Development of plasma and ion beam technology for material engineering at NCBJ
The Plasma/Ion Beam Technology Division is one of several laboratories forming the Material Physics Department at the NCBJ in Świerk, Poland. Scientific activity of the Division concerns different aspects of research related to material engineering, surface engineering, functional properties charact...
Saved in:
Date: | 2019 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Series: | Вопросы атомной науки и техники |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/194623 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Development of plasma and ion beam technology for material engineering at NCBJ / K. Nowakowska-Langier // Problems of atomic science and technology. — 2019. — № 1. — С. 103-107. — Бібліогр.: 36 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194623 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1946232023-11-27T21:30:46Z Development of plasma and ion beam technology for material engineering at NCBJ Nowakowska-Langier, K. Low temperature plasma and plasma technologies The Plasma/Ion Beam Technology Division is one of several laboratories forming the Material Physics Department at the NCBJ in Świerk, Poland. Scientific activity of the Division concerns different aspects of research related to material engineering, surface engineering, functional properties characterization, as well as synthesis and modification of different materials.Plasma surface engineering methods like cathodic arc UHV deposition and pulsed magnetron sputtering methods as well as ion beam implantation methods are intensively exploited and developed in our laboratory. Відділення плазмових та іонно-пучкових технологій - одна з лабораторій відділу фізики матеріалів НЦЯД у Свєрці, Польща. Наукова діяльність відділення пов’язана з різними аспектами досліджень у галузі матеріалознавства, технології поверхні, визначення характеристик функціональних властивостей, а також синтезу й модифікації різних матеріалів. У лабораторії активно використовуються та розробляються методи плазмової обробки поверхні, такі як катодно-дугове осадження за надвисокого вакууму (UHV deposition), та методи імпульсного магнетронного розпилення, а також методи іонної імплантації. Отделение плазменных и ионно-пучковых технологий - одна из лабораторий отдела физики материалов НЦЯИ в Сверке, Польша. Научная деятельность отделения связана с различными аспектами исследований в области материаловедения, технологии поверхности, определения характеристик функциональных свойств, а также синтеза и модификации различных материалов. В лаборатории активно используются и разрабатываются методы плазменной обработки поверхности, такие как электронно-дуговое осаждение при сверхвысоком вакууме (UHV deposition), методы импульсного магнетронного распыления, а также методы ионной имплантации. 2019 Article Development of plasma and ion beam technology for material engineering at NCBJ / K. Nowakowska-Langier // Problems of atomic science and technology. — 2019. — № 1. — С. 103-107. — Бібліогр.: 36 назв. — англ. 1562-6016 PACS: 52.50.Dg; 52.58.Lq; 52.59.Hq; 52.40.Hf; 52.70.-m http://dspace.nbuv.gov.ua/handle/123456789/194623 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Nowakowska-Langier, K. Development of plasma and ion beam technology for material engineering at NCBJ Вопросы атомной науки и техники |
description |
The Plasma/Ion Beam Technology Division is one of several laboratories forming the Material Physics Department at the NCBJ in Świerk, Poland. Scientific activity of the Division concerns different aspects of research related to material engineering, surface engineering, functional properties characterization, as well as synthesis and modification of different materials.Plasma surface engineering methods like cathodic arc UHV deposition and pulsed magnetron sputtering methods as well as ion beam implantation methods are intensively exploited and developed in our laboratory. |
format |
Article |
author |
Nowakowska-Langier, K. |
author_facet |
Nowakowska-Langier, K. |
author_sort |
Nowakowska-Langier, K. |
title |
Development of plasma and ion beam technology for material engineering at NCBJ |
title_short |
Development of plasma and ion beam technology for material engineering at NCBJ |
title_full |
Development of plasma and ion beam technology for material engineering at NCBJ |
title_fullStr |
Development of plasma and ion beam technology for material engineering at NCBJ |
title_full_unstemmed |
Development of plasma and ion beam technology for material engineering at NCBJ |
title_sort |
development of plasma and ion beam technology for material engineering at ncbj |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194623 |
