Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂
Radiothermoluminescence (RTL) of the ultra-high-molecular-weight polyethylene (UHMWPE) and nanocomposites obtained on its base via introduction of nanofiller α-SiO₂ (aerosil) to its volume is studied. Two relaxation processes (α- and β-relaxations) are observed in these composites, whose maximums of...
Gespeichert in:
Datum: | 2020 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/194411 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ / A.M. Maharramov, R.S. Ismayilova, M.M. Quliyev, R.L. Mamedova // Problems of atomic science and tecnology. — 2020. — № 4. — С. 31-34. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194411 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1944112023-11-24T13:31:39Z Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ Maharramov, A.M. Ismayilova, R.S. Quliyev, M.M. Mamedova, R.L. Physics of radiation damages and effects in solids Radiothermoluminescence (RTL) of the ultra-high-molecular-weight polyethylene (UHMWPE) and nanocomposites obtained on its base via introduction of nanofiller α-SiO₂ (aerosil) to its volume is studied. Two relaxation processes (α- and β-relaxations) are observed in these composites, whose maximums of thermoluminescence appear at temperatures 205 and 212 K, correspondingly. Features of the RTL spectra in dependence from the α-SiO₂ concentration at the absorbed radiation dose 1·10⁴ Gr are highlighted. Вивчено радіотермолюмінесценції (РТЛ) надвисокомолекулярного поліетилену (НВМПЕ) і нанокомпозитів, отриманих на його основі введенням в обсяг полімеру нанонаповнювача α-SiO₂ (аеросил). У цих композитах спостерігається два релаксаційних процеса (α-, β-релаксації) з максимумами термолюмінесценції при температурах 205 і 212 К відповідно. Виявлено особливості спектрів РТЛ у залежності від концентрації α-SiO₂ при поглиненій дозі опромінення в 1·10⁴ Гр. Изучены радиотермолюминесценции (РТЛ) сверхвысокомолекулярного полиэтилена (СВМПЭ) и нанокомпозиты, полученные на его основе введением в объем полимера нанонаполнителя α-SiO₂ (аэросил). В этих композитах наблюдаются два релаксационных процесса (α-, β-релаксации) с максимумами термолюминесценции при температурах 205 и 212 К соответственно. Выявлены особенности спектров РТЛ в зависимости от концентрации α-SiO₂ при поглощенной дозе облучения в 1·10⁴ Гр. 2020 Article Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ / A.M. Maharramov, R.S. Ismayilova, M.M. Quliyev, R.L. Mamedova // Problems of atomic science and tecnology. — 2020. — № 4. — С. 31-34. — Бібліогр.: 17 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/194411 541.64:535.77 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids |
spellingShingle |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids Maharramov, A.M. Ismayilova, R.S. Quliyev, M.M. Mamedova, R.L. Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ Вопросы атомной науки и техники |
description |
Radiothermoluminescence (RTL) of the ultra-high-molecular-weight polyethylene (UHMWPE) and nanocomposites obtained on its base via introduction of nanofiller α-SiO₂ (aerosil) to its volume is studied. Two relaxation processes (α- and β-relaxations) are observed in these composites, whose maximums of thermoluminescence appear at temperatures 205 and 212 K, correspondingly. Features of the RTL spectra in dependence from the α-SiO₂ concentration at the absorbed radiation dose 1·10⁴ Gr are highlighted. |
format |
Article |
author |
Maharramov, A.M. Ismayilova, R.S. Quliyev, M.M. Mamedova, R.L. |
author_facet |
Maharramov, A.M. Ismayilova, R.S. Quliyev, M.M. Mamedova, R.L. |
author_sort |
Maharramov, A.M. |
title |
Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ |
title_short |
Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ |
title_full |
Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ |
title_fullStr |
Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ |
title_full_unstemmed |
Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ |
title_sort |
radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-sio₂ |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Physics of radiation damages and effects in solids |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194411 |
citation_txt |
Radiothermoluminescence of the γ-irradiated compositions of the ultra-high-molecular-weight polyethylene with nano-α-SiO₂ / A.M. Maharramov, R.S. Ismayilova, M.M. Quliyev, R.L. Mamedova // Problems of atomic science and tecnology. — 2020. — № 4. — С. 31-34. — Бібліогр.: 17 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT maharramovam radiothermoluminescenceofthegirradiatedcompositionsoftheultrahighmolecularweightpolyethylenewithnanoasio2 AT ismayilovars radiothermoluminescenceofthegirradiatedcompositionsoftheultrahighmolecularweightpolyethylenewithnanoasio2 AT quliyevmm radiothermoluminescenceofthegirradiatedcompositionsoftheultrahighmolecularweightpolyethylenewithnanoasio2 AT mamedovarl radiothermoluminescenceofthegirradiatedcompositionsoftheultrahighmolecularweightpolyethylenewithnanoasio2 |
first_indexed |
2025-07-16T21:41:10Z |
last_indexed |
2025-07-16T21:41:10Z |
_version_ |
1837841326560772096 |
fulltext |
ISSN 1562-6016. PASТ. 2020. №4(128), p. 31-34.
