Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS”
The main assignment of industrial plant with an accelerator “EPOS” providing the electron energy up to 30 MeV is radiation dyeing of gemstones. At treatment of them, the part of the electron energy is transformed into bremsstrahlung (X-) radiation. The energy characteristics of the electron beam wer...
Gespeichert in:
Datum: | 2020 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/194541 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” / V.L. Uvarov, A.A. Zakharchenko, L.V. Zarochintsev, A.Eh. Tenishev, D.V. Titov, V.Yu. Tytov // Problems of atomic science and tecnology. — 2020. — № 3. — С. 154-157. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194541 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1945412023-11-27T14:33:00Z Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” Uvarov, V.L. Zakharchenko, A.A. Zarochintsev, L.V. Tenishev, A.Eh. Titov, D.V. Tytov, V.Yu. Application of nuclear methods The main assignment of industrial plant with an accelerator “EPOS” providing the electron energy up to 30 MeV is radiation dyeing of gemstones. At treatment of them, the part of the electron energy is transformed into bremsstrahlung (X-) radiation. The energy characteristics of the electron beam were measured by a dosimetry wedge technique. On the basis of obtained results, the parameters of the mixed e,X-flux (the energy conversion coefficient and the factor of secondary radiation) along the path of radiation formation were alculated using a transport code GEANT4. The conditions for production of X-ray radiation in the state of electronic equilibrium have been determined. The spectrum of the X-ray photons as well as the dose rate and its distribution behind a target device for gemstone irradiation were calculated. A measured dose profile is satisfactory agreed with the data of the simulation. Implementation of a double-beam mode enables to conduct the extra radiation programs in the field of the bremsstrahlung radiation (modification of semiconductors and polymers, radiation tests, photonuclear activation of samples, etc.). Основним призначенням технологічної установки з прискорювачем «ЕПОС», що забезпечує енергію електронів пучка до 30 МеВ, є радіаційне фарбування ювелірних каменів. У процесі їх обробки частина енергії електронів трансформується в гальмівне випромінювання. За допомогою дозиметричного клину зміряні енергетичні характеристики пучка. На основі одержаних даних методом моделювання з використанням транспортного коду GEANT 4 розраховані параметри змішаного е,Х-випромінювання (енергетичний коефіцієнт конверсії і показник вторинного випромінювання) уздовж тракту його формування. Визначені умови отримання на виході тракту гальмівного випромінювання в стані електронної рівноваги. Розраховано спектр фотонів, а також потужність поглинутої дози гальмівного випромінювання та її розподіл. Результати вимірювання останнього задовільно узгоджуються з даними моделювання. Реалізація двопучкового режиму забезпечує можливість, разом з опромінюванням продукції електронами в основному радіаційному каналі, проводити також додаткові програми в полі гальмівного випромінювання (радіаційні випробування, фотоядерну активацію зразків, модифікацію напівпровідників і полімерів, тощо). Основным назначением технологической установки с ускорителем «ЭПОС», обеспечивающим энергию электронов пучка до 30 МэВ, является радиационное окрашивание ювелирных камней. В процессе их обработки часть энергии электронов трансформируется в тормозное излучение. С помощью дозиметрического клина измерены энергетические характеристики пучка. На основе полученных данных методом моделирования с использованием транспортного кода GEANT 4 рассчитаны параметры смешанного е,Х-излучения (энергетический коэффициент конверсии и фактор вторичного излучения) вдоль тракта его формирования. Определены условия получения тормозного излучения в состоянии электронного равновесия. Рассчитаны спектр фотонов, а также мощность поглощенной дозы тормозного излучения и ее распределение. Результаты измерения последнего удовлетворительно согласуются с данными моделирования. Реализация двухпучкового режима обеспечивает возможность, наряду с облучением продукции электронами в основном радиационном канале, проводить также дополнительные программы в поле тормозного излучения (радиационные испытания, фотоядерную активацию образцов, модификацию полупроводников и полимеров и т. д.). 2020 Article Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” / V.L. Uvarov, A.A. Zakharchenko, L.V. Zarochintsev, A.Eh. Tenishev, D.V. Titov, V.Yu. Tytov // Problems of atomic science and tecnology. — 2020. — № 3. — С. 154-157. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 87.56.bd; 41.50.+h; 81.40.Wx; 87.53Bn http://dspace.nbuv.gov.ua/handle/123456789/194541 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Application of nuclear methods Application of nuclear methods |