citation_txt |
Development of plasma and ion beam technology for material engineering at NCBJ / K. Nowakowska-Langier // Problems of atomic science and technology. — 2019. — № 1. — С. 103-107. — Бібліогр.: 36 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT nowakowskalangierk developmentofplasmaandionbeamtechnologyformaterialengineeringatncbj |
first_indexed |
2025-07-16T22:00:55Z |
last_indexed |
2025-07-16T22:00:55Z |
_version_ |
1837842570155130880 |
fulltext |
LOW TEMPERATURE PLASMA AND PLASMA TECHNOLOGIES
ISSN 1562-6016. ВАНТ. 2019. №1(119)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 103-107. 103
DEVELOPMENT OF PLASMA AND ION BEAM TECHNOLOGY
FOR MATERIAL ENGINEERING AT NCBJ
K. Nowakowska-Langier
Plasma/Ion Beam Technology Division (FM2), Material Physics Department (DFM),
National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland
E-mail: k.nowakowska-langier@ncbj.gov.pl
The Plasma/Ion Beam Technology Division is one of several laboratories forming the Material Physics
Department at the NCBJ in Świerk, Poland. Scientific activity of the Division concerns different aspects of research
related to material engineering, surface engineering, functional properties characterization, as well as synthesis and
modification of different materials.Plasma surface engineering methods like cathodic arc UHV deposition and
pulsed magnetron sputtering methods as well as ion beam implantation methods are intensively exploited and
developed in our laboratory.
PACS: 52.50.Dg; 52.58.Lq; 52.59.Hq; 52.40.Hf; 52.70.-m
INTRODUCTION
The main tools used by our research groups in The
Plasma/Ion Beam Technology Division are plasma and
plasma-related techniques. The plasma surface
engineering, as an important scientific field investigated
at the laboratory, allows improve, modify and develop
modern and unique methods of the material synthesis.
The investigations include also research on plasma
diagnostics, which is important and indispensable part
of studies performed by our teams. Basic features of
plasma-surface interactions, as well as the
characteristics of the plasma generation in various
experimental and technological facilities, are studied
extensively [e.g. 1-6]. Other very important tools used
in our research are ion- and electron-beams produced by
various implantation devices. These corpuscular beams
are considered as a promising technique for
modifications of a material structure, and synthesis of
non-equilibrium structures [e.g. 7-11].
Innovative work is being carried out related to the
development of surface engineering, including the
synthesis of layers of different materials e.g. metallic,
oxide and nitride layers, multi-component and
composite layers [12-14]. Plasma surface engineering
methods are used like cathodic arc UHV deposition and
pulsed magnetron sputtering methods as well as
ion/electron implantation methods. In case of our
methods we still need some improvements and changes
or adaptations which are carried out simultaneously
with conducted study. Synthesis processes of the
materials in case of our research, means the synthesis
from the moment when plasma is generated; and from
the process of nucleation itself, through transport,
growth of layers, structure and properties of the
obtained final structure of materials, at the end. It is
very important to try to get to know the behavior of the
environment, that exists in the conditions that we can
create therefore. It worth to notice that plasma
diagnostics techniques are very helpful in our
development. Everything is very important when it
comes to the development of this scientific domain that
is plasma and ion beam technology for material
engineering.
1. PLASMA TECHNOLOGY
1.1. PLASMA IN PULSE PROCESS
The studies implemented in the area of plasma
technology are focused on the synthesis of non-
equilibrium structures in chosen materials and
determination of their influence on the material
properties, as well as on the synthesis of completely
new materials. Studies perform by this groups are also
focused on the development of plasma surface
engineering techniques.
The main potential is no-equilibrium plasma and the
use of pulsed plasma glow discharge in a magnetron
system (pulsed glow discharge assisted by magnetic
field) [e.g. 4, 5, 13, 14, 19, 21]. Magnetron sputtering is
well known and the most commonly used method for
synthesis of material in the form of layer [e.g. 15-17]. In
our studies we focus on the use of conditions that
increase the degree of thermodynamic non-equilibrium
of plasma and at the same time can exploit of other
forms of energy in the synthetic process, by use of
pulsed changeable condition of generation [18-21].
