Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10
Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accelerators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge induced by irradiation in a wide-aperture stack-monitor, positioned behind a...
Gespeichert in:
Datum: | 2020 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/194552 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 / R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 131-135. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194552 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1945522023-11-27T15:46:30Z Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 Pomatsalyuk, R.I. Tytov, V.Yu. Titov, D.V. Uvarov, V.L. Shevchenko, V.A. Experimental methods and processing of data Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accelerators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge induced by irradiation in a wide-aperture stack-monitor, positioned behind an irradiated object, has been developed. A brief review of a control system for monitoring of the processing parameters created with the use of the EPICS package as well as the data of its operating experience at an LU-10 Linac of NSC KIPT are presented in the article. The procedure and results of calibration of the measuring channels within the electron energy range 8…10 MeV are described. Енергія частинок пучка і поглинута доза є критичними параметрами при обробці продукції на промислових прискорювачах електронів. Для on-line моніторингу цих параметрів розроблено метод, що є оснований на вимірюванні розподілу наведеного опромінюванням заряду у широкоапертурному стек-моніторі, який розміщено за оброблюваним об’єктом. Надано стислий огляд системи моніторингу та контролю параметрів обробки, що створена з використанням пакету EPICS, а також дані щодо досвіду її експлуатації на прискорювачі ЛУ-10 ННЦ ХФТІ. Описані процедура та результати калібрування вимірювальних каналів у діапазоні значень енергії електронів 8…10 МеВ. Энергия частиц пучка и поглощенная доза являются критическими параметрами при обработке продукции на промышленных ускорителях электронов. Для on-line мониторинга этих параметров разработан метод, основанный на измерении распределения наведенного облучением заряда в широкоапертурном стекмониторе, который находится за обрабатываемым объектом. Представлены краткий обзор системы мониторинга и контроля параметров обработки, созданной с использованием пакета EPICS, а также данные об опыте ее эксплуатации на ускорителе ЛУ-10 ННЦ ХФТИ. Описаны процедура и результаты калибровки измерительных каналов в диапазоне значений энергии электронов 8…10 МэВ. 2020 Article Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 / R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 131-135. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 07.05Tp; 29.27.-a; 47.53.Bn, 81.40.Wx http://dspace.nbuv.gov.ua/handle/123456789/194552 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Experimental methods and processing of data Experimental methods and processing of data |
spellingShingle |
Experimental methods and processing of data Experimental methods and processing of data Pomatsalyuk, R.I. Tytov, V.Yu. Titov, D.V. Uvarov, V.L. Shevchenko, V.A. Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 Вопросы атомной науки и техники |
description |
Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accelerators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge induced by irradiation in a wide-aperture stack-monitor, positioned behind an irradiated object, has been developed. A brief review of a control system for monitoring of the processing parameters created with the use of the EPICS package as well as the data of its operating experience at an LU-10 Linac of NSC KIPT are presented in the article. The procedure and results of calibration of the measuring channels within the electron energy range 8…10 MeV are described. |
format |
Article |
author |
Pomatsalyuk, R.I. Tytov, V.Yu. Titov, D.V. Uvarov, V.L. Shevchenko, V.A. |
author_facet |
Pomatsalyuk, R.I. Tytov, V.Yu. Titov, D.V. Uvarov, V.L. Shevchenko, V.A. |
author_sort |
Pomatsalyuk, R.I. |
title |
Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 |
title_short |
Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 |
title_full |
Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 |
title_fullStr |
Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 |
title_full_unstemmed |
Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 |
title_sort |
calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator lu-10 |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Experimental methods and processing of data |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194552 |
citation_txt |
Calibration of a system for on-line monitoring of electron energy and absorbed dose at an industrial accelerator LU-10 / R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko // Problems of atomic science and tecnology. — 2020. — № 3. — С. 131-135. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pomatsalyukri calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10 AT tytovvyu calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10 AT titovdv calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10 AT uvarovvl calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10 AT shevchenkova calibrationofasystemforonlinemonitoringofelectronenergyandabsorbeddoseatanindustrialacceleratorlu10 |
first_indexed |
2025-07-16T21:55:22Z |
last_indexed |
2025-07-16T21:55:22Z |
_version_ |
1837842220072304640 |
fulltext |
ISSN 1562-6016. ВАНТ. 2020. №3(127) 131
EXPERIMENTAL METHODS AND PROCESSING OF DATA
CALIBRATION OF A SYSTEM FOR ON-LINE MONITORING
OF ELECTRON ENERGY AND ABSORBED DOSE
AT AN INDUSTRIAL ACCELERATOR LU-10
R.I. Pomatsalyuk, V.Yu. Tytov, D.V. Titov, V.L. Uvarov, V.A. Shevchenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: rompom@kipt.kharkov.ua
Particle beam energy and absorbed dose are critical parameters of product processing at industrial electron accel-
erators. For on-line monitoring of those parameters, a method based on measuring of distribution of the charge in-
duced by irradiation in a wide-aperture stack-monitor, positioned behind an irradiated object, has been developed. A
brief review of a control system for monitoring of the processing parameters created with the use of the EPICS
package as well as the data of its operating experience at an LU-10 Linac of NSC KIPT are presented in the article.
