Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV

Four Nd-Fe-B magnets underwent irradiation under 23 MeV electron beam. Nd-Fe-B magnets were magnetized to the technical saturation in the magnetic field of 3.5 T before electron treatment. Two Nd-Fe-B samples (1 and 2) were exposed to the direct electron beam with the energy of 23 MeV. Sample 2 was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Bovda, V.A., Bovda, А.М., Guk, I.S., Dovbnya, A.N., Lyashchenko, V.N., Mytsykov, A.O., Onishchenko, L.V., Каndybei, S.S., Repikhov, О.А.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/194493
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV / V.A. Bovda, А.М. Bovda, I.S. Guk, A.N. Dovbnya, V.N. Lyashchenko, A.O. Mytsykov, L.V. Onishchenko, S.S. Каndybei, О.А. Repikhov // Problems of atomic science and tecnology. — 2020. — № 3. — С. 23-27. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-194493
record_format dspace
spelling irk-123456789-1944932023-11-26T20:52:33Z Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV Bovda, V.A. Bovda, А.М. Guk, I.S. Dovbnya, A.N. Lyashchenko, V.N. Mytsykov, A.O. Onishchenko, L.V. Каndybei, S.S. Repikhov, О.А. Theory and technology of particle acceleration Four Nd-Fe-B magnets underwent irradiation under 23 MeV electron beam. Nd-Fe-B magnets were magnetized to the technical saturation in the magnetic field of 3.5 T before electron treatment. Two Nd-Fe-B samples (1 and 2) were exposed to the direct electron beam with the energy of 23 MeV. Sample 2 was shielded by tungsten converter. The thickness of the tungsten converter was 4.72 mm. The absorbed dose for the samples was 16 GRad. Sample 3 was subjected to bremsstrahlung of electron irradiation with the energy of 23 MeV. Sample 4 was used as a reference sample for calibration and control measurements. While magnetic flux of sample under direct electron beam of 23 MeV was changed significantly, sample 2 showed the change of magnetic flux to a less degree. Magnetic performance of sample 3 corresponded closely to the initial state. Були проведені експериментальні дослідження поля чотирьох зразків магніту з Nd-Fe-B-сплаву, попередньо намагнічених в імпульсному магнітному полі 3,5 Тл. Зразки № 1 і 2 піддавалися прямій дії електронним пучком з енергією 23 МеВ. Перед зразком № 2 впритул містився конвертор з вольфраму товщиною 4,72 мм. Поглинена доза для зразків складала 16 Град. Зразок № 3 піддавався впливові гальмівного випромінювання електронним пучком з енергією 23 МеВ. Зразок № 4 не опромінювався і служив опорним еталоном для калібрування точності методу і контрольних вимірів. Спостерігається істотна зміна магнітного поля зразка № 1, що піддавався прямій дії електронним пучком з енергією 23 МеВ. У меншій мері ця зміна спостерігалася для зразка № 2. Поле навколо зразка № 3 практично не змінилося. Были проведены экспериментальные исследования поля четырёх образцов магнита из Nd-Fe-B-сплава, предварительно намагниченных в импульсном магнитном поле 3,5 Тл. Образцы № 1 и 2 подвергались прямому воздействию электронным пучком с энергией 23 МэВ. Перед образцом № 2 вплотную помещался конвертор из вольфрама толщиной 4,72 мм. Поглощённая доза для образцов составляла 16 Град. Образец № 3 подвергался воздействию тормозным излучением электронного пучка с энергией 23 МэВ. Образец № 4 не облучался и служил опорным эталоном для калибровки точности метода и контрольных измерений. Наблюдается существенное изменение магнитного поля образца № 1, подвергавшегося прямому воздействию электронным пучком с энергией 23 МэВ. В меньшей мере это изменение наблюдалось для образца № 2. Поле вокруг образца № 3 практически не изменилось. 2020 Article Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV / V.A. Bovda, А.М. Bovda, I.S. Guk, A.N. Dovbnya, V.N. Lyashchenko, A.O. Mytsykov, L.V. Onishchenko, S.S. Каndybei, О.А. Repikhov // Problems of atomic science and tecnology. — 2020. — № 3. — С. 23-27. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 29.30.Kv http://dspace.nbuv.gov.ua/handle/123456789/194493 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Theory and technology of particle acceleration
Theory and technology of particle acceleration
spellingShingle Theory and technology of particle acceleration
Theory and technology of particle acceleration
Bovda, V.A.