The one of example is the PMS process (pulse
magnetron sputtering) [e.g. 19, 21]. This technique
provides the ability to initiate a discharge in a pulsed
manner by the task of electric impulses of medium order
of 100 kHz; using a voltage exceeding the voltage
corresponding to the characteristics of glow discharge
(Paschen curve [22]), thus providing a non-equilibrium
conditions during the synthesis of the material. A
second variant provides for the use of a new method of
plasma generation causing the intensification of this
nonequilibrity (that provides PMS), by using pulsed
changeable concentration of working gas particles
(pulsed gas injection). It is a solution that has been
recently introduced to the knowledge, is involve the use
of a pulsed changeable concentration of the working gas
particles during the synthesis process. In standard
operating conditions during the process, plasma
working gas is delivered continuously and its pressure is
of the order of 10
0
…10
1
Pa. The continuous way of the
gas supply (constant concentration of gas particles
during the synthesis process) was replaced by the pulsed
mailto:k.nowakowska-langier@ncbj.gov.pl
104 ISSN 1562-6016. ВАНТ. 2019. №1(119)
gas injection that works as a gate for the electric circuit.
Pulsed changeable concentration of gas during the
synthesis process, allows to work in conditions of
reduced gas pressure (~10
-4
Pa) which changes the
intensity of the elementary phenomena characteristic for
synthesis. Therefore recently proposed, in the case of
magnetron sputtering method, the glow discharge by the
pulsed gas injection, resulted in a new type of pulsed
process GIMS ("Gas Injection Magnetron Sputtering")
[23-25]. This method from the point of application are
characterized by big improvements of adhesion of the
layers, obtained on a cold, not heated substrate. In our
laboratory we use two kinds of magnetron sputtering
technique that are characterized by above mentioned
pulse process. It is pulsed magnetron sputtering (PMS)
and gas injection magnetron sputtering method (GIMS).
Examples of some conducted research in the domain of
the synthesis and characterization of various layers
deposited upon chosen materials will be discussed
below.
1.2. IMPACT OF PULSE PLASMA ON
MORPHOLOGY AND PHASE COMPOSITION
It is known that typical structure obtained by
magnetron sputtering method is characterised by
columnar structure [26]. The morphology of structure
depends on temperature of the substrate material,
pressure and energy. Therefore, it can be modified As
reported by the results of our previous research, we are
able to succeed in eliminating the columnar structure of
layers of various materials. Example are shown in Fig. 1
and Fig. 2. Figures show a cross section views of
aluminium nitride and copper nitride layers obtained
during different magnetron sputtering synthesis
processes. As one can see we can synthetize structure
without columns by using a different frequency of
modulation (PMS) as well as in case of pulse gas
injection (GIMS) [14].
Fig. 1. Cross section view of different structure of the
AlN layers obtained by magnetron sputtering technique
In case of the structure of copper nitride layers in
most of cases the structures are columnar one. But some
process parameters are favourable to finer columnar
structure, and also structure without columns. Finally,
the received finer structure of the Cu-N layers improved
the nanohardness properties [27].
The GIMS synthesis allows the ability to control the
phase composition in a final structure of layers. For
example, in titanium oxide layers, depending on the
pulsed process parameters we can obtain anatase or/and
rutile structure [25, 27]. Therefore, taking into account
the properties of these two phases and possibility of
technology we can control the nanohardness properties
of the layers [25]. We can also control the decoration
effects [25, 28] as is shown on Fig. 3.