The procedure and results of calibration of the measuring channels within the electron energy range 8…10 MeV are
described.
PACS: 07.05Tp; 29.27.-a; 47.53.Bn, 81.40.Wx
INTRODUCTION
The irradiation efficiency depends on the measure-
ments and the assessment of the absorbed dose in the
process of radiation treatment. This is done using do-
simetric systems having a known level of accuracy. Do-
simetric systems used in radiation processing of materi-
als comply with international standards ISO/ASTM
(Table 1) [1]. Determination of the absorbed dose using
such dosimeters is usually carried out after the irradia-
tion process in off-line mode.
Table 1
Dosimetric systems
Dosimeter
system
Method
of analysis
Useful
dose
range
[Gy]
Nominal
preci-
sion
limits
[%]
References
Ceric-
cerous
sulphate
UV spectro-
photometry 103…106 3 ISO/ASTM
51205:2017
L-alanine EPR 1…105 0.5 ISO/ASTM
51607:2013
Perspex
systems
VIS
spetropho-
tometry
103…5104 4 ISO/ASTM
51276:2019
B3 film VIS spectro-
photometry 103…105 3 ISO/ASTM
51275:2013
Calorimetry Resistance/
temperature
1.5103…
5104 2 ISO/ASTM
51631:2013
Tracking such critical parameters as electron energy
and the absorbed dose in the irradiated object during
radiation processing of the product is very important.
The use of a wide-aperture stack monitor (SM) in the
form of a set of ten aluminum plates located behind the
irradiated object makes it possible to continuously mon-
itor the absorbed dose in the object and track changes in
the electron beam energy. This allows one to adjust the
processing parameters (beam current, conveyor veloc-
ity, sweep width) in real-time.
A method based on measuring the distribution of
charge induced by radiation in a stack-monitor has been
developed for continuous monitoring of critical parame-
ters [2]. The use of this method requires calibration
measurements and determination of the corresponding
coefficients.
This article provides a brief description of the radia-
tion treatment parameters monitoring system based on the
EPICS (Experimental Physics and Industrial Control Sys-
tem) [3]. The procedure and results of the calibration of
the measuring channels using a plate stack-monitor in the
range of electron energies of 8…10 MeV are described.
1. CONTROL SYSTEM OF RADIATION
PROCESSING PARAMETERS
The control system of radiation processing parame-
ters consists of the following elements (Fig. 1):
PC-based processing database server (Linux OS);
the local network;
PC-based automated operator workstation (AWP)
with an operator screen (CS-Studio);
multifunctional module NI USB-6341;
measuring devices connected to the local network
(oscilloscopes, multimeter, generator);
EPICS input/output controllers (IOCs) based on
single-board computers (Linux OS).
