий // Кибернетика и системный анализ. — 2020. — Т. 56, № 5. — С. 70–79. — Бібліогр.: 8 назв. — рос. 1019-5262 http://dspace.nbuv.gov.ua/handle/123456789/190454 519.8 ru Кибернетика и системный анализ Інститут кібернетики ім. В.М. Глушкова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Системний аналіз
Системний аналіз
spellingShingle Системний аналіз
Системний аналіз
Шарифов, Ф.А.
Гуляницкий, Л.Ф.
Разрезы в неориентированных графах. II
Кибернетика и системный анализ
description Предложены 2 алгоритма преобразования текущей базы полиматроида в новую для улучшения значения целевой функции. Установлена эквивалентность задачи максимального разреза на заданном графе и задачи нахождения минимального разреза, отделяющего источник и сток в сети, построенной относительно некоторой базы расширенного полиматроида. Сформулированы необходимые и достаточные условия оптимальности решения задачи максимального разреза на неориентированных графах в терминах теории потоков.
format Article
author Шарифов, Ф.А.
Гуляницкий, Л.Ф.
author_facet Шарифов, Ф.А.
Гуляницкий, Л.Ф.
author_sort Шарифов, Ф.А.
title Разрезы в неориентированных графах. II
title_short Разрезы в неориентированных графах. II
title_full Разрезы в неориентированных графах. II
title_fullStr Разрезы в неориентированных графах. II
title_full_unstemmed Разрезы в неориентированных графах. II
title_sort разрезы в неориентированных графах. ii
publisher Інститут кібернетики ім. В.М. Глушкова НАН України
publishDate 2020
topic_facet Системний аналіз
url http://dspace.nbuv.gov.ua/handle/123456789/190454
citation_txt Разрезы в неориентированных графах. II / Ф.А. Шарифов, Л.Ф. Гуляницкий // Кибернетика и системный анализ. — 2020. — Т. 56, № 5. — С. 70–79. — Бібліогр.: 8 назв. — рос.
series Кибернетика и системный анализ
work_keys_str_mv AT šarifovfa razrezyvneorientirovannyhgrafahii
AT gulânickijlf razrezyvneorientirovannyhgrafahii
first_indexed 2025-07-16T13:19:13Z
last_indexed 2025-07-16T13:19:13Z
_version_ 1837809746710626304