UDC 541.64:535.77
RADIOTHERMOLUMINESCENCE OF THE -IRRADIATED
COMPOSITIONS OF THE ULTRA-HIGH-MOLECULAR-WEIGHT
POLYETHYLENE WITH NANO-α-SiO2
A.M. Maharramov
1
, R.S. Ismayilova
1
, M.M. Quliyev
1
, R.L. Mamedova
2
1
Institute of Radiation Problems, Azerbaijan National Academy of Sciences,
Baku, Azerbaijan;
2
Sumgayit State University, Sumgayit, Azerbaijan
E-mail: arifm50@yandex.ru,ismayilovarafiqa5@gmail.com
Radiothermoluminescence (RTL) of the ultra-high-molecular-weight polyethylene (UHMWPE) and
nanocomposites obtained on its base via introduction of nanofiller -SiO2 (aerosil) to its volume is studied. Two
relaxation processes ( - and -relaxations) are observed in these composites, whose maximums of
thermoluminescence appear at temperatures 205 and 212 K, correspondingly. Features of the RTL spectra in
dependence from the -SiO2 concentration at the absorbed radiation dose 1∙10
4
Gr are highlighted.
INTRODUCTION
At present, a lot of industry branches are interested
on the development and application of active polymer
composite materials with a complex of improved
properties that can change their parameters and
characteristics under the external conditions and
influences. Addition of the dispersed fillers to the bulk
polymer is one of the effective methods for obtaining of
such materials [1]. Thanks to modification by the nano-
dispersed additives of the initial polymers such as ultra-
high-molecular-weight polyethylene (UHMWPE) [2], it
is possible to manage the structure and properties of
materials over a wide range due to existence of the
nucleation and orientational effects, change of the
macromolecule conformation, their chemical bonding to
the surface of nanosized particles and “healing” of the
structure defects. Introduction of additives of highly-
dispersed nanosized inorganic particles such as aerosil,
talc, aluminum oxides is accompanied by an
improvement in the physico-mechanical properties of
the polymer [2–5]. Processing of the polymers with
various ionizing radiation sources is another approach
for their modification and creation of the materials with
improved properties based on them [6, 7]. At the same
time, problems related with the dispersion property of
the filler up to several nanomers are also important.
During introduction of the fillers into polymers, it is
necessary to overcome number of difficulties associated
with the surface activity of the filler. In addition,
influence of the fillers on electroactive and relaxation
processes in a wide temperature range up to is also
less studied process.
It is well known that thanks to processing of
composite materials by ionizing radiation new
possibilities appear in this direction [6–8]. On the other
hand, the stability of the electroactive properties of
polymer composites is determined both by relaxation
processes that occur during heating of the sample and
are associated with molecular mobility, as well as by
including the movement of individual large and small
kinetic units of polymers. In this regard, it is interesting
and important from both a theoretical and a practical
point of view to study the effect of polar organic and
inorganic additives on relaxation processes and the
electroactive properties of composites.
There are number of existing methods for study of
the structure-phase transitions in nanostructured
polymer composites. Radiothermoluminescence (RTL)
along with other methods being used successfully to
analyze the dynamic structure of polymer composites,
as well as to detect relaxation α, , , and etc.
processes, is one of such methods. It should be
especially noted that at present, the role of nanofillers in
stabilizing the structure and electret properties of
nanocomposites at based on crystallizingpolymers
when they are filled with fillers of dispersion up to
and below is also unsatisfactorily clear [6, 9, 10].
Main goal of current paper is to study the features of
stabilization of excess charges in composites based on
UHMWPE and the effect of - dioxide (up to
5 vol.%) on these properties by the RTL-method.