spellingShingle |
Application of nuclear methods Application of nuclear methods Uvarov, V.L. Zakharchenko, A.A. Zarochintsev, L.V. Tenishev, A.Eh. Titov, D.V. Tytov, V.Yu. Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” Вопросы атомной науки и техники |
description |
The main assignment of industrial plant with an accelerator “EPOS” providing the electron energy up to 30 MeV is radiation dyeing of gemstones. At treatment of them, the part of the electron energy is transformed into bremsstrahlung (X-) radiation. The energy characteristics of the electron beam were measured by a dosimetry wedge technique. On the basis of obtained results, the parameters of the mixed e,X-flux (the energy conversion coefficient and the factor of secondary radiation) along the path of radiation formation were alculated using a transport code GEANT4. The conditions for production of X-ray radiation in the state of electronic equilibrium have been determined. The spectrum of the X-ray photons as well as the dose rate and its distribution behind a target device for gemstone irradiation were calculated. A measured dose profile is satisfactory agreed with the data of the simulation. Implementation of a double-beam mode enables to conduct the extra radiation programs in the field of the bremsstrahlung radiation (modification of semiconductors and polymers, radiation tests, photonuclear activation of samples, etc.). |
format |
Article |
author |
Uvarov, V.L. Zakharchenko, A.A. Zarochintsev, L.V. Tenishev, A.Eh. Titov, D.V. Tytov, V.Yu. |
author_facet |
Uvarov, V.L. Zakharchenko, A.A. Zarochintsev, L.V. Tenishev, A.Eh. Titov, D.V. Tytov, V.Yu. |
author_sort |
Uvarov, V.L. |
title |
Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” |
title_short |
Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” |
title_full |
Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” |
title_fullStr |
Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” |
title_full_unstemmed |
Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” |
title_sort |
analysis of a double-beam e,x-mode at an idustrial accelerator “epos” |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Application of nuclear methods |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194541 |
citation_txt |
Analysis of a double-beam e,X-mode at an idustrial accelerator “EPOS” / V.L. Uvarov, A.A. Zakharchenko, L.V. Zarochintsev, A.Eh. Tenishev, D.V. Titov, V.Yu. Tytov // Problems of atomic science and tecnology. — 2020. — № 3. — С. 154-157. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT uvarovvl analysisofadoublebeamexmodeatanidustrialacceleratorepos AT zakharchenkoaa analysisofadoublebeamexmodeatanidustrialacceleratorepos AT zarochintsevlv analysisofadoublebeamexmodeatanidustrialacceleratorepos AT tenishevaeh analysisofadoublebeamexmodeatanidustrialacceleratorepos AT titovdv analysisofadoublebeamexmodeatanidustrialacceleratorepos AT tytovvyu analysisofadoublebeamexmodeatanidustrialacceleratorepos |
first_indexed |
2025-07-16T21:54:31Z |
last_indexed |
2025-07-16T21:54:31Z |
_version_ |
1837842167535501312 |
fulltext |
ISSN 1562-6016. ВАНТ. 2020. №3(127) 154
APPLICATION OF NUCLEAR METHODS
ANALYSIS OF A DOUBLE-BEAM e,X-MODE
AT AN IDUSTRIAL ACCELERATOR “EPOS”
V.L. Uvarov, A.A. Zakharchenko, L.V. Zarochintsev, A.Eh. Tenishev, D.V. Titov, V.Yu. Tytov
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: uvarov@kipt.kharkov.ua
The main assignment of industrial plant with an accelerator “EPOS” providing the electron energy up to 30 MeV
is radiation dyeing of gemstones. At treatment of them, the part of the electron energy is transformed into
bremsstrahlung (X-) radiation. The energy characteristics of the electron beam were measured by a dosimetry wedge
technique. On the basis of obtained results, the parameters of the mixed e,X-flux (the energy conversion coefficient
and the factor of secondary radiation) along the path of radiation formation were calculated using a transport code
GEANT4. The conditions for production of X-ray radiation in the state of electronic equilibrium have been deter-
mined. The spectrum of the X-ray photons as well as the dose rate and its distribution behind a target device for
gemstone irradiation were calculated. A measured dose profile is satisfactory agreed with the data of the simulation.
Implementation of a double-beam mode enables to conduct the extra radiation programs in the field of the
bremsstrahlung radiation (modification of semiconductors and polymers, radiation tests, photonuclear activation of
samples, etc.).