Bovda, А.М.
Guk, I.S.
Dovbnya, A.N.
Lyashchenko, V.N.
Mytsykov, A.O.
Onishchenko, L.V.
Каndybei, S.S.
Repikhov, О.А.
Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV
Вопросы атомной науки и техники
description Four Nd-Fe-B magnets underwent irradiation under 23 MeV electron beam. Nd-Fe-B magnets were magnetized to the technical saturation in the magnetic field of 3.5 T before electron treatment. Two Nd-Fe-B samples (1 and 2) were exposed to the direct electron beam with the energy of 23 MeV. Sample 2 was shielded by tungsten converter. The thickness of the tungsten converter was 4.72 mm. The absorbed dose for the samples was 16 GRad. Sample 3 was subjected to bremsstrahlung of electron irradiation with the energy of 23 MeV. Sample 4 was used as a reference sample for calibration and control measurements. While magnetic flux of sample under direct electron beam of 23 MeV was changed significantly, sample 2 showed the change of magnetic flux to a less degree. Magnetic performance of sample 3 corresponded closely to the initial state.
format Article
author Bovda, V.A.
Bovda, А.М.
Guk, I.S.
Dovbnya, A.N.
Lyashchenko, V.N.
Mytsykov, A.O.
Onishchenko, L.V.
Каndybei, S.S.
Repikhov, О.А.
author_facet Bovda, V.A.
Bovda, А.М.
Guk, I.S.
Dovbnya, A.N.
Lyashchenko, V.N.
Mytsykov, A.O.
Onishchenko, L.V.
Каndybei, S.S.
Repikhov, О.А.
author_sort Bovda, V.A.
title Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV
title_short Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV
title_full Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV
title_fullStr Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV
title_full_unstemmed Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV
title_sort nd-fe-b magnets under electron irradiation with the energy of 23 mev
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2020
topic_facet Theory and technology of particle acceleration
url http://dspace.nbuv.gov.ua/handle/123456789/194493
citation_txt Nd-Fe-B magnets under electron irradiation with the energy of 23 MeV / V.A. Bovda, А.М. Bovda, I.S. Guk, A.N. Dovbnya, V.N. Lyashchenko, A.O. Mytsykov, L.V. Onishchenko, S.S. Каndybei, О.А. Repikhov // Problems of atomic science and tecnology. — 2020. — № 3. — С. 23-27. — Бібліогр.: 12 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bovdava ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT bovdaam ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT gukis ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT dovbnyaan ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT lyashchenkovn ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT mytsykovao ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT onishchenkolv ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT kandybeiss ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
AT repikhovoa ndfebmagnetsunderelectronirradiationwiththeenergyof23mev
first_indexed 2025-07-16T21:49:03Z
last_indexed 2025-07-16T21:49:03Z
_version_ 1837841850503790592
fulltext ISSN 1562-6016. ВАНТ. 2020. №3(127) 23 Nd-Fe-B MAGNETS UNDER ELECTRON IRRADIATION WITH THE ENERGY OF 23 MeV V.A. Bovda, А.М. Bovda, I.S. Guk, A.N. Dovbnya, V.N. Lyashchenko, A.O. Mytsykov, L.V. Onishchenko, S.S. Каndybei, О.А. Repikhov National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: guk@kipt.kharkov.ua Four Nd-Fe-B magnets underwent irradiation under 23 MeV electron beam. Nd-Fe-B magnets were magnetized to the technical saturation in the magnetic field of 3.5 T before electron treatment. Two Nd-Fe-B samples (1 and 2) were exposed to the direct electron beam with the energy of 23 MeV. Sample 2 was shielded by tungsten converter. The thickness of the tungsten converter was 4.72 mm. The absorbed dose for the samples was 16 GRad. Sample 3 was subjected to bremsstrahlung of electron irradiation with the energy of 23 MeV. Sample 4 was used as a refer- ence sample for calibration and control measurements. While magnetic flux of sample under direct electron beam of 23 MeV was changed