Fig. 2. Cross section view of different morphology of the
Cu-N layers obtained by magnetron sputtering with
different frequency of modulation
Fig. 3. Photography of coloured Ti/Ti-O layers
deposited on polymer substrates by used a PMS and
GIMS method
In case of PMS synthesis influence of different
frequency modulation on phase compositions of copper
nitride layers were observed. Cu3N is a metastable
phase, very difficult to synthesis because of the low
temperature decomposition. there is very difficult to
obtain a one phase structure of layers. The using a
various frequency modulation with combination of other
process parameters, allowed us for the control of phase
composition. But in this case of investigation plasma
diagnostics, optical emission spectroscopy, was very
helpful [14]. These studies allowed to propose
dependence between the process parameters and phase
structure. They allowed the estimation of the range of
process parameters favouring the synthesis of single-
phase copper nitride, and two-phase material with
additions of pure copper [14].
1.3. OPTIMIZATION OF CATHODIC ARC
DEPOSITION FOR GROWING SMOOTH
SUPERCONDUCTING PB PHOTOEMISSIVE
LAYERS
The cathodic arc deposition is a well-known method.
It is one of the first method of plasma technology used
in our institute. The method has been developed and
improved for years. Currently, the main goal of research
conducted with the use of this method are investigation
concerning optimization of synthesis process for
growing smooth superconducting photoemissive layers.
As one know the technological problem in the arc
method is the production of microdroplets and their
gathering on the surface of the layers. That phenomenon
AlN
AlN
AlN
PMS
GIMS
200nm
10 Hz 250 Hz 1000 Hz
Cu-N
ISSN 1562-6016. ВАНТ. 2019. №1(119) 105
prevents achieving a flat, low roughness surface. There
are two generic approaches to microdroplet elimination:
removal from the plasma flux on its way from the
cathode to the substrate with various filtering methods,
or by using a postdeposition processes leading to the
droplets melting, dissolution and surface flattening. To
achieve a sufficiently low roughness, several methods
based on these approaches have been tested.
Over the years we’ve used different configuration of
various cathodic arc filtering systems for elimination of
micro-droplets [29, 30]. Finally, we are able to obtain a
good smooth lead layers. The first experiments included
the micro-droplets removal from a lead plasma stream
was attempted by separating the cathode and substrate
with a plane slit or a chicane [31, 32]. Both filters
blocked the plasma streams straight towards the
substrate and enabled a sharply bent path through
apertures. Unfortunately, the deposition rate was to low
[32] and a long deposition time caused a large amount
of Pb to stick to the filters and to the arc chamber wall.
Additionally, the use of such a system excluded
application of constant voltage bias between the arc
chamber and the substrate. This resulted in a very low
energy of ions, and finally leads to insufficient film
adhesion. The next approach was based on magnetic
filtering. That method had been previously used
successfully for arc deposition of niobium layers on to
copper walls of accelerating cavities [23, 24, 33, 34].
For Pb/Nb layers, a bent knee-like magnetic filter has
been developed and inserted between the arc cathode
and a substrate.The target was biased relative to the
grounded wall to accelerate ions to improve the
adhesion. It was concluded from the experiments with
mechanical and magnetic filters that tight filtering is
required to eliminate droplets during the deposition. On
the other hand, the film clean lines requires a high
deposition rate, which in turn demands loosening of the
filtering and in evitable entails micro-droplet deposition
and unacceptable surface roughness. This contradiction
excluded the use of a filtering-based approach to smooth
surface preparation and pointed to using a simple planar
UHV arc geometry without any flux damping, but
supplemented by a postdeposition treatment. The
applicability of two approaches was compared in terms
of the achieved surface flatness: filtered arc deposition
and direct arc deposition followed by a surface
treatment [35]. Currently our investigations resulted in
an optimal, repeatable procedure for Pb/Nb film
photocathode preparation that consists of direct cathodic
arc deposition of layers, followed by the pulsed plasma
melting [35]. The sample surface roughness reached in
this way is 1μm in amplitude. The recent achievements
and progress in smoothness of the Pb coatings were
realize with a new setup. The position of the substrate
montage was changed. Now the substrate is mounted
perpendicular to the axis of arc. Obtained results show a
considerable improvement of the roughness and
significant reduction of micro-droplets (Fig. 4). We
obtained a very smooth layers with the roughness of
about 10 nm. The obtained results is a great success of
our laboratory. The properties of the layers are currently
being studied.