1. EXPERIMENT
Samples as films with thickness (18010) μm have
been obtained by method of the hot pressing (at
pressure during min and at temperature
) of the initially mixed powders of UHMWPE
and silicium dioxide filler ( - ). The size of the
powders of ( - ) filler is . This filler is
radiation resistant and is widely used in nuclear
technologies [11–14]. Samples for RTL analysis in the
form of disc with 8 mm diameter and 180 μm thickness
have been prepared from the films and after they were
placed at the bottom of a stainless cup and covered with
a stainless mesh to allow light output. Before
irradiation, the samples in the cups passed degassing in
a glass ampoule to a pressure of , the
ampoule was sealed and cooled to a temperature of
by immersion in a Dewar flask with liquid nitrogen.
Irradiation has been performed by the -radiation of
60
Со on the RXM--20M equipment at the liquid
nitrogen temperature. The dose rate was .
Absorbed dose was . RTL spectra have been
prepared by the use of the equipment TLG-69M. The
method is described in [15] at velocity in the
temperature range from 100 to 300 K. As usually, the
mailto:arifm50@yandex.ru,
mailto:arifm50@yandex.ru,
reproducibility of the positions of the RTL maxima was
2…3 degrees. Luminosity of the sample was registered
in the range 300…820 nm by the use of photomultiplier
FEU-51 and signal was recorded to the line of the
electronic line recorder TZ-4620. Sample temperature
was registered by the use of thermocouple type T
(copper-constantan).
2. RESULTS AND THEIR DISCUSSION
RTL spectra of the UHMWPE (curve 1) as well as
samples containing α-SiO2 nanodispersed filler of the
various volumes (curves 24) are presented at Fig. 1. It
can be observed that RTL lighting of the initial
UHMWPE in the 100…250 K temperature range has
two maximums at temperatures and as well
as one inflection around temperature 139 K. Low-
temperature maximum at the temp 116 K ( -relaxation)
and high-temperature maximum at the temperature
205 K ( -relaxation) appear due to the recombination of
trapped electrons by positive ions. Activation energy
of these relaxation processes is computed by employing
the method of the initial velocities. Thanks to the
temperature position and values of the activation energy
being equal correspondingly to and ,
these maximums belong to local relaxation of the
methylene groups in amorphous regions or end groups
with weak dependence from the features of the
supramolecular structure of the UHMWPE and motion
of the individual kinetic units on the surface of the
polymer crystals.
Fig. 1. RTL of UHMWPE
and it composites: 1 – UHMWPE; 2 – 1;
3 – 3; 4 – 5 vol.% α-SiO2
Position of the second RTL maximum (see Fig. 1,
curve 1) corresponds to glassing process ( -process) of
the UHMWPE and it is the reason of the segmented
mobility of -groups at amorphous phase (collective
relaxation at regions with disordered structure).
Moreover, modification of the UHMWPE by adding -
silicium dioxide filler leads to the following
change of RTL curves: content of UHMWPE consisting
up to 5 vol.% of filler in fact does not have any
influence to intensity of the luminosity at the low-
temperature region. Increase of filler in fact does not
change the position of the high-temperature peak, but,
for case 3 vol.%, the position of the maximum of the
high-temperature peak is observed at temperature
212 K, i.e. the maximum in this case shifts 8 °C
toworads high-temperature region. Observed inflection
after low-temperature maximum at clean UHMWPE
and UHMWPE +1 vol.% α-SiO2 disappears for
composites with nano- - concentration of 3 and
5 vol.% and doublet with currently unknown nature is
observed in these samples. For clarification of nature of
this doublet, it is necessary to perform complete model
experiments that is our future main goal.
The introduction of filler in polyolefins leads to a
conformational (physical) change in the molecular
structure of the polymers. In particular, macromolecules
in filled polyolefins can have a certain amount of over
potential bonds. The nature of the change in certain
properties in the composition depends mainly from the
proportion of the polymer located in the boundary
layers, on the degree of intermolecular interaction in
this system and the flexibility of the polymer chains.
Let’s consider possible reasons of the change in
RTL spectra of the composite UHMWPE + α-SiO2 in
dependence on the volume content of nanofiller.
Dependence of the -maximum of the intensity from
the content of the silicium dioxide filler in UHMWPE is
presented in Fig. 2. One observes that introduction of
silicium dioxide to UHMWPE up to 3 vol.% leads to
intensity of the -maximum, but amplitude of the
maximum in fact does not change for 5 vol.%
concentration of the - . Such a behaviour of the
( ) dependence is explained as follows: it is
known that light intensity is proportional to electron
recombination rate [16]:
,
where is rate of electrons causing light emission.
