An estimate of ⁴⁷Sc photonuclear yield in a production target

⁴⁷Sc is considered as a promising beta-emitter for cancer immunotherapy. For its carrier-free production, the ⁴⁸Ti(γ,p) ⁴⁷ Sc reaction in the field of bremsstrahlung radiation of an electron accelerator can be used. On the basis of developed analytical model and a double-foil activation technique, t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Dikiy, N.P., Lyashko, Yu.V., Shevchenko, V.A., Tenishev, A.Eh., Uvarov, V.L., Zakharchenko, A.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/194547
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:An estimate of ⁴⁷Sc photonuclear yield in a production target / N.P. Dikiy, Yu.V. Lyashko, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 158-162. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-194547
record_format dspace
spelling irk-123456789-1945472023-11-27T15:40:49Z An estimate of ⁴⁷Sc photonuclear yield in a production target Dikiy, N.P. Lyashko, Yu.V. Shevchenko, V.A. Tenishev, A.Eh. Uvarov, V.L. Zakharchenko, A.A. Application of nuclear methods ⁴⁷Sc is considered as a promising beta-emitter for cancer immunotherapy. For its carrier-free production, the ⁴⁸Ti(γ,p) ⁴⁷ Sc reaction in the field of bremsstrahlung radiation of an electron accelerator can be used. On the basis of developed analytical model and a double-foil activation technique, the main characteristics of the photonuclear isotope production and optimal dimensions of a production target have been established. The measured photonuclear yield of ⁴⁷Sc and dominant scandium admixtures in thin foils of natural titanium in the electron energy range of 35 to 95 MeV enabled to specify the available data on the cross-section of the ⁴⁸Ti(γ,p)⁴⁷Sc reaction. Using those results, the gross and specific activity of ⁴⁷Sc in the cylindrical titanium targets of optimal size were calculated by a simulation technique. The comparison of capacity of the photonuclear method of the ⁴⁷Sc production with other techniques is carried out. ⁴⁷Sc вважається перспективним бета-емітером в імунотерапії раку. Для виробництва ізотопу без носія може бути використана реакція ⁴⁸Ti (γ,p)⁴⁷Sc у полі гальмівного випромінення прискорювача електронів. На основі розробленої аналітичної моделі і методу сумісної активації двох фольг встановлені основні характеристики фотоядерного виробництва ізотопів та оптимальні розміри технологічної мішені. Одержані експериментальні дані щодо виходу ⁴⁷Sc і основних домішкових ізотопів скандію в тонких фольгах з природного титану в діапазоні значень енергії електронів 35…95 МеВ дозволяють уточнити наявні дані щодо перетину реакції ⁴⁸Ti(γ,p)⁴⁷Sc. На основі цих результатів методом моделювання розраховані загальна і питома активність ⁴⁷Sc у циліндричних мішенях з титану оптимального розміру. Проведено порівняння продуктивності фотоядерної технології виробництва ⁴⁷Sc з іншими методами. ⁴⁷Sc считается перспективным бета-эмиттером в иммунотерапии рака. Для производства изотопа без носителя может быть использована реакция ⁴⁸ Ti (γ,p)⁴⁷ Sc в поле тормозного излучения ускорителя электронов. На основе разработанной аналитической модели и метода совместной активации двух фольг установлены основные характеристики фотоядерного производства изотопов и оптимальные размеры технологической мишени. Полученные экспериментальные данные по выходу ⁴⁷Sc и основных примесных изотопов скандия в тонких фольгах из природного титана в диапазоне значений энергии электронов 35…95 МэВ позволяют уточнить имеющиеся данные по сечению реакции ⁴⁸Ti(γ,p)⁴⁷Sc. На основе этих результатов методом моделирования рассчитаны общая и удельная активность ⁴⁷Sc в цилиндрических мишенях из титана оптимальных размеров. Проведено сравнение производительности фотоядерной технологии производства ⁴⁷Sc с другими методами. 2020 Article An estimate of ⁴⁷Sc photonuclear yield in a production target / N.P. Dikiy, Yu.V. Lyashko, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 158-162. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 07.05.Tr, 41.50.+h; 41.75.Fr; 78.70.En http://dspace.nbuv.gov.ua/handle/123456789/194547 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Application of nuclear methods
Application of nuclear methods
spellingShingle Application of nuclear methods
Application of nuclear methods
Dikiy, N.P.
