Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10

Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accelerators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge induced by irradiation in a wide-aperture stack-monitor, positioned behind a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2020
Hauptverfasser: Pomatsalyuk, R.I., Tytov, V.Yu., Titov, D.V., Uvarov, V.L., Shevchenko, V.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/194552
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 / R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 131-135. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-194552
record_format dspace
spelling irk-123456789-1945522023-11-27T15:46:30Z Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 Pomatsalyuk, R.I. Tytov, V.Yu. Titov, D.V. Uvarov, V.L. Shevchenko, V.A. Experimental methods and processing of data Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accelerators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge induced by irradiation in a wide-aperture stack-monitor, positioned behind an irradiated object, has been developed. A brief review of a control system for monitoring of the processing parameters created with the use of the EPICS package as well as the data of its operating experience at an LU-10 Linac of NSC KIPT are presented in the article. The procedure and results of calibration of the measuring channels within the electron energy range 8…10 MeV are described. Енергія частинок пучка і поглинута доза є критичними параметрами при обробці продукції на промислових прискорювачах електронів. Для on-line моніторингу цих параметрів розроблено метод, що є оснований на вимірюванні розподілу наведеного опромінюванням заряду у широкоапертурному стек-моніторі, який розміщено за оброблюваним об’єктом. Надано стислий огляд системи моніторингу та контролю параметрів обробки, що створена з використанням пакету EPICS, а також дані щодо досвіду її експлуатації на прискорювачі ЛУ-10 ННЦ ХФТІ. Описані процедура та результати калібрування вимірювальних каналів у діапазоні значень енергії електронів 8…10 МеВ. Энергия частиц пучка и поглощенная доза являются критическими параметрами при обработке продукции на промышленных ускорителях электронов. Для on-line мониторинга этих параметров разработан метод, основанный на измерении распределения наведенного облучением заряда в широкоапертурном стекмониторе, который находится за обрабатываемым объектом. Представлены краткий обзор системы мониторинга и контроля параметров обработки, созданной с использованием пакета EPICS, а также данные об опыте ее эксплуатации на ускорителе ЛУ-10 ННЦ ХФТИ. Описаны процедура и результаты калибровки измерительных каналов в диапазоне значений энергии электронов 8…10 МэВ. 2020 Article Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 / R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 131-135. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 07.05Tp; 29.27.-a; 47.53.Bn, 81.40.Wx http://dspace.nbuv.gov.ua/handle/123456789/194552 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Experimental methods and processing of data
Experimental methods and processing of data
spellingShingle Experimental methods and processing of data
Experimental methods and processing of data
Pomatsalyuk, R.I.
Tytov, V.Yu.
Titov, D.V.
Uvarov, V.L.
Shevchenko, V.A.
Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10
Вопросы атомной науки и техники
description Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accelerators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge induced by irradiation in a wide-aperture stack-monitor, positioned behind an irradiated object, has been developed. A brief review of a control system for monitoring of the processing parameters created with the use of the EPICS package as well as the data of its operating experience at an LU-10 Linac of NSC KIPT are presented in the article. The procedure and results of calibration of the measuring channels within the electron energy range 8…10 MeV are described.
format Article
author Pomatsalyuk, R.I.
Tytov, V.Yu.
Titov, D.V.
Uvarov, V.L.
Shevchenko, V.A.
author_facet Pomatsalyuk, R.I.
Tytov, V.Yu.
Titov, D.V.
Uvarov, V.L.
Shevchenko, V.A.
author_sort Pomatsalyuk, R.I.
title Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10
title_short Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10
title_full Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10
title_fullStr Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10
title_full_unstemmed Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10
title_sort calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator lu-10
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2020
topic_facet Experimental methods and processing of data
url http://dspace.nbuv.gov.ua/handle/123456789/194552
citation_txt Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 / R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 131-135. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pomatsalyukri calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10
AT tytovvyu calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10
AT titovdv calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10
AT uvarovvl calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10
AT shevchenkova calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10
first_indexed 2025-07-16T21:55:22Z
last_indexed 2025-07-16T21:55:22Z
_version_ 1837842220072304640
fulltext ISSN 1562-6016. ВАНТ. 2020. №3(127) 131 EXPERIMENTAL METHODS AND PROCESSING OF DATA CALIBRATION OF A SYSTEM FOR ON-LINE MONITORING OF ELECTRON ENERGY AND ABSORBED DOSE AT AN INDUSTRIAL ACCELERATOR LU-10 R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: rompom@kipt.kharkov.ua Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accel- erators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge in- duced by irradiation in a wide-aperture stack-monitor, positioned behind an irradiated object, has been developed. A brief review of a control system for monitoring of the processing parameters created with the use of the EPICS package as well as the data of its operating experience at an LU-10 Linac of NSC KIPT are presented in the article. The procedure and results of calibration of the measuring channels within the electron energy range 8…10 MeV are described. PACS: 07.05Tp; 29.27.-a; 47.53.Bn, 81.40.Wx INTRODUCTION The irradiation efficiency depends on the measure- ments and the assessment of the absorbed dose in the process of radiation treatment. This is done using do- simetric systems having a known level of accuracy. Do- simetric systems used in radiation processing of materi- als comply with international standards ISO/ASTM (Table 1) [1]. Determination of the absorbed dose using such dosimeters is usually carried out after the irradia- tion process in off-line mode. Table 1 Dosimetric systems Dosimeter system Method of analysis Useful dose range [Gy] Nominal preci- sion limits [%] References Ceric- cerous sulphate UV spectro- photometry 103…106 3 ISO/ASTM 51205:2017 L-alanine EPR 1…105 0.5 ISO/ASTM 51607:2013 Perspex systems VIS spetropho- tometry 103…5104 4 ISO/ASTM 51276:2019 B3 film VIS spectro- photometry 103…105 3 ISO/ASTM 51275:2013 Calorimetry Resistance/ temperature 1.5103… 5104 2 ISO/ASTM 51631:2013 Tracking such critical parameters as electron energy and the absorbed dose in the irradiated object during radiation processing of the product is very important. The use of a wide-aperture stack monitor (SM) in the form of a set of ten aluminum plates located behind the irradiated object makes it possible to continuously mon- itor the absorbed dose in the object and track changes in the electron beam energy. This allows one to adjust the processing parameters (beam current, conveyor veloc- ity, sweep width) in real-time. A method based on measuring the distribution of charge induced by radiation in a stack-monitor has been developed for continuous monitoring of critical parame- ters [2]. The use of this method requires calibration measurements and determination of the corresponding coefficients. This article provides a brief description of the radia- tion treatment parameters monitoring system based on the EPICS (Experimental Physics and Industrial Control Sys- tem) [3]. The procedure and results of the calibration of the measuring channels using a plate stack-monitor in the range of electron energies of 8…10 MeV are described. 