Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches

Resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of relativistic electron bunch-es has been numerically simulated. It has been shown that in resonant asymptotics at optimal parameters the wake-field is excited with the maximum growth rate and the amplitude of the excit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Maslov, V.I., Bilokon, E.O., Bilokon, V.O., Levchuk, I.P., Onishchenko, I.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/194622
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches / V.I. Maslov, E.O. Bilokon, V.O. Bilokon, I.P. Levchuk, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 1. — С. 99-102. — Бібліогр.: 23 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-194622
record_format dspace
spelling irk-123456789-1946222023-11-27T21:27:38Z Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches Maslov, V.I. Bilokon, E.O. Bilokon, V.O. Levchuk, I.P. Onishchenko, I.N. Plasma electronics Resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of relativistic electron bunch-es has been numerically simulated. It has been shown that in resonant asymptotics at optimal parameters the wake-field is excited with the maximum growth rate and the amplitude of the excited wakefield is the largest. Чисельно промодельована резонансна асимптотика збудження в плазмі кільватерного поля нерезонансною послідовністю релятивістських електронних згустків. Показано, що в резонансній асимптотиці при оптимальних параметрах кільватерне поле збуджується з максимальним інкрементом, а амплітуда збуджуваного кільватерного поля найбільша. Численно промоделирована резонансная асимптотика возбуждения в плазме кильватерного поля нерезонансной последовательностью релятивистских электронных сгустков. Показано, что в резонансной асимптотике при оптимальных параметрах кильватерное поле возбуждается с максимальным инкрементом, а амплитуда возбуждаемого кильватерного поля наибольшая. 2019 Article Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches / V.I. Maslov, E.O. Bilokon, V.O. Bilokon, I.P. Levchuk, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 1. — С. 99-102. — Бібліогр.: 23 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx http://dspace.nbuv.gov.ua/handle/123456789/194622 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Plasma electronics
Plasma electronics
spellingShingle Plasma electronics
Plasma electronics
Maslov, V.I.
Bilokon, E.O.
Bilokon, V.O.
Levchuk, I.P.
Onishchenko, I.N.
Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches
Вопросы атомной науки и техники
description Resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of relativistic electron bunch-es has been numerically simulated. It has been shown that in resonant asymptotics at optimal parameters the wake-field is excited with the maximum growth rate and the amplitude of the excited wakefield is the largest.
format Article
author Maslov, V.I.
Bilokon, E.O.
Bilokon, V.O.
Levchuk, I.P.
Onishchenko, I.N.
author_facet Maslov, V.I.
Bilokon, E.O.
Bilokon, V.O.
Levchuk, I.P.
Onishchenko, I.N.
author_sort Maslov, V.I.
title Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches
title_short Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches
title_full Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches
title_fullStr Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches
title_full_unstemmed Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches
title_sort optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Plasma electronics
url http://dspace.nbuv.gov.ua/handle/123456789/194622
citation_txt Optimal resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of electron bunches / V.I. Maslov, E.O. Bilokon, V.O. Bilokon, I.P. Levchuk, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 1. — С. 99-102. — Бібліогр.: 23 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maslovvi optimalresonantasymptoticsofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunches
AT bilokoneo optimalresonantasymptoticsofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunches
AT bilokonvo optimalresonantasymptoticsofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunches
AT levchukip optimalresonantasymptoticsofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunches
AT onishchenkoin optimalresonantasymptoticsofwakefieldexcitationinplasmabynonresonantsequenceofelectronbunches
first_indexed 2025-07-16T22:00:50Z
last_indexed 2025-07-16T22:00:50Z
_version_ 1837842566003818496