Lyashko, Yu.V.
Shevchenko, V.A.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
An estimate of ⁴⁷Sc photonuclear yield in a production target
Вопросы атомной науки и техники
description ⁴⁷Sc is considered as a promising beta-emitter for cancer immunotherapy. For its carrier-free production, the ⁴⁸Ti(γ,p) ⁴⁷ Sc reaction in the field of bremsstrahlung radiation of an electron accelerator can be used. On the basis of developed analytical model and a double-foil activation technique, the main characteristics of the photonuclear isotope production and optimal dimensions of a production target have been established. The measured photonuclear yield of ⁴⁷Sc and dominant scandium admixtures in thin foils of natural titanium in the electron energy range of 35 to 95 MeV enabled to specify the available data on the cross-section of the ⁴⁸Ti(γ,p)⁴⁷Sc reaction. Using those results, the gross and specific activity of ⁴⁷Sc in the cylindrical titanium targets of optimal size were calculated by a simulation technique. The comparison of capacity of the photonuclear method of the ⁴⁷Sc production with other techniques is carried out.
format Article
author Dikiy, N.P.
Lyashko, Yu.V.
Shevchenko, V.A.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
author_facet Dikiy, N.P.
Lyashko, Yu.V.
Shevchenko, V.A.
Tenishev, A.Eh.
Uvarov, V.L.
Zakharchenko, A.A.
author_sort Dikiy, N.P.
title An estimate of ⁴⁷Sc photonuclear yield in a production target
title_short An estimate of ⁴⁷Sc photonuclear yield in a production target
title_full An estimate of ⁴⁷Sc photonuclear yield in a production target
title_fullStr An estimate of ⁴⁷Sc photonuclear yield in a production target
title_full_unstemmed An estimate of ⁴⁷Sc photonuclear yield in a production target
title_sort estimate of ⁴⁷sc photonuclear yield in a production target
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2020
topic_facet Application of nuclear methods
url http://dspace.nbuv.gov.ua/handle/123456789/194547
citation_txt An estimate of ⁴⁷Sc photonuclear yield in a production target / N.P. Dikiy, Yu.V. Lyashko, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 158-162. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT dikiynp anestimateof47scphotonuclearyieldinaproductiontarget
AT lyashkoyuv anestimateof47scphotonuclearyieldinaproductiontarget
AT shevchenkova anestimateof47scphotonuclearyieldinaproductiontarget
AT tenishevaeh anestimateof47scphotonuclearyieldinaproductiontarget
AT uvarovvl anestimateof47scphotonuclearyieldinaproductiontarget
AT zakharchenkoaa anestimateof47scphotonuclearyieldinaproductiontarget
AT dikiynp estimateof47scphotonuclearyieldinaproductiontarget
AT lyashkoyuv estimateof47scphotonuclearyieldinaproductiontarget
AT shevchenkova estimateof47scphotonuclearyieldinaproductiontarget
AT tenishevaeh estimateof47scphotonuclearyieldinaproductiontarget
AT uvarovvl estimateof47scphotonuclearyieldinaproductiontarget
AT zakharchenkoaa estimateof47scphotonuclearyieldinaproductiontarget
first_indexed 2025-07-16T21:54:57Z
last_indexed 2025-07-16T21:54:57Z
_version_ 1837842194994561024
fulltext ISSN 1562-6016. ВАНТ. 2020. №3(127) 158 AN ESTIMATE OF 47Sc PHOTONUCLEAR YIELD IN A PRODUCTION TARGET N.P. Dikiy, Yu.V. Lyashko, V.A. Shevchenko, A.Eh. Tenishev, V.L. Uvarov, A.A. Zakharchenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: uvarov@kipt.kharkov.ua 47Sc is considered as a promising beta-emitter for cancer immunotherapy. For its carrier-free production, the 48Ti(,p)47Sc reaction in the field of bremsstrahlung radiation of an electron accelerator can be used. On the basis of developed analytical model and a double-foil activation technique, the main characteristics of the photonuclear iso- tope production and optimal dimensions of a production target have been established. The measured photonuclear yield of 47Sc and dominant scandium admixtures in thin foils of natural titanium in the electron energy range of 35 to 95 MeV enabled to specify the available data on the cross-section of the48Ti(,p)47Sc reaction. Using those results, the gross and specific activity of 47Sc in the cylindrical titanium targets of optimal size were calculated by a simulation technique. The comparison of capacity of the photonuclear method of the 47Sc production with other techniques is carried out. PACS: 07.05.Tr, 41.50.