1. CONTROL SYSTEM OF RADIATION PROCESSING PARAMETERS The control system of radiation processing parame- ters consists of the following elements (Fig. 1):  PC-based processing database server (Linux OS);  the local network;  PC-based automated operator workstation (AWP) with an operator screen (CS-Studio);  multifunctional module NI USB-6341;  measuring devices connected to the local network (oscilloscopes, multimeter, generator);  EPICS input/output controllers (IOCs) based on single-board computers (Linux OS). Control System LU-10 PC IOC IOC Router Network «Sterius» Network «Linac» Server Operator Workstation Сеть «Sterius» Single-board computer Multimeter Generator Beam current Tachometer Calibrator PM current № container Sync Scanner Magnet Control RISO temp. NI USB-6341 ADC Digital In/Out Counters USB Scope Beam current IOC Database Archive SPI ADC, DAC Dogital In/Out Single-board computer USB Fig. 1. The block diagram of the control system The sweep signal for the scanner magnet is gener- ated by the function generator SDG1010. The operation of the generator is controlled by an input/output control- ISSN 1562-6016. ВАНТ. 2020. №3(127) 132 ler (IOC) via the USB bus. The controller runs on a sin- gle-board Raspberry Pi-3 computer with Linux system. The system EPICS [4] was selected as the software environment for the control system. The parameters of the radiation process are dis- played with graphical interfaces  “operator screens” (Fig. 2). Fig. 2. The operator screen "Monitoring energy and absorbed dose" The archiver program of data of the process [5] runs on a separate server (computer). The archiver starts as a web application and writes the PV process variables to the hard disk at certain intervals. A web server works to monitor and display the pa- rameters of radiation processing. It allows to viewing the main parameters in real-time using a standard Inter- net browser. The control system uses more than 50 process vari- ables, of which ~ 40 are stored at various intervals. The annual amount of data is ~ 1 GB. Data backup is carried out at certain intervals by copying the database files to external media: hard disk and flash memory (USB). The experience in operating of control system during the year showed the stability of its work, the possibility of modification and expansion, ease of use. 2. METHOD OF MEASURING CHANNELS CALIBRATION 2.1. STACK-MONITOR CALIBRATION FOR ENERGY The calibration procedure for the stack monitor for energy was as follows. Several measurements of energy spectra were performed with average beam energy in the range from 8 to 10 MeV. The beam energy was measured using a magnetic analyzer (MA) [6]. The plate currents and the total current of the stack monitor without an irradiated object were measured after each spectrum measurement. The measured spectra were fitted with two Gauss functions for more accurately de- termine the most probable and average energy (Fig. 3). The following expression is used to determine en- ergy with a stack monitor: 10 ik SM I E A B I    , (1) where Е – beam energy (MeV); A, B – coefficients de- rived from calibration measurements or calculations [2]; Ii – average current i-plates of stack monitor (A); ISM – average total current from all plates of the stack-monitor (A). Fig. 3. Measured spectrum with the most probable energy of 8.93 MeV and fitting with two Gauss functions: circles  measurement data using MA; solid line  combined fitting function 7,0 7,5 8,0 8,5 9,0 9,5 10,0 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 R at io o f p la te s cu rr en t, re l. u. Energy (Ep), МeV R8 R78 R678 R5678 Linear Fit of Data3_R678 Fig. 4. The dependence of the most probable energy on the ratio of currents from k of the last plates to the total SM current: R8  k=(8, 9, 10); R78  k=(7, 8, 9, 10); R678  k=(6, 7, 8, 9, 10); R5678  k=(5, 6, 7, 8, 9, 10) The dependence of the energy (most probable) on the ratio of currents k last plates to the total SM current is constructed based on the results of measuring the spectra and distribution of currents from the SM plates (Fig. 4). After fitting distribution R678 with a straight line, the following expression was obtained for calculating the most probable energy (Ep) from the ratio of the cur- rents of the last 5 plates to the total SM current (R): Еp = 6.443 + 7.838·R. (2) The dependence of average energy (Ea) on the ratio of currents from plates (6, 7, 8, 9, 10) to the total current SM was also obtained: Еa = 7.675 + 8.767·R. (3) The estimation of the uncertainty when measuring the most probable energy Ep and average energy Ea using the stack-monitor is about 2.6%. ISSN 1562-6016. ВАНТ. 2020. №3(127) 133 Table 2 Results of energy measurement of the LU-10 accelerator using SM № МА Ep, MeV SM Ep, MeV ΔEp, % МА Еa, MeV SM Еa, MeV ΔEa, % 1 9.46 9.41 0.53 11.05 11.0 0.45 2 8.93 8.95 0.22 10.46 10.48 0.20 3 8.31 8.35 0.48 9.75 9.81 0.61 4 7.55 7.52 0.40 8.92 8.88 0.45 5 9.52 9.71 1.96 11.02 11.33 2.74 2.2. STACK-MONITOR CALIBRATION FOR DOSE The absorbed dose in the product depends on the av- erage beam current, beam sweep width, conveyor speed and beam energy. Dose measurement based on these parameters is an effective calibration