fulltext ISSN 1562-6016. ВАНТ. 2019. №1(119) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 99-102. 99 OPTIMAL RESONANT ASYMPTOTICS OF WAKEFIELD EXCITATION IN PLASMA BY NON-RESONANT SEQUENCE OF ELECTRON BUNCHES V.I. Maslov 1,2 , E.O. Bilokon 2 , V.O. Bilokon 2 , I.P. Levchuk 1 , I.N. Onishchenko 1 1 National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine; 2 V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: vmaslov@kipt.kharkov.ua Resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of relativistic electron bunch- es has been numerically simulated. It has been shown that in resonant asymptotics at optimal parameters the wake- field is excited with the maximum growth rate and the amplitude of the excited wakefield is the largest. PACS: 29.17.+w; 41.75.Lx INTRODUCTION As plasma in experiment is inhomogeneous and nonstationary and properties of wakefield changes at increase of its amplitude it is difficult to excite wake- field resonantly by a long sequence of electron bunches (see [1, 2]), to focus sequence (see [3-7]), to prepare sequence from long beam (see [8-10]) and to provide large transformer ratio (see [11-17]). In [2] the mecha- nism has been found and in [18-21] investigated of res- onant plasma wakefield excitation by a nonresonant sequence of short electron bunches. The frequency syn- chronization results by defocusing of those bunches which fall into a wrong phase with respect to the wave. In [6] it has been shown that nonresonant wakefield also can effectively focuses the bunches. Here results are presented on 2.5D numeral simulation by code LCODE [22] of resonant asymptotics of wakefield excitation in plasma by non-resonant sequence of relativistic electron bunches. Under resonant asymptotics we mean the exci- tation of the wakefield with the maximum growth rate, when the non-resonant sequence has already self- cleaned so that the interaction of the excited wakefield with the bunch electrons in the acceleration phases is negligible. Then the wakefield grows with steps. 1. MODEL OF NUMERICAL SIMULATION We consider the wakefield excitation, when initially the plasma density n0e is a little smaller than resonant one n0e<nres(=m 2 me/4e 2 ) (m is the repetition frequen- cy of bunches). I.e. we consider the non-resonant case, when m is a little larger the plasma frequency m>p. We consider the conditions at which the largest wake- field amplitude is excited and largest its growth rate is obtained. We use the cylindrical coordinate system (r, z). Time  is normalized on ωpe -1 , distance – on c/ωpe, density  on nres, beam current Ib – on Icr=mc 3 /4e, fields – on (4nresc 2 me) 1/2 . Parameters are taken close to those of plasma wake- field experiments [23]. 2. RESULTS OF NUMERICAL SIMULATION We first consider the wakefield excitation in a plas- ma of length 1.67 m by first 28 bunches of finite length (at half-height) b=0.2 (Fig. 1). One can see that 11-th and 12-th bunches are similar to the first bunch, and they just lead to the next increase in the amplitude of the wakefield (Fig. 2). From Fig. 2 one can see that after point, where the maximum wakefield amplitude is reached (Fig. 3), it grows approximately by step. This means that the intermediate bunches are defocused and do not interact with the wakefield. At the same time, bunches, which excite the wakefield, at the point of reaching maximum amplitude have parameters close to those which they had at the point of their injection. Fig. 1. Temporal evolution of the beam density at γb=5; (ne-nres)/nres=-0.15, b=0.2, Ib=0.526·10 -3 , z=1.33m Fig. 2. The on-axis wakefield excitation Ez (red), <E>=∫dr r Eznb/∫dr rnb (black) and density of bunches on the axis nb=nb(r=0) (yellow) as a function of the time τ for γb=5, b=0.2, Ib=0.526·10 -3 , z=1.33m by train of 28 bunches in the nonresonant case (ne-nres)/nres=-0.15 mailto:vmaslov@kipt.kharkov.ua 100 ISSN 1562-6016. ВАНТ. 2019. №1(119) Fig. 3. The amplitude of Ez as a function of the coordi- nate along the plasma at γb=5; (ne-nres)/nres=-0.15, b=0.2, Ib=0.526·10 -3 From Fig. 3 one can see that the maximum ampli- tude of excited wakefield is reached at a depth, equal z=83 cm. This depth corresponds to approximately 8 wavelengths. At this depth, the electrons of the bunches from the accelerating phases have been defocused such strongly that their interaction with wakefield can be neglected. At the same time, the radii of the decelerated bunches are approximately initial (Fig. 4). In the vicinity of the injection point, both the heads of the first bunches at the beginning of each wakefield beating, and the tails of the last bunches at the end of each beginning are under the action of a radial force of approximately equal Fr≈0 (Figs. 5, 6). And the tails of the first bunches at the beginning of each beating and the head of the last bunches at the end of each beating are under the effect of a weak focusing force (see Figs. 5, 6). Fig. 4. Ez2=Ez(r=rb) (red), the radial wake force Fr (dark blue), nb2=nb(r=rb) (yellow), and radius of bunches rb (blue) as a function of the time for γb=5; (n0e-nres)/nres=-0.15, b=0.2, Ib=0.526·10 -3 , z=1.33m Fig. 5. Ez2 (red), Fr (dark blue), nb2 (yellow) and rb (blue) as a function of the time for γb=5; (n0e-nres)/nres=-0.15, b=0.1, Ib=1.05·10 -3 , z=0.05m. 1-st bunches in the beginning of each beating are shown by arrows Fig. 6. Ez2 (red), Fr (dark blue), nb2 (yellow), and rb (blue) of