+h; 41.75.Fr; 78.70.En INTRODUCTION 47Sc (T1/2=3.35 d; E=162 keV; E=159.4 keV) is believed as a promising beta-emitter for theragnostic 44Sc /47Sc pair (see e.g. [1]). The practical application of 47Sc is hampered by the absence of a high-capacity technology with tolerant content of admixtures. In a number of works, the possibility of that isotope carrier- free production in the field of the bremsstrahlung radia- tion of an electron accelerator via the 48Ti(,р)47Sc reac- tion with threshold Еth=11.4 MeV was studied [2 - 4]. Commonly, estimation of capacity of such a tech- nology is conducted on the ground of experimental data on the 47Sc yield in a target of small size (weight) nor- malized to the accelerator beam current [2]. Such an approach includes the considerable uncertainties con- nected with the accuracy of determination of target posi- tion in a nonuniform flux of X-rays. So in Fig. 1, the distribution of the 47Sc nuclei generated in a large cylin- drical target from titanium with the X-ray beam having end-point energy of 40 MeV, obtained by a simulation technique, is presented. It is seen, that the reaction products are essentially nonuniformly distributed over the target volume. It should be noted, that calculation of photonuclear yield by a Monte-Carlo method, even using a HS calcu- lation technique [5], is borne with the considerable ex- penditure of time in view of a comparatively small reac- tion cross-section. Moreover, such an approach requires experimental checking, as the information sources give sometimes different data on the reaction cross-section. So for the 48Ti(,p)47Sc reaction, the referenced maxi- mum of the cross-section makes about 30 [6], 13 [7], and 7 mb [8, 9], respectively. In [10] on the basis of a simplified analytical model for the description of photonuclear isotope generation in a thick target, the principal parameters of the process have been introduced. In this work, the experimental study of those characteristics for the 48Ti(,p)47Sc reac- tion is conducted and the most appropriate value of the reaction cross-section are specified. Using the data ob- tained, an optimal size of a production target and its activation regime are determined. So the capacity of the technology is calculated, and also the yield of the Sc by- products in a target from natural titanium is measured. -2,5 -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 2,5 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 Width, cm Fig. 1. Distribution of 47Sc nuclei in titanium target irradiated with bremsstrahlung radiation 1. METHODS AND MATERIALS 1.1. A MODEL As it is shown in [10], the volumetric distribution of specific activity produced via a photonuclear i-reaction, induced by a pencil electron beam with average current I and particle energy Е0 for the irradiation period t, is given by  0 0 2 0 2 2 0 1 exp( )( )( , , ) 2 ( , ) exp ( )( ) , 2 ( , ) ii i i tY E IA E r z e E z r E z a E z                          (1) 0 , 0( ) ( ) ( ) , th i E A i T i E NY E n E E dE A    (2) 0 ,0 0( , ) ( ) ,mE z z tg E      (3) where i is the decay constant, NA is the Avogadro number, A is the average atomic mass of the target material, T is its density, T is the relative content of the isotope-target nuclei, ( )E is the linear photon attenuation coefficient of photons with energy Е in the ISSN 1562-6016. ВАНТ. 2020. №3(127) 159 target material, (E0,z) – is the standard radial deviation of the photon flux density at a distance z from the con- verter (z=0 corresponds to its rear plain), ( )i E is the reaction cross-section, Eth,i is the threshold of the i- reaction, ( )n E is the spectral density of X-rays nor- malized to the one beam electron, and m is the most probable angle of X-ray exit from a converter. 