of the radiation facility. There is no simple relationship between dose and electron beam energy, and measurement of dose as a function of the three other parameters should therefore be made for each operating energy [7]. The following devices were used to calibrate the dose rate stack-monitor: – dosimeters Red Perspex 4034 (RP); – calorimeter RISO (Fig. 5); – polystyrene phantom F-1: dimension 794137 cm (length, high, depth), weight – 13 kg, surface density – 3.96 g/cm2; – polystyrene phantom F-2: dimension 703817.5 cm, weight – 5.25 kg, surface density – 2.0 g/cm 2 (Fig. 6). The RISO calorimeter consists of a disk made of polystyrene surrounded by heat-insulating foam (see Fig. 5). The temperature of the calorimeter is measured by a calibrated thermistor, which is located inside the disk. The dose range of measurements is 3…40 kGy, the uncertainty in the dose measurements is 3.6%. Fig. 5. Dosimeter Red Perspex (top) and calorimeter RISO (bottom) L W H Fig. 6. Polystyrene phantom F-1 and F-2 The absorption dose in object D is determined for a given energy using the relation [2]: C SMbbb Vm L]I,с-b(E,WI,[a(E,W D    )) , (4) where Ib – average beam current LU-10 (A); ISM – total current from all plates of the stack-monitor (A); V – conveyor speed (m/s); m – object weight (kg); L – object length (m). The coefficients a, b depend on the beam energy E, the beam sweep width Wb, and the object density ρ. Therefore, a set of coefficients is required for each en- ergy, the sweep width and density of the object to more accurately determine the dose using SM. The F-1 phantom and the RISO calorimeter moved at a given speed through the irradiation zone and the beam current and the SM current were recorded (Fig. 7). The measurements were carried out at several conveyor speeds: 400, 600, 200 rel.u. and for several values of average energy in the range of 8…10 MeV Calorimeter RISO Phantom F-1 Phantom RISO Fig. 7. The total current from the plates of the stack-monitor when irradiating the RISO calorimeter and phantom F-1 The absorbed dose was determined using a RISO calorimeter. A few calorimeter temperature measure- ments were taken before irradiation (T1) and then after irradiation (T2). The temperatures T1 and T2 were de- termined by the off-line method described in the stan- dard ISO/ASTM51631:2013 [8]. The irradiation time (ti) was also recorded. The measured temperature values before and after irradiation are approximated by two straight lines (see Fig. 7). The temperature T1 and T2 are determined by the value on the corresponding line at the time of irradiation ti. The calculation of the absorbed dose D in the RISO calorimeter was carried out using the expression: ISSN 1562-6016. ВАНТ. 2020. №3(127) 134 kTTkkTTTD a    ) 2 ()( 21 2112 , (5) where Т1 – calorimeter temperature before irradiation; Т2 – calorimeter temperature after irradiation; Та – calo- rimeter heating from conveyor and accelerator Та ~ 0.05°C; k1, k2, k – calibration constants (k1=1.022; k2=0.0108; k=1.000). Fig. 8. Determination of the temperature difference ΔT of the RISO calorimeter The coefficients a, b were determined from the rela- tions presented in [7]: Calculation of the absorbed dose in the phantom abD (Gy) was carried out using the expression: ab , ph ab ph ph ph P D , M V l   (6) where Vph – conveyor speed (m/s); Mph – object weight (kg); lph – object length (m) along the direction of movement of the conveyor; Pab,ph – the absorbed power in the irradiated object (F-1 phantom) was calculated using the absorbed dose value measured using a RISO calorimeter or Red Perspex dosimeters. The results of calculating the coefficients a, b and the absorbed dose in the F-1 phantom measured using SM at different beam energies shown in Table 3. Table 3 Dose calibration results № Cur- rent, mA Ep, MeV Coefficients а ±Δа b ±Δb Dose F-1 RP, kGy Dose F-1 SM, kGy 1 0.77 9.13 10.1 0.26 12.5 0.29 8.48 8.32 2 0.71 9.71 11.9 0.52 14.9 0.61 8.40 8.44 3 0.45 10.71 15.6 0.51 17.5 0.55 6.15 5.61 4 0.74 8.42 7.1 0.20 9.0 0.22 6.79 6.18 The estimated uncertainty in measuring the absorbed dose using the stack monitor was ~ 8%. The dependence of the coefficients a, b on the beam energy obtained when calibrating the stack-monitor us- ing the F-1 phantom shown in Fig. 9. 