PACS: 87.56.bd; 41.50.+h; 81.40.Wx; 87.53Bn
INTRODUCTION
Industrial radiation plant with electron accelerator
provides possibility of environmentally friendly product
processing in wide span of absorbed dose. Depending
on characteristics of a product, irradiation is conducted
either directly by electrons or by bremsstrahlung (X-
ray) radiation. For generation of the latter, an intermedi-
ary target-converter manufactured from a high-Z mate-
rial (commonly tantalum) is applied. Only about 12% of
the beam power is transformed into X-radiation at an
electron energy of 7.5 MeV.
Considering the requirements imposed on the uni-
formity of the dose distribution, commonly only
30…40% of the beam power is utilized at industrial
treatment of a product with the electrons. The last part is
released as the heat in the elements of a plant, an also
converted into the bremsstrahlung photons at interaction
of accelerated electrons with a processed object and the
elements of the output devices of an accelerator. As the
treated products are manufactured predominantly from
organic materials having atomic number ~7 (polymers,
cellulose, etc.), the coefficient of energy conversion from
the accelerated electrons into X-rays is appeared by sev-
eral times less as compared with one for the tantalum at a
similar electron energy. In the traditional installations,
such radiation is regarded as the background and consid-
ered at the design of a radiation shield.
In the work [1], a method of computation of a path
for formation of mixed e,X-radiation in the exit devices
of an electron accelerator has been proposed. The tech-
nique makes possible to establish the conditions of pro-
duction of an extra-source of the X-ray radiation in the
state of electronic equilibrium and to rate its perform-
ances. The implementation of concept of a double-beam
e,X-source at a linac LU-10 of NSC KIPT with electron
energy in the spectrum maximum of 8…12 MeV, used
for sterilization, was described in the work [2]. In the
current work, the performances of the e,X-regime at a
linac “EPOS” of NSC KIPT with electron energy up to
30 MeV, intended mainly for dyeing of gemstones (pre-
dominantly the topazes), are reported.
1. ELECTRON BEAM PARAMETERS
1.1. The linac “EPOS” (Table 1) includes the two
accelerating sections and a beam scanner at its output.
Unlike the LU-10 mashine, it isn’t provided with a
magnet analyser of the beam energy spectrum. So the
study of energy characteristics of its beam was con-
ducted with the use of an aluminium dosimetry wedge
by 65 mm in thickness and meant for measurement of
electron energy up to 25 MeV [3]. Earlier a thin wedge
manufactured by a similar technology was applied for
measurement of LU-10 beam parameters [4].
Table 1
Performance of accelerator “EPOS”
Electron energy span, MeV 10…30
Electron energy (nominal), МеV 20
Beam pulse duration, µA 4
Repetition rate, Hz up to 300
Average beam current, mA up to 1
Beam scanning frequency, Hz 3
Beam sweep amplitude (at output win-
dow), cm ±5
1.2. Preliminary analysis of accuracy of the electron
energy measurement with the dosimetry wedge under
the “EPOS” conditions was performed by a computer
simulation technique using a GEANT4 package. In the
calculations, the beam spectrum was described in the
form that was obtained in the investigations conducted
earlier (Fig. 1). The wedge was positioned at a distance
of 134 cm from output window of the accelerator, corre-
sponding to the conditions of the following experiment.
As a result of the calculations, the absorbed dose
distributions along a dosimetry film set in the wedge
were obtained and the metrological parameters R50, Rp,
Rex. for determination of beam energy characteristics [3]
were computed (Fig. 2). Whence the most probable Ер
and average <Е> values of the beam electron energy
were calculated for different variants of the beam spec-
tra using the formulae given in [3].
ISSN 1562-6016. ВАНТ. 2020. №3(127) 155
0 2 18 20 22 24
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
N
i /
N
m
ax
Ee , MeV
EPOS electron beam spectrum
spectrum at wedge surface
Fig. 1. “EPOS” beam spectra at its output window
and at dosimetry wedge
0 1 2 3 4 5 6
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0
Rp
Rex
E = 15 MeV, mono
simulation
smoothing
tanget at the inflaction point
extrapolated X-ray background
D
/
D
m
ax
Wedge depth, cm
R50
Fig. 2. Example of R50, Rp, and Rex parameter determi-
nation for monochromatic beam with energy 15 MeV
The results obtained are listened in Table 2, where
Ее, is the most probable energy of the primary beam
electrons, <E>inp wedge is the average electron energy at a
front surface of the wedge determined by simulation,
symbol “mono” denotes a monochromatic beam. The
spectra with Ее=8.58; 9.90, and 10.88 MeV are related
to measurement of the LU-10 beam. The statistical un-
certainty of the simulation results did not exceed 0.4%.