1.2. A DOUBLE-FOIL ACTIVATION TECHNIQUE As it is evident from Eqs. (1) - (3), that the quantities iY (E0), , and m determine the total activity and its volumetric distribution in a target. iY (E0) denotes the yield of isotope-product in a thin wide target overlap- ping fully the photon flux and normal to its axis (a photonuclear converter – PNC), normalized to the one beam electron and to the unit of the mass thickness of PNC. So the Yi quantity is called as a coefficient of photonuclear conversion. The Y, , and m values can be readily measured us- ing a double-foil activation method [11]. It includes joint activation of two stacked foils – PNC and a small circular foil (S-target) by radius RS~(z), positioned normally and axially symmetrically to the radiation flux axis (Fig. 2). Linac LU-40m Converter (4x1mm,Ta) S-target Exit window Water in Water out Beam position monitor Water out Water in e- PNC X X Fig. 2. Schematic of double-foil activation device at exit of LU-40 electron Linac Electron beam of a LU-40 accelerator was ejected through an output window cooled with water [12]. On- line monitoring of the beam axis position was conducted using a beam position monitor. Via an input window (stainless steel 0.3 mm thick), the beam was injected into a target device comprises a bremsstrahlung con- verter (four tantalum plates each of thickness 1 mm cooled with water) followed by a pair of foils from natu- ral titanium each of 50 µm in thickness, located axially symmetrically to the beam axis. The first foil (PNC) is by 25 mm in diameter when the second by 6 mm. Every pair of foils was activated at a specified electron energy Е0 in the range of 35…95 MeV with mean beam current of 4 µA for 30 min. After cooling, the induced -spectra of foils was measured using a Ge-detector. The ex- panded uncertainty of the activity measurement did not exceed 10%. 1.3. SIMULATION For optimization of the target irradiation regime and analysis of the experimental results on the yield of 47Sc and by-products, the calculations were performed with the use of a transport code GEANT4 and various data on the cross-section of the photonuclear reactions on the Ti isotopes. In Fig. 3, the dependence of yield of the above- threshold photons for the 48Ti(,р)47Sc reaction on the thickness of a Ta-converter and the electron energy, is presented. It is evident, that in the Е0 span of 30 to 100 MeV the converter thickness of 4 mm is close to optimal. 1 2 3 4 5 6 7 0,2 0,4 0,6 0,8 1,0 1,2 N E  >1 1. 63 M eV / N e b ea m , q ua nt um pe re le ct ro n dc, mm , 30 MeV , 40 MeV , 50 MeV , 60 MeV , 70 MeV , 100 MeV Fig. 3. Normalized yield of gammas with energy higher 11.4 MeV vs the converter thickness and electron energy (solid curves correspond to a solid converter when the separate points at dC =4 mm correspond to its actual configuration) The data on distribution of the photon flux density at the converter exit obtained by modelling are given in Fig. 4. It is obvious, that radial flux distribution is per- fectly fitted with Gaussian. -2,0 -1,5 -1,0 -0,5 0,0 0,5 1,0 1,5 2,0 0,0 0,1 0,2 0,3 0,4 Ebeam = 40 MeV; output gammas, E > 11.4 MeV simulation Gauss fit ou tp ut flu x, 1 /c m 2 /e X-axis,cm Model GaussAmp Equation y=y0+A*exp(-0.5*((x-xc)/w)^2) Plot eFlux,percm2_per_event y0 0,00319 ± 7,92146E-4 xc -7,23367E-4 ± 0,0021 w 0,37049 ± 0,00238 A 0,37196 ± 0,00191 