significantly, sample 2 showed the change of magnetic flux to a less degree. Magnetic per- formance of sample 3 corresponded closely to the initial state. PACS: 29.30.Kv INTRODUCTION High performance rare-earth permanent magnets have wide application in the various magnetic systems of electron accelerators. However, potential exposure of rare-earth permanent magnets to the radiation fields induces magnetic degradation and damage of magnetic materials [1]. It was shown that Sm-Co magnets are preferred choice in some high-temperature applications due to strong resistance to radiation-induced demagneti- zation effects [2]. Despite the good magnetic perform- ance of Sm-Co magnets under 23 MeV [4] in compari- son with Nd-Fe-B magnets following irradiating at a twice lower energy of 10 MeV [3, 5], the high radiation activity of the former greatly hampers their practical use in the actual compact electron accelerators [4]. High- temperature grades of Nd-Fe-B magnets are typically doped with Cobalt, which affects the radiation activity of magnetic samples also. Moreover, Nd-Fe-B magnets with identical stoichiometric compositions from differ- ent producers show various remanence loses [2]. The purpose of this paper is to study the demagneti- zation behaviour of Nd-Fe-B magnets protected by a barrier and exposed to an electron beam with the energy of 23 MeV. We investigate how Tungsten barrier can keep magnetic performance under irradiation. 1. EXPERIMENTAL DETAILS Four Nd-Fe-B magnets produced by PLP technology [6, 7] with dimensions of 304012 mm were used in the study. The density of the magnets was 7.35…7.4 g/cm3. All four magnets were covered with a thin coating of nickel to reduce oxidation of the magnetic material. The coercitivity, remanence and Curie temperature of these magnets are Br=1.2 T, Hcj=1190 kA/m, Tc=320C. Each magnet had a unique identification namely sample 1, 2, 3, and 4. Samples were magnetized at the field of 3.5 T to the technical saturation. The temperature of the samples during irradiation was kept constant at about T=40С by the cooling system. Irradiation of sample 1 and sample 2 was performed at the EPOS linear technological accelerator. The electron beam of 23 MeV is used for irradiating the magnets [8]. A vertically unfolded electron beam was brought out horizontally from the accelerator into the air through a titanium foil [9]. Then, the electron beam was scattered on the Al foil and reached the surface of the magnets at the distance of 1.35 m from the accelerator exit. The orientation of the magnets was chosen to provide elec- tron irradiation of 3040 mm plane (south pole). The deviation of electron flux within magnet’s surface was lower 10%. W-convertor with the thickness of 4.72 mm was in- stalled adjacent to sample 2 and exposed to the electron beam. Sample 3 was placed outside the electron beam at the distance of 300 mm from the irradiation area. Space of irradiation around magnetic samples, di- mensions 13056020 mm, was filled with the light- weighted material (density 3.5 g/cm3) yielding a 75% loss of electron energy. Hence, magnetic samples were exposed to the γ-ray Bremsstrahlung with an intensity of 50 times more than Bremsstrahlung produced by elec- trons emerging at the samples. Samples 1, 2 and 3 were irradiated within 192 hours. The absorbed dose generated by electrons was 16 GRad (the fluence for the absorbed dose 1.41017 cm-2). Sample 4 was not irradiated and used as a reference sample for calibration and control measurements. 