Fig. 4. Topography of Pb layers obtained by cathodic
arc deposition. (A) directly after deposition process with
using a simple planar UHV arc geometry, (B) direct
arc deposition followed by a surface treatment post-
process, (C) directly after deposition process with
different configuration of substrate montage
2. ION BEAM TECHNOLOGY
Ion implantation is a low-temperature process by
which ions of one element are accelerated into a solid
target, thereby changing the physical, chemical, or
electrical properties of the implanted material. This
technology is considered as promising modification
method of different materials especially in case of
semiconductor materials and is studied by many
research groups.
In our laboratory runs research on material
modifications, which covers issues related with the
modification of different material surfaces by means of
ion beams [7-9].
The most interesting investigations concerning the
ion beam technology include the study of the ion
implantation doping of semiconducting the zirconium
oxide layers. ZnO is probably the most extensively
studied semiconductor over the last decade. Primarily,
due to the fact that it is a promising material for
optoelectronic and microelectronic applications [36].
With this respect ZnO is expected to be a cheaper
replacement for GaN. The depth distribution of dopant
and their concentration is precisely controlled in ion
implantation technique, but the ballistic nature of this
process produces lattice damage.
Moreover, in the as-implanted stage most of dopants
are optically inactive. Therefore, annealing leading to
the lattice recovery and optical activation of dopants is
necessary.
The ZnO layers are implanted by rare Earth elements
and this modification finally causes a very good optical
properties of the material. Currently, very promising
research in this field is carried out concerning
optimization of technology, optimization of heating
post-processes and investigation of influences of
implantation on the structure [7-9].
The other example can be study concerning to the
ion irradiation as an interesting method of modification
of elastomers [11]. In this case we use a gaseous ion
implantation for Improvement of functional properties.
Fig. 5 shows a cross section view of morphology before
and after irritation. As results a 4 – 6 folds reduction of
SIGNIFICANT REDUCTION OF MICRODROPLETS
A
B C
106 ISSN 1562-6016. ВАНТ. 2019. №1(119)
friction forces and 9-folds improvements of
nanohardness of elastomers were obtained. Finally, the
improves of the functional properties of the material
were achieve.
Fig. 5. A cross section view of morphology of elastomer
before and after irritation process. Irradiated 160 keV
HE
+
, 3E16C
2
ACKNOWLEDGEMENTS
Works conducted in the FM2 division were
supported by the National Science Centre within the
Projects 2014/15/B/ST8/01692, 2013/09/B/HS3/03289,
2016/23/N/HS3/03160, 301719/2016-2019, the National
Centre for Research and Development within the
Projects PBS2/A5/34/2013, PBS3/B6/24/2015 and the
Polish Ministry of Science and Higher Education from
the Science Found projects: 3418/SPIRIT/2015/0,
W46/SPIRIT/2017 and HZDR: 17000973-ST,
17001078-ST.
REFERENCES
1. K. Nowakowska-Langiera, R. Chodun, K. Zdunek,
S. Okrasa, R. Kwiatkowski, K. Malinowski,
E. Skladnik-Sadowska, M.J. Sadowski. OES studies of
plasmoids distribution during the coating deposition
with the use of the Impulse Plasma Deposition method
controlled by the gas injection // Vacuum. 2016, v. 128,
p. 259-264.
2. K. Nowakowska-Langier, K. Zdunek, R. Chodun,
S. Okrasa, R. Kwiatkowski, K. Malinowski, E. Składnik-
Sadowska, M.J. Sadowski, et al. On coatings adhesion
during the Impulse Plasma Deposition // Phys. Scr. 2014,
№ 25, v. T161, p. 014063.
3. K. Nowakowska-Langier, L. Jakubowski,
E.O. Baronova, K. Czaus, M. Rabiński, M.J. Jakubowski.