Reduced Chi-Sqr 1,46204E-5 R-Square (COD) 0,9991 Adj. R-Square 0,99903 a 0 10 20 30 40 50 60 70 80 90 0,00 0,01 0,02 0,03 0,04 N i/  N i  , degree Ebeam = 40 MeV, gammas, E  > 11.4 MeV max  7 m b Fig. 4. Radial (a) and angular (b) distribution of the above-threshold X-rays 2. RESULTS AND DISCUSSION 2.1. In Fig. 5, the results are presented on the de- pendence of activity of the 47Sc and 46Sc isotopes in PNC from natural titanium on electron energy Е0, ob- ISSN 1562-6016. ВАНТ. 2020. №3(127) 160 tained experimentally and by simulation with the use of cross-section data given in [6] and [7]. The calculations with the [8] and [9] databases were not performed as they provide obviously underestimated results. 35 40 45 50 55 60 65 70 75 80 85 90 95 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 (Ti-48+Ti-49)->Sc-47 experiment distance = 11 cm talys sherwood A PN C , k B q/ ( A h ) E0, MeV a 35 40 45 50 55 60 65 70 75 80 85 90 95 0,0 0,1 0,2 0,3 0,4 0,5 0,6 (Ti-47+Ti-48)->Sc-46 experiment distance = 11 cm talys A PN C, kB q/ ( A h ) E0 , MeV b Fig. 5. Dependence of 47Sc (a) and 46Sc (b) activity in PNC on electron energy The data on the 47Sc yield in the both foils of the stack-targets are listed in Table 1 The results of simula- tion were obtained using the cross-section data of the TALYS package for the reactions 48Ti(,p)47Sc + 49Ti(,np)47Sc. The calculations showed, that the contri- bution of second reaction in the span E0=35…95 MeV does not exceed 2.3%. It is seen that at the lower border of the E0 span, the calculated and experimental data are satisfactory agreed within uncertainty of measurement. At the same time with the rise of E0, a steady trend is observed of overestimation of experimental results as compared with ones using the TALYS database The results on the specific activity of the small S-target ob- tained experimentally ( exp SA ) and by simulation tech- nique ( calc SA ) are given in Table 1 also, as well as the estimates of maximum of the 47Sc specific activity maxA , located in the front surface of the target on the axis of the radiation flux. The data was obtained with the use of Eq. (1) and experimental values of exp iY and . 2.2. As it follows from Eq. 1, the rate of the isotope photonuclear generation at periphery of a cylindrical target falls sharply as its diameter becomes higher than FWHM of distribution of flux density of the above- threshold photons (FWHM=2.354 δ), and the height of the target (H) exceeds the free range of the photons 1( )iE  , where Ei is the value of the photon energy cor- responding the maximum of the reaction cross-section max i . The free range of the photons with energy Еi=20 MeV in titanium makes 7.8 cm. So with due re- gard to the values of δ  listed in Table 1, a production target from titanium by FWHM in diameter and up to 2 FWHM high can be considered as close to optimal. The TALYS database was used in simulations as it pro- vides a lower limit of the estimate of capacity of the photonuclear technology for the 47Sc production (Fig. 6). 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 G ro ss a ct iv ity , M Bq /( A h ) H, mm 30 MeV 35 MeV 41 MeV 45 MeV 60 MeV 70 MeV 80 MeV 95 MeV a 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 Sp ec ifi c ac tiv ity , M B q/ ( A h g) H, mm 30 MeV 35 MeV 41 MeV 45 MeV 60 MeV 70 MeV 80 MeV 95 MeV b Fig. 6. Dependence of gross (a) and specific (b) activity of target from natural titanium on electron energy and target height The measured yield of the scandium isotopes at acti- vation of targets from natural titanium is presented in Fig. 7. It is evident, that the relative activity of 48Sc (T1/2=44 h) at EOB is ~10% of the 47Sc activity and can be decreased by cooling of a target. The relative yield of 46Sc (T1/2=84 d) makes ~1%. 