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 6 7 8 9 10 11 12 13 14 15 16 17 18 Polynomial Regression for Data17_H: Y = A + B1*X + B2*X^2 Parameter Value Error ---------------------------------------------- A -60.78132 12.61757 B1 11.79736 2.64655 B2 -0.44293 0.1379 Polynomial Regression for Data17_I: Y = A + B1*X + B2*X^2 Parameter Value Error --------------------------------------------- A -117.50524 20.9437 B1 24.18168 4.39296 B2 -1.08827 0.2289 Ко эф ф иц ие нт ы a , b Энергия, МэВ b a Polynomial Fit of Data17_I Polynomial Fit of Data17_H Fig. 9. The dependence of the coefficients a, b on the most probable energy of the electron beam CONCLUSIONS The implementation of the EPICS system unifies the control system of radiation processing parameters and increases its reliability. A method has been developed for continuous moni- toring of critical parameters using a stack-monitor. The calibration measurements have been made and coeffi- cients and calibration curves have been obtained for determining the electron energy and absorbed dose dur- ing radiation treatment at the LU 10 accelerator in the energy range 8…10 MeV. Continuous monitoring of the absorbed dose enables promptly carry out the necessary adjustment of accel- erator parameters during processing. REFERENCES 1. Yongxia Sun, Andrzej. Grzegorz Chmielewski Ap- plications of Ionizing Radiation in Materials Proc- essing // Institute of Nuclear Chemistry and Tech- nology. 2017, 244 р. 2. R.I. Pomatsalyuk, V.A. Shevchenko, A.Eh. Tenishev, D.V. Titov, A.A. Zakharchenko. Development of a Method of Absorbed Dose ON-LINE Monitoring at Product Processing by Scanned Electron Beam // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2016, № 3, p. 149-153. 3. R.I. Pomatsalyuk, V.L. Uvarov, V.A. Shevchenko, I.N. Shlyakov. Modernization of Control System of the Beam Critical Parameters at a LU-10 Industrial Electron Accelerator // Problems of Atomic Science and Technology. Series “Nuclear Physics Investiga- tions”. 2017, № 6, p. 175-180. 4. Description of Experimental Physics and Industrial Control System [Electronic resource] Verified 09.09.2019. URL: http://www.aps.anl.gov/epics/ 5. The EPICS Archiver Appliance [Electronic resource] Verified 09.09.2019. URL: https://slacmshankar. github.io/epicsarchiver_docs/index.html. 6. R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov, A.Eh. Tenishev, V.Yu. Titov, D.V. Titov, V.L. Uvarov, A.A. Zakharchenko. Measurement of Electron Beam Energy Characteristics at an Indus- trial Accelerator // Problems of Atomic Science and 10:10 10:20 10:30 10:40 10:50 18 19 20 21 22 23 24 25 Linear Regression: T1 = A1 + B1 * X Parameter Value Error ---------------------------------------------- A1 18.23421 0.79997 B1 1.43772 1.86478 Linear Regression: T2 = A2 + B2 * X Parameter Value Error -------------------------------------------- A2 37.32444 0.60646 B2 -29.96975 1.34765 Те мп ер ат ур а, г ра д. С Время, час:мин T (V=800) Linear Fit T2 Linear Fit T1T 2 T 1 T t i Time, hour: min Energy, MeV Te m pe ra tu re , C C oe ffi ci en ts a , b ISSN 1562-6016. ВАНТ. 2020. №3(127) 135 Teсhnology. Series “Nuclear Physics Investiga- tions”. 2017, № 6, p. 3-7. 7. ISO/ASTM 51649:2015 Practice for Dosimetry in an Electron Beam Facility for Radiation Processing at Energies Between 300 keV and 25 MeV. 8. ISO/ASTM 51631:2013 Practice for Use of Calo- rimetric Dosimetry Systems for Electron Beam Dose Measurements and Dosimetery System Calibrations. Article received 05.02.2020 КАЛИБРОВКА СИСТЕМЫ ON-LINE МОНИТОРИНГА ЭНЕРГИИ ЭЛЕКТРОНОВ И ПОГЛОЩЕННОЙ ДОЗЫ НА ПРОМЫШЛЕННОМ УСКОРИТЕЛЕ ЛУ-10 Р.И. Помацалюк, В.Ю. Титов, Д.В. Титов, В.Л. Уваров, В.А. Шевченко Энергия частиц пучка и поглощенная доза являются критическими параметрами при обработке продук- ции на промышленных ускорителях электронов. Для on-line мониторинга этих параметров разработан ме- тод, основанный на измерении распределения наведенного облучением заряда в широкоапертурном стек- мониторе, который находится за обрабатываемым объектом. Представлены краткий обзор системы монито- ринга и контроля параметров обработки, созданной с использованием пакета EPICS, а также данные об опы- те ее эксплуатации на ускорителе ЛУ-10 ННЦ ХФТИ. Описаны процедура и результаты калибровки измери- тельных каналов в диапазоне значений энергии электронов 8…10 МэВ. КАЛІБРУВАННЯ СИСТЕМИ ON-LINE МОНІТОРИНГУ ЕНЕРГІЇ ЕЛЕКТРОНІВ ТА ПОГЛИНУТОЇ ДОЗИ НА ПРОМИСЛОВОМУ ПРИСКОРЮВАЧІ ЛУ-10 Р.І. Помацалюк, В.Ю. Тітов, Д.В. Тітов, В.Л. Уваров, В.А. Шевченко Енергія частинок пучка і поглинута доза є критичними параметрами при обробці продукції на промисло- вих прискорювачах електронів. Для on-line моніторингу цих параметрів розроблено метод, що є оснований на вимірюванні розподілу наведеного опромінюванням заряду у широкоапертурному стек-моніторі, який розміщено за оброблюваним об’єктом. Надано стислий огляд системи моніторингу та контролю параметрів обробки, що створена з використанням пакету EPICS, а також дані щодо досвіду її експлуатації на приско- рювачі ЛУ-10 ННЦ ХФТІ. Описані процедура та результати калібрування вимірювальних каналів у діапазо- ні значень енергії електронів 8…10 МеВ.