Observations of extreme ultraviolet emission from plasma
produced by capillary discharges // Eur. Phys. J. D. 2009,
№ 54, p. 377-382.
4. B. Wicher, R. Chodun, K. Nowakowska-Langier,
S. Okrasa, M. Trzciński. Relation between modulation
frequency of electric power oscillation during pulse
magnetron sputtering deposition of MoNx thin films //
Applied Surface Science. 2018, № 456, p. 789-796.
5. K. Zdunek, R. Chodun, B. Wicher, K. Nowakowska-
Langier, S. Okrasa. Characterization of sp [3] bond
content of carbon films deposited by high power gas
injection magnetron sputtering method by UV and VIS
Raman spectroscopy // Spectrochim Acta. 2018, v. 194,
p. 136-140.
6. R. Chodun, K. Nowakowska-Langier, K. Zdunek,
P. Konarski, S. Okrasa. Characteristic STATE of
substrate and coatings interface formed by Impulse
Plasma Deposition method // Thin Solid Films. 2018,
№ 663, p. 25-30.
7. R. Ratajczak, E. Guziewicz, S. Prucnal, G. Łuka,
R. Böttger, R. Heller, C. Mieszczyński, W. Wozniak,
A. Turos. Luminescence in the visible region from
annealed thin ALD-ZnO films implanted with different
Rare Earth ions // Phys. Status Solidi A. 2018,
p. 1700889.
8. R. Ratajczak, S. Prucnal, E. Guziewicz,
C. Mieszczyński, D. Snigurenko, M. Stachowicz,
W. Skorupa, A. Turos. The photoluminescence response
to structural changes of Yb implanted ZnO crystals
subjected to non-equilibrium processing // J. Appl. Phys.
2017, v. 121, p. 075101.
9. R. Ratajczak, C. Mieszczyński, S. Prucnal,
E. Guziewicz, M. Stachowicz, D. Snigurenko, J. Gaca,
M. Wójcik, R. Böttger, R. Heller, W. Skorupa,
J.V. Borany, A. Turos. Structural and optical studies of
Pr implanted ZnO films subjected to a long-time or
ultra-fast thermal annealing // Thin Solid Films. 2017,
v. 643, p. 24-30.
10. J. Jagielski, L. Thomé, A. Chartier, O. Dorosh,
C. Mieszczyński, I. Jozwik. Damage accumulation studies in
ion-irradiated oxides: Current status and new perspectives //
Nucl. Instr. and Meth. B. 2018, v. 435, p. 2-7.
11. J. Jagielski, A. Kosińska, U. Ostaszewska,
M. Romaniec, Ł. Kurpaska, I. Jóźwik. Ion-irradiated
butadiene acrylonitrile rubber reinforced with graphene
filler // Nucl. Instr. and Meth. B. 2018, v. 3, p. 26.
12. K. Nowakowska-Langier, K. Zdunek.
Nanostructured alloy layers with magnetic properties
obtained by the impulse plasma deposition // Plasma
Proc. Polymers. 2009, v. 6, № S1, p. 826.
13. K. Nowakowska-Langier, R. Chodun, R. Minikayev,
S. Okrasa, G. Strzelecki, B. Wicher, K. Zdunek. Phase
composition of copper nitride coatings examined by the
use of X-ray diffraction and Raman spectroscopy // J.
Mol. Struct. 2018, v. 1165, p. 79-83.
14. K. Nowakowska-Langier, R. Chodun, S. Okrasa,
G. Strzelecki, K. Zdunek, R. Minikayev. Copper nitride
layers synthesized by pulsed magnetron sputtering //
Thin Solid Films. 2018, v. 645, p. 32-37.
15. R. Cremer, M. Witthaut, D. Neuschutz, C. Trappe,
M. Laurenzis, O. Winkler, H. Kurz // Mikro. Acta A.
2000, v. 133, p. 299.
16. K.J. Kim, J.H. Kim, J.H. Kang // J. Crystal Growth.
2001, v. 222, p. 767.