30 40 50 60 70 80 90 100 E0, MeV 5 2 3 5 2 3 5 2 3 5 2 3 0.1 1.0 10.0 100.0 A PN C , k Bq / A h Sc Sc Sc 47 48 46 x  Fig. 7. Photonuclear yield of Sc isotopes in natural Ti ISSN 1562-6016. ВАНТ. 2020. №3(127) 161 Table 1 Characteristics of 47Sc photonuclear generation in thin targets from natural titanium E0, MeV δ, mm (exp) exp 510 ,iY  cm2/g 510 ,calc iY  cm2/g exp ,SA  MBq/(gAh) , calc SA  MBq/(gAh) max , calc A  MBq/(gAh) 35 6.4 0.99 0.89 0.20 0.19 0.21 40 4.3 1.51 1.47 0.62 0.54 0.71 45 4.4 1.92 1.68 0.76 0.59 0.98 48 4 2.15 1.87 1.03 0.73 1.16 60 3.5 2.80 2.41 1.63 1.22 1.96 70 3.1 3.18 2.73 2.31 1.72 2.84 80 3.3 3.56 2.99 2.81 1.96 3.63 95 2.2 4.14 3.29 5.51 2.63 7.31 The spectra of the Ti foils activated at various elec- tron energies are presented in Fig. 8. 400 800 1200 1600 2000 energy (kev) 1 10 100 1000 10000 100000 co un ts ju vl Sc48Sc46Sc46 Sc48Sc48Sc47 511 40K a 400 800 1200 1600 2000 energy (kev) 1 10 100 1000 10000 100000 co un ts ju vl Sc48Sc46Sc46 Sc48Sc48Sc47 511 44mSc 43K 44Sc 40K b Fig. 8. Spectra of Ti foils: E0= 35 MeV (a), E0= 80 MeV (b) CONCLUSIONS The obtained experimental results on the yield of 47Sc via the 48Ti(,p)47Sc reaction show that the most applicable data on the maximum of the reaction cross- section (~13 mb) provides the TALYS database with possible underestimation of about 10 to 15%. In the electron energy (Е0) span of 35 to 95 MeV, the gross activity of 47Sc rises approximately propor- tional to Е0, when the specific activity ~E0 3. The relative yield of the main Sc by-products in natural titanium at EOB makes ~10% (48Sc) and ~1% (46Sc) to the activity of 47Sc and can be decreased considerably by usage of a target enriched in 48Тi. At activation of such a target by 11 mm in diameter and 22 mm in height (the weight is 7 g) with an electron beam having routine parameters (40 MeV; 0.3 mA), one can provide the 47Sc capacity of up to 1 GBq/h at a low content of by-products. Applica- tion of a more powerful machine [13] enables to in- crease the capacity of the technology by up to an order of values. The 47Sc specific activity, obtained with due regard to the profile of the X-ray flux, appears much higher (up to by order of values) than the estimates re- sulting from activation of the small experimental targets [2]. At the same time, the experimentally determined yield of the scandium by-products in natural titanium turned out lower by orders of values than that obtained elsewhere by simulation [4]. The comparative characteristics of various methods of the 47Sc production are listed in Table 2. Table 2 Comparative characteristics of 47Sc production methods Reaction Beam characteristics Target characteristics Sc-47 yield, GBq/day By- products Rel. yield, % Ref. 47Ti(n,p)47Sc En>1 MeV Фn=5.81014, ncm-2s-1 47TiO2; 10 g 1103 46Sc 48Sc 3.810-3 6.210-2 [14] 47Ti(n,p)47Sc En>1 MeV Фn=11013, ncm-2s-1 47Ti; 10 g up to 10 46Sc 510-2 [1] 46Ca(n,)47Ca47Sc En=0.025 eV Фn=11013, ncm-2s-1 46Ca; 10 g up to 1102 46Sc <510-3 [1] 48Ti(p,2p)47Sc Ep=35 MeV Ip=50 A natTi; 17.4 mm 2.5 44mSc 46Sc 48Sc 90 5 4 [14] 48Ca(p,2n)47Sc Ep=24…17 MeV Ip=1 A natCaCO3; 0.35, gcm-2 3.510-3 46Sc 48Sc 0.2 14.7 [15] 48Ti(,p)47Sc Ee=40 MeV Ie=300 A natTi; 7 g 18 46Sc 48Sc 0.87 9.2 - energy (keV) energy (keV) ISSN 1562-6016. ВАНТ. 2020. №3(127) 162 REFERENCES 1. K.A. Domnanich et al. 47Sc as useful β–-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes // EJNMMI Radio- pharmacy and Chemistry. 2017, 2:5 DOI 10.1186/s41181-017-0024-x 2. M. Yagi, K. Kondo. Preparation of carrier-free 47Sc by the 48Ti(γ,p) reaction // Appl. Radiat. Isot. 1977, v. 28, p. 463-468. 3. V.I. Nikiforov, V.L. Uvarov. A method for estima- tion of isotope yield in a thick target under photonu- clear production // NIM B 269. 2011, p. 3149-3152. 4. M. Mamtimin, F. Harmon, V.N. Starovoitova. Sc-47 production from titanium targets using electron li- nacs // Appl. Radiat. Isot. 2015, v. 102, p. 1-4. 