Control
System
LU-10
PC
IOC
IOC
Router
Network
«Sterius»
Network
«Linac»
Server
Operator
Workstation
Сеть «Sterius»
Single-board
computer
Multimeter Generator
Beam current
Tachometer
Calibrator
PM current
№ container
Sync
Scanner Magnet
Control
RISO temp.
NI USB-6341
ADC
Digital
In/Out
Counters
USB
Scope
Beam current
IOC
Database
Archive
SPI
ADC, DAC
Dogital
In/Out
Single-board
computer
USB
Fig. 1. The block diagram of the control system
The sweep signal for the scanner magnet is gener-
ated by the function generator SDG1010. The operation
of the generator is controlled by an input/output control-
ISSN 1562-6016. ВАНТ. 2020. №3(127) 132
ler (IOC) via the USB bus. The controller runs on a sin-
gle-board Raspberry Pi-3 computer with Linux system.
The system EPICS [4] was selected as the software
environment for the control system.
The parameters of the radiation process are dis-
played with graphical interfaces “operator screens”
(Fig. 2).
Fig. 2. The operator screen "Monitoring energy
and absorbed dose"
The archiver program of data of the process [5] runs
on a separate server (computer). The archiver starts as a
web application and writes the PV process variables to
the hard disk at certain intervals.
A web server works to monitor and display the pa-
rameters of radiation processing. It allows to viewing
the main parameters in real-time using a standard Inter-
net browser.
The control system uses more than 50 process vari-
ables, of which ~ 40 are stored at various intervals. The
annual amount of data is ~ 1 GB. Data backup is carried
out at certain intervals by copying the database files to
external media: hard disk and flash memory (USB).
The experience in operating of control system during
the year showed the stability of its work, the possibility
of modification and expansion, ease of use.
2. METHOD OF MEASURING CHANNELS
CALIBRATION
2.1. STACK-MONITOR CALIBRATION
FOR ENERGY
The calibration procedure for the stack monitor for
energy was as follows. Several measurements of energy
spectra were performed with average beam energy in
the range from 8 to 10 MeV. The beam energy was
measured using a magnetic analyzer (MA) [6]. The
plate currents and the total current of the stack monitor
without an irradiated object were measured after each
spectrum measurement. The measured spectra were
fitted with two Gauss functions for more accurately de-
termine the most probable and average energy (Fig. 3).
The following expression is used to determine en-
ergy with a stack monitor:
10
ik
SM
I
E A B
I
, (1)
where Е – beam energy (MeV); A, B – coefficients de-
rived from calibration measurements or calculations [2];
Ii – average current i-plates of stack monitor (A); ISM –
average total current from all plates of the stack-monitor
(A).
Fig. 3. Measured spectrum with the most probable
energy of 8.93 MeV and fitting with two Gauss
functions: circles measurement data using MA;
solid line combined fitting function
7,0 7,5 8,0 8,5 9,0 9,5 10,0
0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0,55
0,60
R
at
io
o
f p
la
te
s
cu
rr
en
t,
re
l.
u.
Energy (Ep), МeV
R8
R78
R678
R5678
Linear Fit of Data3_R678
Fig. 4. The dependence of the most probable energy on
the ratio of currents from k of the last plates to the total
SM current: R8 k=(8, 9, 10); R78 k=(7, 8, 9, 10);
R678 k=(6, 7, 8, 9, 10); R5678 k=(5, 6, 7, 8, 9, 10)
The dependence of the energy (most probable) on
the ratio of currents k last plates to the total SM current
is constructed based on the results of measuring the
spectra and distribution of currents from the SM plates
(Fig. 4).
After fitting distribution R678 with a straight line,
the following expression was obtained for calculating
the most probable energy (Ep) from the ratio of the cur-
rents of the last 5 plates to the total SM current (R):
Еp = 6.443 + 7.838·R. (2)
The dependence of average energy (Ea) on the ratio
of currents from plates (6, 7, 8, 9, 10) to the total current
SM was also obtained:
Еa = 7.675 + 8.767·R. (3)
The estimation of the uncertainty when measuring
the most probable energy Ep and average energy Ea
using the stack-monitor is about 2.6%.