Nb=20 bunches as a function of the time for γb=5; (n0e-nres)/nres=-0.35, b=0.05, Ib=1.56·10 -3 , z=1.0m. 4 bunches, which excite wakefield, are shown by arrows ISSN 1562-6016. ВАНТ. 2019. №1(119) 101 Taking into account that all beats at the beginning are the same and identical, the impression is that there is a symmetry between the behavior of the bunches at the beginning and at end of each beating. However, this symmetry is quickly violated, because with an increase of the wakefield amplitude, the beats are shortened. Thus, the bunches at the ends of the beats, which were in Fr ≈ 0, get into the final Fr. This gives an advantage to the first bunches at the beginning of each beating and the hope to find the opti- mum, taking into account that all bunches get a large defocusing impulse, and the 1st bunches at the begin- ning of each beating get a small focusing impulse. Op- timal case corresponds to the case when the accelerated bunches are defocused as far as possible from the region of interaction with the wakefield Ez. In this case, the decelerating bunches does not have time to be signifi- cantly defocused, because they get into the phases of small Fr. And the remaining bunches get into the phases of large Fr. It can be assumed that the optimal case (the maximum amplitude of the wakefield and the maximum its growth rate) corresponds to the case when many bunches have already defocused, and those that lead to the growth of the wakefield were initially primarily fo- cused, and then expanded to approximately the initial radius. Since bunches at a large distance are expanded both in the defocusing and in the focusing fields, then the wakefield is excited effectively by the bunches which are under Fr≈0. If the bunches are very thin discs, then we can assume that the optimal case corresponds to the case when many bunches have already defocused, and those that lead to the stepwise growth of the wakefield have an initial radius, since they are in Fr0 (see Fig. 6). It is also important, under what radial forces are the bunches when they move through the plasma. Those bunches that intensively excite the wakefield are not always in the focusing field during moving. They can move under the action of an alternating field, which varies in the vicinity of Fr0. I.e. they can first be under the action of a small focusing field Fr>0, then in Fr≈0, then under the action of a small defocusing field Fr<0. There is a fundamental difference between resonant and nonresonant regimes. Namely, in the resonance case, only the 1st bunch is focused, while the remaining heads of bunches are defocused, and the tails of bunches are focused. In the nonresonant case m>p, all the bunches on the fronts of the beats are focused, and the remaining comparatively short bunches are strongly defocused. CONCLUSIONS So, it has been shown by numerically simulated that in resonant asymptotics of wakefield excitation in plas- ma by non-resonant sequence of relativistic electron bunches at optimal parameters the wakefield is excited with the maximum growth rate and the amplitude of the excited wakefield is the largest. Up to resonant asymp- totics the non-resonant sequence has already self- cleaned so that the interaction of the excited wakefield with the bunch electrons in the acceleration phases is negligible. Then the wakefield grows approximately with steps. REFERENCES 1. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. Simulation of plasma wakefield excitation by a se- quence of electron bunches // Problems of Atomic Sci- ence and Technology. Ser. “Plasma Physics”. 2008, № 6, p. 114-116. 2. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. Resonant excitation of plasma wakefield by a nonreso- nant train of short electron bunches // Plasma Phys. Cont. Fus. 2010, v. 52, № 6, p. 065009. 3. K.V. Lotov, V.I. Maslov, I. N.Onishchenko et al. Homogeneous Focusing of Electron Bunch Sequence by Plasma Wakefield // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2012, № 3, p. 159- 163. 4. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Plas- ma Wakefield Excitation, Possessing of Homogeneous Focusing of Electron Bunches // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2013, № 1, p. 134-136. 5. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Fields excited and providing a uniform focusing of short relativistic electron bunches in plasma // East European Journal of Physics. 2014, v. 1, № 2, p. 92-95. 6. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Focus- ing of Relativistic Electron Bunches by Nonresonant Wakefield Excited in Plasma // Problems of Atomic Sci- ence and Technology. Ser. “Plasma Physics”. 2015, № 4, p. 120-123. 7. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Focus- ing by Wakefield and Plasma Focusing of Relativistic Electrons in Dependence on Parameters of Experiments // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2016, № 3, p. 62-65. 8. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. 