Table 2
Average energy of beam electrons determined from
R50 parameter (thick wedge)
Ee, MeV <E>inp wedge R50, cm <E50>, MeV
ASTM51649
8.00 mono 7.65 1.22 7.87
9.00 mono 8.63 1.39 8.88
8.58 9.75 1.55 9.81
10.00 mono 9.61 1.56 9.89
9.90 11.09 1.78 11.19
10.88 11.86 1.92 12.01
15.00 mono 14.57 2.41 14.96
20.00 mono 19.54 3.24 19.96
23.00 EPOS 22.28 3.67 22.59
25.00 mono 24.51 4.03 24.87
The measurements conducted at the LU-10 machine
with the use of thin wedge have demonstrated good pre-
cision in determination of average electron energy at high
inaccuracy of measurement of its the most probable value
[4]. For comparison, the similar procedures were simulta-
neously performed using the thick wedge as well. The
both devices with the dosimetry film were disposed on
the adjacent transport containers of a LU-10 conveyor
and transferred through the irradiation zone. The results
of the measurements are presented in Table 3.
It is evident, that the difference between the average
values of the electron energy obtained by both wedges
is not more than 3%. It meets the accuracy of the given
measurement technique.
Table 3
Comparative results of measurement of LU-10 beam
energy characteristics with two wedges
Electron energy, MeV Measuring
device <E> Ep
Thin wedge 12.99 10.30
Thick wedge 12.71 10.81
2. PATH OF e,X-RADIATION FORMATION
The output devices of the linac “EPOS” determinative
composition of the e,X-radiation (Fig. 3) comprise a foil
of the exit window EW (titanium, 50 µm) followed by a
beam scatterer BS (the two 1mm thick aluminium foils
separated by a gap of 2 mm), positioned at a distance of
90 mm from EW, and also a target vessel TV manufac-
tured from alluminium and measuring 1008030 cm
(W×H×Th) for irradiation of topazes with the electrons
(e_Ob) located at a distance of 147 cm from BS. The
thickness of the TV front wall makes 1 mm, when the
rear of 5 mm. In simulations, the target e_Ob, disposed
inside the vessel, was presented as a 2.5 mm thick verti-
cal plate cooling with water. The mass fraction of the
topazes in the plate makes 0.92, when the water of 0.08.
A stopper (ES) of electrons passed the TV unit is lo-
cated at a distance of 53 cm from the latter. It comprises
a 1mm thick tantalum plate (390×110 mm) followed by
a set of 10 foils from duralumin D16 by 37 mm in total
thickness separated with the 2 mm gaps. A 10 mm thick
polystyrene plate playing the role of a target for X-
radiation (X_Ob) is positioned behind ES at a distance
of 20 cm. The two strips of the dosimetry film B3 (GEX
Corp., USA) by 40 cm in length were fixed crosswise at
the rear surface of the plate with centrum on the electron
beam axes.
EW BS TV
e-
O
b_
_
ES X-Ob
Fig. 3. Chart of “EPOS” output devices
3. RESULTS AND DISCUSSION
The conditions of formation of the e,X-radiation in
the “EPOS” output devices were preliminary studied by
a computer simulation technique (Fig. 4). On the draft,
the following signs are used: А – the beam scanner; В –
the electron beam scatterer (ES); С – the front wall of
ISSN 1562-6016. ВАНТ. 2020. №3(127) 156
the target vessel; D – the target irradiated with the elec-
trons (e,-Ob); Е – the rear wall of the target vessel; F –
the electron beam stopper (ES), G – the plate from poly-
styrene (X_Ob); the red lines denote the electron trajec-
tories; the yellow points show the places of the interac-
tion of electrons and gammas with a medium; the green
lines correspond to the trajectories of gammas.
Fig. 4. Draft of path of X-ray generation in exit devices of accelerator EPOS (modelling)
In simulations, a dosimetry film was not considered
as its small thickness does not allow to obtain a smooth
dose distribution for tolerable counting time. Instead of
it, the absorbed dose in the 1mm thick rear layer of
X_Ob was calculated. It was believed, that the results
obtained in such a way are close to the ones drown with
the film but at speeding up the computations.