5. V.I. Nikiforov, V.L. Uvarov. Development of the technique embedded into a Monte Carlo transport system for calculation of photonuclear isotope yield // Nukleonika. 2012, v. 57(1), p. 75-80 (in Russian). 6. T.R. Sherwood, W.E. Turchinetz. Some photodisin- tegration reactions in the titanium isotopes // Nu- clear Physics. 1962, v. 29, p. 292-295. 7. The TALYS Code System, ftp://ftp.nrg.eu/pub/www/ talys/talys.tar. 8. Handbook on photonuclear data for applications. Cross-sections and spectra // IAEA-TECDOC-1178. IAEA. 2000, p. 135. 9. The Database ENDF/B-VII Photonuclear. http://t2.lanl.gov/nis/data/endf/endfvii-g.html. 10. V.L. Uvarov. On critical parameters of photonuclear isotope production // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2019, № 6, p. 153. 11. V.I. Nikiforov, V.L. Uvarov. Estimation of the Photonuclear Yield of Isotopes in Production Tar- gets // Radiochemistry. 2010, v. 52, № 3, p. 315-321. 12. M.I. Aizatskyi, V.I. Beloglasov, V.N. Boriskin, et al. State and Prospects of the Linac of Nuclear-Physics Complex with Energy of Electrons up to 100 MeV // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2014, № 3, p. 60- 63. 13. https://indico.cern.ch/event/699219/contributions/29 29577/attachments/1655382/2649737/IBA_Presenta tion_Aries_Annual_Meeting.pdf. 14. L.F. Mausner, K.L. Kolsky, K.I. Joshi, S.C. Srivastava. Radionuclide Development at BNL for Nuclear Medicine Therapy // Appl. Radiat. Isot. 1998, v. 49, p. 285-294. 15. R. Misiak, R. Walczak, B. Was, M. Bartyzel, J.W. Mietelski, A. Bilewicz. 47Sc production devel- opment by cyclotron irradiation of 48Ca // J. Radio- anal Nucl Chem. 2017, v. 313, p. 429-434. Article received 18.01.2020 ОЦЕНКА ФОТОЯДЕРНОГО ВЫХОДА 47Sc В ТЕХНОЛОГИЧЕСКОЙ МИШЕНИ Н.П. Дикий, Ю.В. Ляшко, В.А. Шевченко, А.Э. Тенишев, В.Л. Уваров, А.А. Захарченко 47Sc считается перспективным бета-эмиттером в иммунотерапии рака. Для производства изотопа без но- сителя может быть использована реакция 48Ti(,p)47Sc в поле тормозного излучения ускорителя электронов. На основе разработанной аналитической модели и метода совместной активации двух фольг установлены основные характеристики фотоядерного производства изотопов и оптимальные размеры технологической мишени. Полученные экспериментальные данные по выходу 47Sc и основных примесных изотопов скандия в тонких фольгах из природного титана в диапазоне значений энергии электронов 35…95 МэВ позволяют уточнить имеющиеся данные по сечению реакции 48Ti(,p)47Sc. На основе этих результатов методом моде- лирования рассчитаны общая и удельная активность 47Sc в цилиндрических мишенях из титана оптималь- ных размеров. Проведено сравнение производительности фотоядерной технологии производства 47Sc с дру- гими методами. ОЦІНКА ФОТОЯДЕРНОГО ВИХОДУ 47Sc У ТЕХНОЛОГІЧНІЙ МІШЕНІ М.П. Дикий, Ю.В. Ляшко, В.А. Шевченко, А.Е. Тєнішев, В.Л. Уваров, О.О. Захарченко 47Sc вважається перспективним бета-емітером в імунотерапії раку. Для виробництва ізотопу без носія може бути використана реакція 48Ti(,p)47Sc у полі гальмівного випромінення прискорювача електронів. На основі розробленої аналітичної моделі і методу сумісної активації двох фольг встановлені основні характе- ристики фотоядерного виробництва ізотопів та оптимальні розміри технологічної мішені. Одержані експе- риментальні дані щодо виходу 47Sc і основних домішкових ізотопів скандію в тонких фольгах з природного титану в діапазоні значень енергії електронів 35…95 МеВ дозволяють уточнити наявні дані щодо перетину реакції 48Ti(,p)47Sc. На основі цих результатів методом моделювання розраховані загальна і питома актив- ність 47Sc у циліндричних мішенях з титану оптимального розміру. Проведено порівняння продуктивності фотоядерної технології виробництва 47Sc з іншими методами.