2. RADIATION MEASUREMENTS After the irradiation, samples were held for 16 days to become safe for radioactivity measurements. CANBERRA GC1818 spectrometer equipped with a high-sensitivity germanium semiconducting detector was used to record the gamma-ray spectrum of the magnetic samples. The relative efficiency and 60Co line energy resolution of the detector are 18% and 1.8 keV accordingly. CANBERRADSA 1000 digital spectrum analyzer with in-built high voltage source was used as the acquisition and analysis system. The efficiency calibration of the spectrometer was carried out by standard etalons including 133Ba, 137Cs, 241Am, 22Na, 60Co, and 152Eu. Absolute efficiency curves were described by Campbell function [10]. Fig. 1 shows the example of the absolute efficiency versus energy obtained by the etalon source of 152Eu at the distance of 10 cm from the detector window. ISSN 1562-6016. ВАНТ. 2020. №3(127) 24 Fig. 1. The absolute efficiency versus energy (etalon source of 152Eu at the distance of 10 cm from detector window) Activity measurements were performed in the low- background conditions. The low-background conditions were achieved by passive cylindrical shield combining Pb layer (~10 cm), Cd layer (5 mm), and Cu layer (5 mm). Measured γ-spectrums were processed by Win- Spectrum [11]. Spectrums of samples 1, 2, and 3 after irradiation are shown in Figs. 2, 3, and 4 correspondingly. The exposi- tion of measurements was 10 min. Fig. 2. Induced gamma-activity spectrum of sample 1 (exposition – 10 min). Almost all unmarked peaks correspond to 147Nd isotope Fig. 3. Induced gamma-activity spectrum of sample 2 (exposition – 10 min). Almost all unmarked peaks correspond to 147Nd isotope Fig. 4. Induced gamma-activity spectrum of sample 3 (exposition – 10 min) It can be seen that γ-spectrums of sample 1 and 2 are very similar with a bit smaller activation of sample 2. The activation of sample 3 was considerably lower. It was characterized by the lines of the same isotopes as for samples 1 and 2. 3. MAGNETIC MEASUREMENTS AFTER IRRADIATION The normal component of magnetic field intensity for each of the four Nd-Fe-B magnets was measured with seven Hall probes supported on the non-magnetic bar [12]. The magnetic sample was moved across the bar. The distance between Hall probes was about 6 mm. The starting point of the sample positioned to the bar was fixed by the stopper system. The sample was moved parallel to the surface of the bar. The distance between sample and bar was 3.05 mm. The step be- tween points of measurements along the sample's sur- face was from 2 to 5 mm. The accuracy of the sample positioning was about 1 micron. The measurements of magnetic field intensity on the south pole was performed by 180-degree rotation of the sample along long axis after Hall probe scanning of north pole side. The relative error of the normal compo- nent of magnetic field intensity was about 0.01%. Integral of the normal component of magnetic field intensity by scanned area I=∫Bnormds was calculated to estimate the magnetic field of the samples in arbitrary units. Repetitive scans and calculated I – parameter for each magnetic sample showed little variation with the infinitesimal error of 0.5%. The area of interpolation was limited by the out-to- out distance of Hall probes liner and scanning points along the samples' surface accurately fixed by a coordi- nate system. The scanned data of magnetic field intensity for the south pole of sample 4 before irradiation is shown in Fig. 5. The interpolation of scanned sample 4 gives the dis- tribution of the magnetic field (Fig. 6). Integrals of normal component of magnetic field in- tensity by scanned area of un-irradiated samples north pole) revealed very similar values of I1 = 176.4; I2 = 177.9; I3 = 178.1, and I4 = 175.4. Additionally, the I ISSN 1562-6016. ВАНТ. 2020. №3(127) 25 parameters of south pole side are in very good agree- ment with north pole ones within the accuracy limits. Fig. 5. Scanned data of magnetic field intensity of sample 4 (south pole) Fig. 6. The distribution of magnetic field intensity sample 4 (South pole) The result obtained by integration and interpolation of sample 1 following irradiation of a direct electron beam of 23 MeV revealed dramatic flux loss. Magnetic field distribution of sample 1 after irradiation is pre- sented in Fig. 7. I parameter of sample 1 after irradiation dropped to I1 = 74.69. Similar behaviour was observed in sample 2 after ir- radiation (Fig. 8). I parameter of irradiated sample 2 decreased to I2 = 107.37. However, no significant change in magnetic flux was measured and calculated for sample 3 following irradiation (Fig. 9). The I pa- rameter of irradiated sample 3 estimated to be I3 = 176.56. Fig. 7. The distribution of magnetic field intensity sample 1 after irradiation Fig. 8. The distribution of magnetic field intensity sample 2 after irradiation Fig. 9. The distribution of magnetic field intensity sample 3 after irradiation Similar data for south pole surfaces were measured within accuracy limits for all samples after irradiation. 4. REPEATED MAGNETIC MEASUREMENTS AND REMAGNETIZATION Repeated magnetic measurements were performed in 3 years and 8 months after irradiation experiments. According to Figs. 10, 11, and 12, the results of re- peated magnetic scanning suggest that magnetic field distribution and I parameter correlate well with previous measurements. Fig. 10. The distribution of magnetic field intensity of the south pole surface of irradiated sample 1 (measurements in 3 year and 8 months) ISSN 1562-6016. ВАНТ. 2020. №3(127) 26 Fig. 11. The distribution of magnetic field intensity of the south pole surface of irradiated sample 2 (measurements in 3 year and 8 months) Fig. 12. The distribution of magnetic field intensity of the south pole surface of irradiated sample 3 (measurements in 3 year and 8 months) I parameter of south pole surface of irradiated sam- ples attributed to I1 = -68.5403; I2 = -95.876; I3 = -165.099 correspondingly. The results are shown in Figs. 10, 11, and 12 indi- cate a slight decrease of parameters in comparison with Figs. 7, 8, and 9 due to samples shift relatively to Hall probes positions. Then, samples 1, 2, and 3 were remagnetized to the technical saturation in the magnetic field of 3.5 T and same polarity as before irradiation experiments. As an example, the distribution of magnetic field intensity of sample 1 following irradiating by a 23 MeV electron beam and remagnetization is depicted in Fig. 13. Fig. 13. The distribution of magnetic field intensity of sample 1 following irradiating by a 23 MeV electron beam and remagnetization The same recovery of magnetic performance was observed for irradiated samples 2 and 3 after remag- netization. I parameters for irradiated and remagnet- ized samples (south pole) were about I1 = -167.364; I2 = -166.862; I3 = -167.278 correspondingly. Fig. 14 depicts an example of a Y-plane scan of irradiated sam- ple 2 after remagnetization. The measurement was per- formed by probe 4. Fig. 14. Y-plane scan of irradiated sample 2 after remagnetization It was also revealed that Y-plane scans of irradiated sample 1 and 3 after remagnetization had practically the same patterns as sample 2. SUMMARY The effects of irradiation with 23 MeV on magnetic field intensity and spatial distribution of Nd-Fe-B mag- nets were studied. It was revealed that the magnetic performance of magnets exposed to Bremsstrahlung produced by elec- tron beam did not undergo noticeable changes. Despite irradiating conditions as direct electron beam, bremsstrahlung and W-converted barrier, all Nd- Fe-B magnets showed full restoration of magnetic prop- erties after remagnetization. REFERENCES 1. N. Simos, et al. Demagnetization of Nd2Fe14B, Pr2Fe14B, and Sm2Co17 Permanent Magnets in Spal- lation Irradiation Fields // IEEE Transactions on Magnetics. 2018, v. 54, p. 1-10. 2. H. Luna, X. Maruyama, N. Colella, J. Hobbs, R. Hornady, B. Kulke, and J. Palomar. Bremsstrahlung Radiation Effects in Rare Earth Permanent Magnets // 10-th International FEL Con- ference, Jerusalem, Israel, Aug. 29 - Sept. 2, 1988, preprint UCRL-100167. 3. V.A. Bovda et al. Magnetic field losses in Nd-Fe-B magnets under 10 MeV electron irradiation // Prob- lems of Atomic Science and Technology. Series “Nu- clear Physics Investigations”. 2017, № 3, p. 90-94. 4. А.М. Bovda et al. Magnetic properties of Sm2Co17 magnets under 10 MeV electron beam // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2017, № 6, p. 162-166. 