ISSN 1562-6016. ВАНТ. 2020. №3(127) 133
Table 2
Results of energy measurement of the LU-10
accelerator using SM
№
МА
Ep,
MeV
SM
Ep,
MeV
ΔEp,
%
МА
Еa,
MeV
SM
Еa,
MeV
ΔEa,
%
1 9.46 9.41 0.53 11.05 11.0 0.45
2 8.93 8.95 0.22 10.46 10.48 0.20
3 8.31 8.35 0.48 9.75 9.81 0.61
4 7.55 7.52 0.40 8.92 8.88 0.45
5 9.52 9.71 1.96 11.02 11.33 2.74
2.2. STACK-MONITOR CALIBRATION
FOR DOSE
The absorbed dose in the product depends on the av-
erage beam current, beam sweep width, conveyor speed
and beam energy. Dose measurement based on these
parameters is an effective calibration of the radiation
facility. There is no simple relationship between dose
and electron beam energy, and measurement of dose as
a function of the three other parameters should therefore
be made for each operating energy [7].
The following devices were used to calibrate the
dose rate stack-monitor:
– dosimeters Red Perspex 4034 (RP);
– calorimeter RISO (Fig. 5);
– polystyrene phantom F-1: dimension 794137 cm
(length, high, depth), weight – 13 kg, surface density –
3.96 g/cm2;
– polystyrene phantom F-2: dimension 703817.5 cm,
weight – 5.25 kg, surface density – 2.0 g/cm 2 (Fig. 6).
The RISO calorimeter consists of a disk made of
polystyrene surrounded by heat-insulating foam (see
Fig. 5). The temperature of the calorimeter is measured
by a calibrated thermistor, which is located inside the
disk. The dose range of measurements is 3…40 kGy,
the uncertainty in the dose measurements is 3.6%.
Fig. 5. Dosimeter Red Perspex (top) and calorimeter
RISO (bottom)
L
W
H
Fig. 6. Polystyrene phantom F-1 and F-2
The absorption dose in object D is determined for a
given energy using the relation [2]:
C
SMbbb
Vm
L]I,с-b(E,WI,[a(E,W
D
)) , (4)
where Ib – average beam current LU-10 (A); ISM – total
current from all plates of the stack-monitor (A);
V – conveyor speed (m/s); m – object weight (kg);
L – object length (m).
The coefficients a, b depend on the beam energy E,
the beam sweep width Wb, and the object density ρ.
Therefore, a set of coefficients is required for each en-
ergy, the sweep width and density of the object to more
accurately determine the dose using SM.
The F-1 phantom and the RISO calorimeter moved
at a given speed through the irradiation zone and the
beam current and the SM current were recorded (Fig. 7).
The measurements were carried out at several conveyor
speeds: 400, 600, 200 rel.u. and for several values of
average energy in the range of 8…10 MeV
Calorimeter
RISO
Phantom F-1
Phantom
RISO
Fig. 7. The total current from the plates
of the stack-monitor when irradiating
the RISO calorimeter and phantom F-1
The absorbed dose was determined using a RISO
calorimeter. A few calorimeter temperature measure-
ments were taken before irradiation (T1) and then after
irradiation (T2). The temperatures T1 and T2 were de-
termined by the off-line method described in the stan-
dard ISO/ASTM51631:2013 [8]. The irradiation time
(ti) was also recorded. The measured temperature values
before and after irradiation are approximated by two
straight lines (see Fig. 7). The temperature T1 and T2
are determined by the value on the corresponding line at
the time of irradiation ti.
The calculation of the absorbed dose D in the RISO
calorimeter was carried out using the expression:
ISSN 1562-6016. ВАНТ. 2020. №3(127) 134
kTTkkTTTD a
)
2
()( 21
2112
, (5)
where Т1 – calorimeter temperature before irradiation;
Т2 – calorimeter temperature after irradiation; Та – calo-
rimeter heating from conveyor and accelerator
Та ~ 0.05°C; k1, k2, k – calibration constants (k1=1.022;
k2=0.0108; k=1.000).