2d3v Numerical Simulation of Instability of Cylindrical Relativistic Electron Beam in Plasma // Problems of Atomic Science and Technology. Ser. “Plasma Phys- ics”. 2010, № 4, p. 12-16. 9. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. To the Mechanism of Instability of Cylindrical Relativistic Electron Beam in Plasma // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2011, № 1, p. 83-85. 10. V.A. Balakirev, I.N. Onishchenko, V.I. Maslov. Instability of finite radius relativistic electron beam in plasma // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2011, № 3, p. 92-95. 11. K.V. Lotov, V.I. Maslov, I.N. Onishchenko. Trans- former Ratio in Wake-Field Method of Acceleration for Sequence of Relativistic Electron Bunches // Problems of Atomic Science and Technology. Ser. “Plasma Phys- ics”. 2010, № 4, p. 85-89. 12. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Transformer Ratio at Interaction of Long Sequence of Electron Bunches with Plasma // Problems of Atomic Science and Technology. Ser. “Plasma Phys- ics”. 2011, № 3, p. 87-91. 13. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Transformer Ratio at Excitation of Nonlinear Wakefield in Plasma by Shaped Sequence of Electron Bunches 102 ISSN 1562-6016. ВАНТ. 2019. №1(119) with Linear Growth of Charge // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2012, № 4, p. 128-130. 14. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Wakefield Excitation in Plasma by Sequence of Shaped Electron Bunches // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2012, № 6, p. 161- 163. 15. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Trans- former Ratio at Wakefield Excitation by Linearly Shaped Sequence of Short Relativistic Electron Bunches // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2015, № 6, p. 37-41. 16. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Trans- former Ratio at Wakefield Excitation in Dissipative Media by Sequence of Electron Bunches // Problems of Atomic Science and Technology. Ser. “Plasma Phys- ics”. 2017, № 6, p. 43-46. 17. D.S. Bondar, I.P. Levchuk, V.I. Maslov, I.N. Onishchenko. Transformer Ratio Dependence on Bunch Length at Non-Linear Wakefield Excitation in Plasma by Electron Bunch with Gaussian Charge Dis- tribution // East Eur. J. Phys. 2018, v. 5, № 2, p. 72-77. 18. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. 2.5D simulation of plasma wakefield excitation by a nonresonant chain of relativistic electron bunches // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2010, № 2, p. 122-124. 19. V. Lotov, V.I. Maslov, I.N. Onishchenko, et al. To Plasma Wakefield Excitation by a Nonresonant Se- quence of Relativistic Electron Bunches at Plasma Fre- quency above Bunch Repetition Frequency // Problems of Atomic Science and Technology. Ser. “Plasma Phys- ics”. 2010, №6, p. 114-116. 20. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, Long Sequence of Relativistic Electron Bunches as a Driver in Wakefield Method of Charged Particles Acceleration in Plasma // Problems of Atomic Science and Technolo- gy. Ser. “Plasma Physics”. 2010, № 6, p. 103-107. 21. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Mechanisms of Synchronization of Rela- tivistic Electron Bunches at Wakefield Excitation in Plasma // Problems of Atomic Science and Technology. 2013, Ser. “Plasma Physics”. № 4, p. 73-76. 22. K.V. Lotov. Simulation of ultrarelativistic beam dynamics in plasma wake-field accelerator // Phys. Plasmas. 1998, v. 5, № 3, p. 785-791. 23. А.К. Berezin, Ya.B. Fainberg, V.A. Kiselev et al. Wakefield excitation in plasma by relativistic electron beam, consisting regular chain of short bunches // Fizika Plasmy. 1994, v. 20, № 7, 8, p. 663-670 (in Russian). Article received 12.09.2018 ОПТИМАЛЬНАЯ РЕЗОНАНСНАЯ АСИМПТОТИКА ВОЗБУЖДЕНИЯ КИЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМЕ НЕРЕЗОНАНСНОЙ ПОСЛЕДОВАТЕЛЬНОСТЬЮ ЭЛЕКТРОННЫХ СГУСТКОВ В.И. Маслов, Э.О. Билоконь, В.О. Билоконь, И.П. Левчук, И.Н. Онищенко Численно промоделирована резонансная асимптотика возбуждения в плазме кильватерного поля нерезо- нансной последовательностью релятивистских электронных сгустков. Показано, что в резонансной асимп- тотике при оптимальных параметрах кильватерное поле возбуждается с максимальным инкрементом, а ам- плитуда возбуждаемого кильватерного поля наибольшая. ОПТИМАЛЬНА РЕЗОНАНСНА АСИМПТОТИКА ЗБУДЖЕННЯ КІЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМІ НЕРЕЗОНАНСНОЮ ПОСЛІДОВНІСТЮ ЕЛЕКТРОННИХ ЗГУСТКІВ В.І. Маслов, Е.О. Білоконь, В.О. Білоконь, І.П. Левчук, І.М. Онiщенко Чисельно промодельована резонансна асимптотика збудження в плазмі кільватерного поля нерезонанс- ною послідовністю релятивістських електронних згустків. Показано, що в резонансній асимптотиці при оп- тимальних параметрах кільватерне поле збуджується з максимальним інкрементом, а амплітуда збуджува- ного кільватерного поля найбільша. mailto:elyabilokon@gmail.com mailto:elyabilokon@gmail.com