Before modelling, the energy characteristics of the
electron beam corresponding to a topazes irradiation
mode were measured using the thick wedge positioned
in front of the target vessel. Thus it was established, that
the spectral energy maximum makes 25.0 MeV at an
average energy of 23.8 MeV.
The results of simulation of 3108 electron trajecto-
ries for such a beam at a sweep amplitude on the accel-
erator exit window of 4 cm are presented in Figs. 5-7.
0,53 0,64 2,11 2,3 2,41 2,94 3,2
0
1
3
4
30
35
40
45
ra
di
at
io
n
m
on
ito
rin
g
fil
m
Ta
c
on
ve
rte
r
ba
ck
w
al
l
e-
ob
je
ct
fro
nt
w
al
l
sc
at
te
r
Z-axis, m
energy of electrons
gamma conversion rate
secondary factor
lin
ac
fo
il
Fig. 5. Distribution of energy of e,X-radiation
(rel. units) along axis of exit devices of “EPOS” plant
-- 2 3 4 5 6 7 8 9 10 --
0
1
3
4
30
35
40
45
ra
di
at
io
n
m
on
ito
rin
g
fil
m
Ta
c
on
ve
rte
r
index
energy of electrons
gamma conversion rate
secondary factor
Fig. 6. Characteristics of radiation energy transfer
in stopper of electrons
The transformation of energy of the electron beam
into еру X-ray radiation in the elements of the accelera-
tor exit devices is shown in Figs. 5, 6. It is evident, that
the major part of the primary electron energy is ab-
sorbed in e_Ob.
The spectra of the bremsstrahlung radiation incident
on elements the accelerator exit devices are given in
Fig. 7. The results of simulation are normalized to the
number of the beam electrons.
0 1 2 3 4 5 6 7 8 9 10
10-5
10-4
10-3
in front of Ta
d16p2
d16p10
in front of D16p*
in front of X1
after e-object
511 keV
n i
/
N
e
be
am
Eg , MeV
in front of Ta
Fig. 7. Spectra of X-ray photons on elements
of secondary radiation path
-15 -10 -5 0 5 10 15
-20
-15
-10
-5
0
5
10
15
20
0,05
0,05
5,820
6,668
7,515
8,363
9,210
10,06
10,90
11,75
12,60
Dose, kGy
6 7 8 9 10 11 12 13 14
Y
-a
xi
s,
c
m
Dose, kGy
6
7
8
9
10
11
12
13
14
D
os
e,
k
G
y
X-axis, cm
Fig. 8. Distribution of absorbed dose on rear surface
of X_Ob plate
The dose calculation data were reduced to the actual
conditions of the experiment – an irradiation for 1h at a
mean beam current of 0.45 mA. The results of meas-
ISSN 1562-6016. ВАНТ. 2020. №3(127) 157
urement of dose distributions drown under those condi-
tions with the use of B3 film are given in Fig. 9.
-4 0 4 8 12 16 20 24 28 32 36 40 44
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
D
os
e,
k
G
y
.cm
AB - CD
а
-4 0 4 8 12 16 20 24 28 32 36 40 44
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
D
os
e,
k
G
y
.Cm
EF-GH
b
Fig. 9. Absorbed dose distribution on rear surface of PS
plate (experiment): a – vertically; b – horizontally
The scatter of calculated dose data (see Fig. 8) can be
explained by the limited counting time and so by the in-
sufficient statistical assurance of the simulation results. In
a case of measurement with the use of a dosimetry film
(see Fig. 9), the non-uniformity of the dose profile can be
connected with the granularity of the topaz distribution in
the target, and also with the features of reproduction of
the film optical density in an ORIGIN medium. Consider-
ing those remarks, the calculated maximum (12.2 kGy)
and minimum (8.2 kGy) of the dose distribution are in
satisfactory agreement with their experimental values
(16.6 and 6.8 kGy respectively).
As simulations showed, the maximum intensity of
X-rays is provided behind e_Ob (see Fig. 7). The rest
elements contribute only to the increase of index of the
secondary radiation and so to establishing its electronic
equilibrium.