Fig. 8. Determination of the temperature difference ΔT
of the RISO calorimeter
The coefficients a, b were determined from the rela-
tions presented in [7]:
Calculation of the absorbed dose in the phantom
abD (Gy) was carried out using the expression:
ab , ph
ab
ph
ph
ph
P
D ,
M
V
l
(6)
where Vph – conveyor speed (m/s); Mph – object weight
(kg); lph – object length (m) along the direction of
movement of the conveyor; Pab,ph – the absorbed power
in the irradiated object (F-1 phantom) was calculated
using the absorbed dose value measured using a RISO
calorimeter or Red Perspex dosimeters.
The results of calculating the coefficients a, b and
the absorbed dose in the F-1 phantom measured using
SM at different beam energies shown in Table 3.
Table 3
Dose calibration results
№
Cur-
rent,
mA
Ep,
MeV
Coefficients
а ±Δа b ±Δb
Dose
F-1
RP,
kGy
Dose
F-1
SM,
kGy
1 0.77 9.13 10.1 0.26 12.5 0.29 8.48 8.32
2 0.71 9.71 11.9 0.52 14.9 0.61 8.40 8.44
3 0.45 10.71 15.6 0.51 17.5 0.55 6.15 5.61
4 0.74 8.42 7.1 0.20 9.0 0.22 6.79 6.18
The estimated uncertainty in measuring the absorbed
dose using the stack monitor was ~ 8%.
The dependence of the coefficients a, b on the beam
energy obtained when calibrating the stack-monitor us-
ing the F-1 phantom shown in Fig. 9.
7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
6
7
8
9
10
11
12
13
14
15
16
17
18
Polynomial Regression for Data17_H:
Y = A + B1*X + B2*X^2
Parameter Value Error
----------------------------------------------
A -60.78132 12.61757
B1 11.79736 2.64655
B2 -0.44293 0.1379
Polynomial Regression for Data17_I:
Y = A + B1*X + B2*X^2
Parameter Value Error
---------------------------------------------
A -117.50524 20.9437
B1 24.18168 4.39296
B2 -1.08827 0.2289
Ко
эф
ф
иц
ие
нт
ы
a
, b
Энергия, МэВ
b
a
Polynomial Fit of Data17_I
Polynomial Fit of Data17_H
Fig. 9. The dependence of the coefficients a, b
on the most probable energy of the electron beam
CONCLUSIONS
The implementation of the EPICS system unifies the
control system of radiation processing parameters and
increases its reliability.
A method has been developed for continuous moni-
toring of critical parameters using a stack-monitor. The
calibration measurements have been made and coeffi-
cients and calibration curves have been obtained for
determining the electron energy and absorbed dose dur-
ing radiation treatment at the LU 10 accelerator in the
energy range 8…10 MeV.
Continuous monitoring of the absorbed dose enables
promptly carry out the necessary adjustment of accel-
erator parameters during processing.
REFERENCES
1. Yongxia Sun, Andrzej. Grzegorz Chmielewski Ap-
plications of Ionizing Radiation in Materials Proc-
essing // Institute of Nuclear Chemistry and Tech-
nology. 2017, 244 р.
2. R.I. Pomatsalyuk, V.A. Shevchenko, A.Eh. Tenishev,
D.V. Titov, A.A. Zakharchenko. Development of a
Method of Absorbed Dose ON-LINE Monitoring at
Product Processing by Scanned Electron Beam //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2016, № 3,
p. 149-153.
3. R.I. Pomatsalyuk, V.L. Uvarov, V.A. Shevchenko,
I.N. Shlyakov. Modernization of Control System of
the Beam Critical Parameters at a LU-10 Industrial
Electron Accelerator // Problems of Atomic Science
and Technology. Series “Nuclear Physics Investiga-
tions”. 2017, № 6, p. 175-180.
4. Description of Experimental Physics and Industrial
Control System [Electronic resource] Verified
09.09.2019. URL: http://www.aps.anl.gov/epics/
5. The EPICS Archiver Appliance [Electronic resource]
Verified 09.09.2019. URL: https://slacmshankar.
github.io/epicsarchiver_docs/index.html.