17. X. Li, Q. Bai, J. Yang, Y. Li, L. Wang, H. Wang,
S. Ren, S. Liu, W. Huang // Vacuum. 2013, v. 89, p. 78-81
(in Russian).
18. K. Zdunek, K. Nowakowska-Langier, et al.
Properties of tin coatings deposited by the modified ipd
method // Vacuum. 2010, v. 85, p. 514(in Russian).
19. K. Nowakowska-Langier, R. Chodun, R. Nietubyć,
R. Minikayev, K. Zdunek. Dependence of the specific
features of two PAPVD method: Impulse Plasma
Deposition (IPD) and Pulsed Magnetron Sputtering
Irradiated, 160 keV He+, 3e16 cm-2
MODIFIED SURFACE
BEFORE IRRADIATION
ISSN 1562-6016. ВАНТ. 2019. №1(119) 107
(PMS) on the structure of Fe-Cu alloy layers // Appl.
Surf. Sci. 2013, № 30, v. 275, p. 14-18.
20. K. Nowakowska-Langier, R. Chodun, K. Zdunek.
Synthesis of multicomponent metallic layers during
impulse plasma deposition // Materials Science-Poland.
2015, № 15, v. 33(3), p. 841-846.
21. K. Zdunek, K. Nowakowska-Langier, R. Chodun,
S. Okrasa, M. Rabiński, J. Dora, P. Domanowski,
J. Halarowicz. Impulse Plasma in Surface Engineering -
a review // J. Phys. Conf. 2014, v. 564, p. 012007.
22. F. Paschen // Annalen der Phys. und Chemie. 1889,
№ 273, p. 69.
23. K. Zdunek, K. Nowakowska-Langier, J. Dora,
R. Chodun. Gas injection as a tool for controling plasma
process during coating deposition // Surf. Coat. Technol.
2013, № 35, v. 228, p. S367- S373.
24. K. Zdunek, R. Chodun, L. Skowronski,
K. Nowakowska-Langier, S. Okrasa, et al. Novel GIMS
technique for deposition of coloured Ti/TiO2 coatings in
industrial scale // Materials Science-Poland. 2015, v. 15.
25. L. Skowronski, R. Chodun, K. Nowakowska-
Langier, K. Zdunek, Ł. Kurpaska, et al. Characterisation
of microstructural, mechanical and optical properties of
TiO2 layers deposited by GIMS and PMS methods //
Surf. Coat. Technol. 2015, № 35, v. 282, p. 16-23.
26. J. Thornton // J. Vac. Sci. Technol. 1974, v. 11,
p. 666.
27. K. Nowakowska-Langier, R. Chodun, R. Minikayev,
L. Kurpaska, L. Skowronski, G. Strzelecki, S. Okrasa,
K. Zdunek. Structure of Cu–N layers synthesized by
pulsed magnetron sputtering with variable frequency of
plasma generation // Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with
Materials and Atoms. 2017, v. 409, p. 167-170.
28. R. Choduna, L. Skowronskib, S. Okrasaa,
B. Wichera, K. Nowakowska-Langierc, K. Zduneka.
Optical TiO2 layers deposited on polymer substrates by
the Gas Injection Magnetron Sputtering technique //
Applied Surface Science. 2019, v. 466, p. 12-18.
29. R. Nietubyć, J. Lorkiewicz, A. Kosińska, M. Barlak,
Ja. Sekutowicz, D. Kostin, R. Barday, R. Xiang,
R. Mirowski, J. Witkowski, W. Grabowski. Coating and
processing of thin lead layers on niobium for
photocathodes in superconducting RF electron injectors
// Phys. Scr. 2015, v. 25.
30. R. Nietubyć, J. Lorkiewicz, J. Sekutowicz,
J. Smedley, A. Kosińska. Optimization of cathodic arc
deposition and pulsed plasma melting techniques for
growing smooth superconducting Pb photoemissive
films for SRF injectors // Nucl. Instr. Meth. A. 2018,
v. A 891, p. 78-86.