CONCLUSIONS
In an industrial electron accelerator by proper trans-
formation of mixed e,X-radiation behind a processed
object, an extra-source of the X-ray radiation in state of
electronic equilibrium with photon energies up to the
beam electron energy Ее can be obtained. In the Ее. span
8…30 MeV, the conversion coefficient of energy of the
primary beam into the bremsstrahlung radiation is ap-
proximately proportional to Ее, when the dose rate ~ Ее
3.
An extra-source of the X-ray photons can be used
for carrying out of radiation tests, photonuclear activa-
tion of samples, modification of semiconductors and
polymers, etc.
REFERENCES
1. V.L. Uvarov, A.N. Dovbnya, N.A. Dovbnya, V.I. Ni-
kiforov. Electron Linac Based e,X-Facility // Proc.
of the EPAC 2006 Conf. 2006, p. 2257-2259.
2. V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov, et al.
Operation of an Industrial Electron Accelerator in a
Double-Beam e,X-Mode // Problems of Atomic Sci-
ence and Technology. Series “Nuclear Physics In-
vestigations”. 2019, № 6, p. 163-167.
3. R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyak-
hov, et al. Measurement of electron beam energy
characteristics at an industrial accelerator // Prob-
lems of Atomic Science and Technology. Series “Nu-
clear Physics Investigations”. 2017, № 6, p. 3-7.
4. ISO/ASTM 51649. Practice for dosimetry in an
electron beam facility for radiation processing at
energies between 300 keV and 25 MeV.
Article received 18.01.2020
ИССЛЕДОВАНИЕ ДВУХПУЧКОВОГО е,Х-РЕЖИМА НА ПРОМЫШЛЕННОМ УСКОРИТЕЛЕ “ЭПОС”
В.Л. Уваров, А.А. Захарченко, Л.В. Зарочинцев, А.Э. Тенишев, Д.В. Титов, В.Ю. Титов
Основным назначением технологической установки с ускорителем “ЭПОС”, обеспечивающим энергию электронов
пучка до 30 МэВ, является радиационное окрашивание ювелирных камней. В процессе их обработки часть энергии
электронов трансформируется в тормозное излучение. С помощью дозиметрического клина измерены энергетические
характеристики пучка. На основе полученных данных методом моделирования с использованием транспортного кода
GEANT 4 рассчитаны параметры смешанного е,Х-излучения (энергетический коэффициент конверсии и фактор вторич-
ного излучения) вдоль тракта его формирования. Определены условия получения тормозного излучения в состоянии
электронного равновесия. Рассчитаны спектр фотонов, а также мощность поглощенной дозы тормозного излучения и ее
распределение. Результаты измерения последнего удовлетворительно согласуются с данными моделирования. Реализа-
ция двухпучкового режима обеспечивает возможность, наряду с облучением продукции электронами в основном радиа-
ционном канале, проводить также дополнительные программы в поле тормозного излучения (радиационные испытания,
фотоядерную активацию образцов, модификацию полупроводников и полимеров и т. д.).
ДОСЛІДЖЕННЯ ДВОПУЧКОВОГО е,Х-РЕЖИМУ НА ПРОМИСЛОВОМУ ПРИСКОРЮВАЧІ “ЕПОС”
В.Л. Уваров, О.О. Захарченко, Л.В. Зарочинцев, А.Е. Тєнішев, Д.В. Тітов, В.Ю. Тітов
Основним призначенням технологічної установки з прискорювачем “ЕПОС”, що забезпечує енергію електронів пуч-
ка до 30 МеВ, є радіаційне фарбування ювелірних каменів. У процесі їх обробки частина енергії електронів трансформу-
ється в гальмівне випромінювання. За допомогою дозиметричного клину зміряні енергетичні характеристики пучка. На
основі одержаних даних методом моделювання з використанням транспортного коду GEANT 4 розраховані параметри
змішаного е,Х-випромінювання (енергетичний коефіцієнт конверсії і показник вторинного випромінювання) уздовж
тракту його формування. Визначені умови отримання на виході тракту гальмівного випромінювання в стані електронної
рівноваги. Розраховано спектр фотонів, а також потужність поглинутої дози гальмівного випромінювання та її розподіл.
Результати вимірювання останнього задовільно узгоджуються з даними моделювання. Реалізація двопучкового режиму
забезпечує можливість, разом з опромінюванням продукції електронами в основному радіаційному каналі, проводити
також додаткові програми в полі гальмівного випромінювання (радіаційні випробування, фотоядерну активацію зразків,
модифікацію напівпровідників і полімерів, тощо).
cm
cm
|