5. V.A. Bovda et al. Magnetic properties of Nd-Fe-B magnets under electron beam irradiation with the energy 23 MeV // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2018, № 3, p. 163-167. 6. Yasuhiro Une and Masato Sagawa. Enhancement of Coercivity of Nd-Fe-B Sintered Magnets by Grain Size Reduction // J. Japan Inst. Metals. 2012, v. 76, № 1, p. 12-16. 7. V.A. Bovda, A.M. Bovda, I.S. Guk, A.N. Dovbnya, S.G. Kononenko, V.N. Lyashchenko, A.O. Myt- sykov, L.V. Onischenko. Dipole magnet with a per- manent magnetic field for technological electron ac- ISSN 1562-6016. ВАНТ. 2020. №3(127) 27 celerator // Proceedings Rare-Earth and Future Permanent Magnets and their Applications. Darm- stadt, Germany, 28.8.-1.9.2016, p. 481-488. 8. M.I. Ayzatsky, V.N. Boriskin, A.M. Dovbnya, V.A. Kushnir, V.A. Popenko, V.A. Shendrik, Yu.D. Tur, A.I. Zykov. The NSC KIPT electron li- nacs - R&D // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2003, № 2, p. 19-25. 9. A. Dovbnya, I. Guk, S. Kononenko, G. Kovalev, A.Mytsykov. The second output beam channel at ac- celerator “EPOS” // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2014, № 3, p. 8-12. 10. L.A. McNelles, J.L. Campbell. Absolute efficiency calibration of coaxial Ge(Li) detectors for the energy range 160…1330 keV // Nuclear Instruments and Methods. 1973, v. 109, Issue 2, p. 241-251. 11. I.N. Vishnevsky, V.A. Zheltonozhsky, A.G. Zelinsky, et al. Atomic-nuclear effects in the process of inter- nal conversion of gamma-rays // Scientific Papers of the Institute for Nuclear Research. 1999, p. 60-64. 12. I.S. Guk, A.N. Dovbnya, S.G. Kononenko, V.N. Lyashchenko, A.Yu. Mytsykov, V.P. Romas’ko, A.S. Tarasenko, V.N. Shcherbinin. Dipole magnet of the energy filter for the accelerator “EPOS” // Prob- lems of Atomic Science and Technology. Series “Nu- clear Physics Investigations”. 2012, № 3, p. 67-69. Article received 29.01.2020 ИЗМЕНЕНИЕ МАГНИТНОГО ПОЛЯ ОБРАЗЦОВ Nd-Fe-B-МАГНИТОВ ПРИ ОБЛУЧЕНИИ ЭЛЕКТРОННЫМ ПУЧКОМ С ЭНЕРГИЕЙ 23 МэВ В.А. Бовда, А.М. Бовда, И.С. Гук, А.Н. Довбня, В.Н. Лященко, А.О. Мыцыков, Л.В. Онищенко, С.С. Кандыбей, О.А. Репихов Были проведены экспериментальные исследования поля четырёх образцов магнита из Nd-Fe-B-сплава, предварительно намагниченных в импульсном магнитном поле 3,5 Тл. Образцы № 1 и 2 подвергались пря- мому воздействию электронным пучком с энергией 23 МэВ. Перед образцом № 2 вплотную помещался кон- вертор из вольфрама толщиной 4,72 мм. Поглощённая доза для образцов составляла 16 Град. Образец № 3 подвергался воздействию тормозным излучением электронного пучка с энергией 23 МэВ. Образец № 4 не облучался и служил опорным эталоном для калибровки точности метода и контрольных измерений. Наблю- дается существенное изменение магнитного поля образца № 1, подвергавшегося прямому воздействию электронным пучком с энергией 23 МэВ. В меньшей мере это изменение наблюдалось для образца № 2. По- ле вокруг образца № 3 практически не изменилось. ЗМІНА МАГНІТНОГО ПОЛЯ ЗРАЗКІВ Nd-Fe-B-МАГНІТІВ ПРИ ОПРОМІНЕННІ ЕЛЕКТРОННИМ ПУЧКОМ З ЕНЕРГІЄЮ 23 МеВ В.О. Бовда, О.М. Бовда, І.С. Гук, А.М. Довбня, В.М. Лященко, А.О. Мициков, Л.В. Онищенко, С.С. Кандибей, О.О. Репіхов Були проведені експериментальні дослідження поля чотирьох зразків магніту з Nd-Fe-B-сплаву, попере- дньо намагнічених в імпульсному магнітному полі 3,5 Тл. Зразки № 1 і 2 піддавалися прямій дії електро- нним пучком з енергією 23 МеВ. Перед зразком № 2 впритул містився конвертор з вольфраму товщиною 4,72 мм. Поглинена доза для зразків складала 16 Град. Зразок № 3 піддавався впливові гальмівного випромі- нювання електронним пучком з енергією 23 МеВ. Зразок № 4 не опромінювався і служив опорним еталоном для калібрування точності методу і контрольних вимірів. Спостерігається істотна зміна магнітного поля зра- зка № 1, що піддавався прямій дії електронним пучком з енергією 23 МеВ. У меншій мері ця зміна спостері- галася для зразка № 2. Поле навколо зразка № 3 практично не змінилося.