Values of activation energy corresponding to
maximum of the luminosity of the polymer and
composite are presented in Table. is computed by
both methods of the initial velocities [15] and partial
half-width of the peak [17] via the following formula:
( )
,
where coefficients ; ;
is a half-width of the luminosity peak in the region of
the increase of the intensity and is the temperature of
the luminosity maximum.
Fig. 2. Dependence of the intensity of the
high-temperature peak of RTL from
the volume content of the UHMWPE
It can be observed from the table that increase of the
filler leads to decrease of the activation energy
corresponding to relaxation process of UHMWPE.
Observed decrease of may be connected with the
increase of overvoltages at the amorphous regions of
UHMWPE. At low contents of the filler (1%), radiation
crosslinking (at dose ) causes a slow change in
activation energy , but fillers play the role of the
formation structure. volume content of nanofiller.
With increase of the volume content of the nano-
filler and as a consequence of UHMWPE polymer rate
located in border layers, molecular mobility of the
polymer chains and their kinetical units responsible for
the RTL formation will decrease. This causes a shift in
the low-temperature peak of the luminosity.
Shift of the glassing peaks towards high temperature
region at higher content of the filler is connected with
the increase of the number of the overvoltage chemical
bonds as well as with the strength of the processes of
the decrease of the segmental mobility of the
macromolecules around the solid surface of the
nanofiller.
CONCLUSION
1. It is obtained that changes of the molecular
structure of UHMWPE by introduction silicium dioxide
nanofiller and radiation modification exhibit themselves
in the changes of the RTL spectra.
2. It is shown that one can predict changes of the
segmental mobility by studying -relaxation
(205…212 K) of the nanocomposites.
The temperature range and value of the activation energy eV
of UHMWPE and composites on the base of UHMWPE
REFERENCES
1. A.P. Tyutnev, V.S. Saenko, E.D. Pozhidaev, and
N.S. Kostyukov. Dielectric Properties of Polymers in
Ionizing Radiation Fields. M.: “Nauka”, 2005, p. 188.
2. I.N. Andreev, E.V. Veselovskaya, E.I. Nalivaĭko,
A.D. Pechenkin, V.I. Bukhgalter, and A.V. Polyakov,
Superhigh-Molecular Poly(ethylene) with a High
Density. Leningrad: Khimiya, 1982, 80 p. (in Russian).
3. Yang Feng, Ou Tuchum, Yu Zhongrhen.
Polyamide silica nanocomposites prepared by in situ
polymerization // J. Appl. Polym. Sci. 1998, v. 69,
p. 355.
4. G.E. Selyuntin, V.A. Voroshilov, Yu.Yu. Ga-
vrilov, V.A. Poluboyarov, V.A. Zakharov, V.E. Nikitin,
D.V. Tsupinin // V Int. Conf. on Mechanochemistry and
mechanical Alloying. Novosibirsk, 2006, p. 266-267.
5. A.A. Okhlopkova, P.N. Petrova, O.V. Gogolev,
A.G. Parnikova. Nanomodified composites based on
PTFE and supermolecular PE // Promising Materials.
2012, N 6, p. 10-16.
6. А.М. Маgerramov, R.S. Ismayilova, М.М. Кu-
liev, А.А. Nabiev, E.G. Gadzhieva, J.I. Ismayilov,
R.S. Abdullayev, G.A. Akhundova. Electret properties
of γ-irradiated composites of ultrahigh molecular weight
polyethylene/α-SiO2 // Вопросы атомной науки и
техники. Серия «Физика радиационных
повреждений и радиационное материаловедение».
2018, №5(117), c. 50-54.
7. M.M. Kuliev, A.M. Maharramov, R.S. Isma-
yilova, A.A. Nabiev. Nanocomposite corona electrets
based on high density polyethylene and silicon dioxide
// Promising Materials. 2015, N 7, p. 17-22.
8. R.S. Ismayilova, A.M. Magerramov, M.M. Ku-
liev, G.A. Akhundova. Electrical Conductivity and
Dielectric Permittivity of -irradiated Nanocomposites
Based on Ultrahigh-Molecular-Weight Polyethylene
Filled with -SiO2 // Surf. Eng. Appl. Elect. 2018, v. 54,
N 1, p. 6-11.
9. Yu.A. Gorokhovatsky, L.B. Aniskina, V.V. Bur-
da, M.F. Galikhanov, I.Yu. Gorokhovatsky, B.A. Ta-
zenkov, O.V. Chistyakova. On the nature of the electret
state in composite low density films of polyethylene
with nano-dispersed SiO2 fillers // Proceedings of the
Russian Pedagogical University named after
A.I. Herzen: Scientific journal. 2009, N 95, p. 63-66.