6. R.I. Pomatsalyuk, V.A. Shevchenko, I.N. Shlyakhov,
A.Eh. Tenishev, V.Yu. Titov, D.V. Titov,
V.L. Uvarov, A.A. Zakharchenko. Measurement of
Electron Beam Energy Characteristics at an Indus-
trial Accelerator // Problems of Atomic Science and
10:10 10:20 10:30 10:40 10:50
18
19
20
21
22
23
24
25
Linear Regression: T1 = A1 + B1 * X
Parameter Value Error
----------------------------------------------
A1 18.23421 0.79997
B1 1.43772 1.86478
Linear Regression: T2 = A2 + B2 * X
Parameter Value Error
--------------------------------------------
A2 37.32444 0.60646
B2 -29.96975 1.34765
Те
мп
ер
ат
ур
а,
г
ра
д.
С
Время, час:мин
T (V=800)
Linear Fit T2
Linear Fit T1T
2
T
1
T
t
i
Time, hour: min
Energy, MeV
Te
m
pe
ra
tu
re
, C
C
oe
ffi
ci
en
ts
a
, b
ISSN 1562-6016. ВАНТ. 2020. №3(127) 135
Teсhnology. Series “Nuclear Physics Investiga-
tions”. 2017, № 6, p. 3-7.
7. ISO/ASTM 51649:2015 Practice for Dosimetry in
an Electron Beam Facility for Radiation Processing
at Energies Between 300 keV and 25 MeV.
8. ISO/ASTM 51631:2013 Practice for Use of Calo-
rimetric Dosimetry Systems for Electron Beam Dose
Measurements and Dosimetery System Calibrations.
Article received 05.02.2020
КАЛИБРОВКА СИСТЕМЫ ON-LINE МОНИТОРИНГА ЭНЕРГИИ ЭЛЕКТРОНОВ
И ПОГЛОЩЕННОЙ ДОЗЫ НА ПРОМЫШЛЕННОМ УСКОРИТЕЛЕ ЛУ-10
Р.И. Помацалюк, В.Ю. Титов, Д.В. Титов, В.Л. Уваров, В.А. Шевченко
Энергия частиц пучка и поглощенная доза являются критическими параметрами при обработке продук-
ции на промышленных ускорителях электронов. Для on-line мониторинга этих параметров разработан ме-
тод, основанный на измерении распределения наведенного облучением заряда в широкоапертурном стек-
мониторе, который находится за обрабатываемым объектом. Представлены краткий обзор системы монито-
ринга и контроля параметров обработки, созданной с использованием пакета EPICS, а также данные об опы-
те ее эксплуатации на ускорителе ЛУ-10 ННЦ ХФТИ. Описаны процедура и результаты калибровки измери-
тельных каналов в диапазоне значений энергии электронов 8…10 МэВ.
КАЛІБРУВАННЯ СИСТЕМИ ON-LINE МОНІТОРИНГУ ЕНЕРГІЇ ЕЛЕКТРОНІВ
ТА ПОГЛИНУТОЇ ДОЗИ НА ПРОМИСЛОВОМУ ПРИСКОРЮВАЧІ ЛУ-10
Р.І. Помацалюк, В.Ю. Тітов, Д.В. Тітов, В.Л. Уваров, В.А. Шевченко
Енергія частинок пучка і поглинута доза є критичними параметрами при обробці продукції на промисло-
вих прискорювачах електронів. Для on-line моніторингу цих параметрів розроблено метод, що є оснований
на вимірюванні розподілу наведеного опромінюванням заряду у широкоапертурному стек-моніторі, який
розміщено за оброблюваним об’єктом. Надано стислий огляд системи моніторингу та контролю параметрів
обробки, що створена з використанням пакету EPICS, а також дані щодо досвіду її експлуатації на приско-
рювачі ЛУ-10 ННЦ ХФТІ. Описані процедура та результати калібрування вимірювальних каналів у діапазо-
ні значень енергії електронів 8…10 МеВ.
|