31. R. Nietubyć, J. Lorkiewicz, R. Mirowski, M. Barlak,
J. Witkowski, J. Sekutowicz. Recent development in
optimization of superconducting thin film lead
photocathodes at NCBJ in Świerk // Proc. SPIE. 2013,
v. 8903, p. 89032B.
32. J. Lorkiewicz, R. Nietubyć, M. Barlak, R. Mirowski,
A. Bartnik, J. Kostecki, J. Sekutowicz, A. Malinowska,
P. Kneisel, J. Witkowski. Deposition and optimization
of thin lead layers for superconducting accelerator
photocathodes // Phys. Scr. 2014, v. T161, p. 014071.
33. R. Russo, L. Catani, A. Cianchi, D. DiGiovenale,
J. Lorkiewicz, S. Tazzari, C. Granata, P. Ventrello,
G. Lamura, A. Andreone. Nb coating of cavities using
cathodic arc, IEEE // Trans. Appl. Supercond. 2009,
v. 19(3), p. 1394-1398.
34. R. Russo, A. Cianchi, Y. Akhmadeev, L. Catani,
J. Langner, J. Lorkiewicz, R. Pollini, B. Ruggiero,
M.J. Sadowski, S. Tazzari, N.N. Koval. UHV arc for
high quality film deposition // Surf. Coat. Technol.
2006, v. 201(7), p. 3987-3992.
35. A. Kosińska, M. Barlak, D. Derewnicka-
Krawczynska, J. Lorkiewicz, J. Sekutowicz,
R. Nietubyć. Investigation of the intermediate layers
located between niobium substrate and lead films
destined for superconducting photocathodes // Surf.
Coat. Technol. 2018, v. 352, p. 501-507.
36. C. Jagadish, S.J. Pearton. Zinc Oxide Bulk, Thin
Films, and Nanostructures. New York: “Elsevier”, 2006.
Article received 10.01.2019
РАЗВИТИЕ ПЛАЗМЕННЫХ И ИОННО-ПУЧКОВЫХ ТЕХНОЛОГИЙ ДЛЯ МАТЕРИАЛОВЕДЕНИЯ
В НЦЯИ
K. Nowakowska-Langier
Отделение плазменных и ионно-пучковых технологий одна из лабораторий отдела физики материалов
НЦЯИ в Сверке, Польша. Научная деятельность отделения связана с различными аспектами исследований в
области материаловедения, технологии поверхности, определения характеристик функциональных свойств,
а также синтеза и модификации различных материалов. В лаборатории активно используются и
разрабатываются методы плазменной обработки поверхности, такие как электронно-дуговое осаждение при
сверхвысоком вакууме (UHV deposition), методы импульсного магнетронного распыления, а также методы
ионной имплантации.
РОЗВИТОК ПЛАЗМОВИХ ТА ІОННО-ПУЧКОВИХ ТЕХНОЛОГІЙ ДЛЯ МАТЕРІАЛОЗНАВСТВА
У НЦЯД
K. Nowakowska-Langier
Відділення плазмових та іонно-пучкових технологій одна з лабораторій відділу фізики матеріалів
НЦЯД у Свєрці, Польща. Наукова діяльність відділення пов’язана з різними аспектами досліджень у галузі
матеріалознавства, технології поверхні, визначення характеристик функціональних властивостей, а також
синтезу й модифікації різних матеріалів. У лабораторії активно використовуються та розробляються методи
плазмової обробки поверхні, такі як катодно-дугове осадження за надвисокого вакууму (UHV deposition), та
методи імпульсного магнетронного розпилення, а також методи іонної імплантації.
https://www.sciencedirect.com/science/article/pii/S0169433218326977#!
https://www.sciencedirect.com/science/article/pii/S0169433218326977#!
https://www.sciencedirect.com/science/article/pii/S0169433218326977#!
https://www.sciencedirect.com/science/article/pii/S0169433218326977#!
https://www.sciencedirect.com/science/article/pii/S0169433218326977#!
https://www.sciencedirect.com/science/article/pii/S0169433218326977#!
|