10. A.M. Maharramov, R.S. Ismayilova,
M.A. Nuriyev, A.A. Nabiyev. Dielectric properties of
nanocomposites based on ultra-high molecular weight
polyethylene and a-SiO2 // Plasticheskie massy. 2019,
v. 1-2, p. 6-8 (in Russian).
11. A.M. Maharramov, M.K. Dashdamirov. On the
structural aspects of radiation modification of the
dielectric properties of polyolefins // High Energy
Chemistry. 2005, v. 39, N 3, p. 176-182.
12. V.A. Aulov, I.O. Kuchkina, S.V. Makarov,
A.A. Pantyukhin, A.N. Ozerin, N.F. Bakeev.
Radiothermoluminescence of ultrahigh-molecular-
weight polyethylene reactor powders // Polymer
Science. Ser. A. 2003, v. 45, issue 4, p. 352-358.
13. I.N. Meshkova, T.M. Ushakova, N.M. Gul-
tseva, V.G. Grinev, T.A. Ladygina, and L.A. No-
vokshonova. Modification of polyolefins as a modern
strategy to designing polyolefin materials with a new
complex of properties // Polymer Science. Ser. A. 2008,
v. 50, issue 11, p. 1161-1174.
14. V.A. Aulov, I.O. Kuchkina, S.V. Makarov,
A.A. Pantyukhin, A.N. Ozerin, N.F. Bakeev.
Radiothermoluminescence of ultrahigh-molecular-
weight polyethylene reactor powders // Polymer
Science. Ser. A. 2003, v. 45, issue 4, p. 352-358.
15. I.V. Kuleshov, V.G. Nikolsky. Radiothermo-
luminescence of polymers. M.: “Chemistry”, 1991,
p. 128.
UHMWPE
-SiO2
1% 3% 5%
max, К W, eV max, К W, eV max, К W, eV max, К W, eV
116
205
0.05
0.184
110
203
0.38
0.12
115
212
0.072
0.17
103
204
0.042
0.32
16. M.M. Kuliev, R.S. Ismayilova, M.N. Bay-
ramov // Electronic Processing of Materials. 2008, N 6,
p. 52-55.
17. A.M. Maharramov, M.A. Nuriev, F.I. Akh-
medov, I.M. Ismailov. Radiothermoluminescence of
-irradiated polypropylene compositions with dispersed
oxides // Electronic Processing of Materials. 2009, N 5,
p. 105-108.
Article received 10.06.2020
РАДИОТЕРМОЛЮМИНЕСЦЕНЦИЯ -ОБЛУЧЕННЫХ КОМПОЗИЦИЙ
СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА С НАНО-α-SiO2
А.М. Магеррамов, Р.С. Исмайилова, М.М. Кулиев, Р.Л. Мамедова
Изучены радиотермолюминесценции (РТЛ) сверхвысокомолекулярного полиэтилена (СВМПЭ) и
нанокомпозиты, полученные на его основе введением в объем полимера нанонаполнителя α-SiO2 (аэросил).
В этих композитах наблюдаются два релаксационных процесса (-, -релаксации) с максимумами
термолюминесценции при температурах 205 и 212 К соответственно. Выявлены особенности спектров РТЛ
в зависимости от концентрации α-SiO2 при поглощенной дозе облучения в 1 10
4
Гр.
РАДІОТЕРМОЛЮМІНЕСЦЕНЦІЯ -ОПРОМІНЕННИХ КОМПОЗИЦІЙ
НАДВИСОКОМОЛЕКУЛЯРНОГО ПОЛІЕТИЛЕНУ З НАНО-α-SiO2
А.М. Магеррамов, Р.С. Ісмайілова, М.М. Кулієв, Р.Л. Мамедова
Вивчено радіотермолюмінесценції (РТЛ) надвисокомолекулярного поліетилену (НВМПЕ) і
нанокомпозитів, отриманих на його основі введенням в обсяг полімеру нанонаповнювача α-SiO2 (аеросил).
У цих композитах спостерігається два релаксаційних процеса (-, -релаксації) з максимумами
термолюмінесценції при температурах 205 і 212 К відповідно. Виявлено особливості спектрів РТЛ у
залежності від концентрації α-SiO2 при поглиненій дозі опромінення в 1 10
4
Гр.
|