Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface

The possibilities of the slow surface electromagnetic waves propagation along the flat boundary of a metasurface with a dissipative dielectric are studied. The metasurface is a thin flat slab of metamaterial with simultaneously negative permittivity and permeability with “amplification”. All media w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2020
Автори: Galaydych, V.K., Sporov, A.E., Olefir, V.P., Azarenkov, N.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2020
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/194638
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface / V.K. Galaydych, A.E. Sporov, V.P. Olefir, N.A. Azarenkov // Problems of atomic science and tecnology. — 2020. — № 6. — С. 30-35. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-194638
record_format dspace
spelling irk-123456789-1946382023-11-28T12:34:07Z Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface Galaydych, V.K. Sporov, A.E. Olefir, V.P. Azarenkov, N.A. Basic plasma physics The possibilities of the slow surface electromagnetic waves propagation along the flat boundary of a metasurface with a dissipative dielectric are studied. The metasurface is a thin flat slab of metamaterial with simultaneously negative permittivity and permeability with “amplification”. All media were assumed to be isotropic. Dispersion dependences are obtained for the eigenmodes of such a waveguide structure. The possibility of full compensation of the energy losses of surface waves by the appropriate choice of the “gains” values is demonstrated. Вивчено властивості повільних поверхневих електромагнітних хвиль, що поширюються уздовж плоскої межі метаповерхні з дисипативним діелектриком. Метаповерхня є вузький плоский шар метаматеріалу з негативними як діелектричною, так і магнітною проникливостями з «підсиленням». Усі середовища вважались ізотропними. Отримано дисперсійні залежності власних мод такої хвилеводної структури. Продемонстровано можливість повної компенсації втрат енергії поверхневих хвиль відповідним вибором значень «підсилень». Изучены свойства медленных поверхностных электромагнитных волн, распространяющихся вдоль плоской границы метаповерхности с диссипативным диэлектриком. Метаповерхность представляет собой узкий плоский слой метаматериала с одновременно отрицательными диэлектрической и магнитной проницательностями с «усилением». Все среды считались изотропными. Получены дисперсионные зависимости для собственных мод такой волноводной структуры. Продемонстрирована возможность полной компенсации потерь энергии поверхностных волн соответствующим выбором значений «усилений». 2020 Article Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface / V.K. Galaydych, A.E. Sporov, V.P. Olefir, N.A. Azarenkov // Problems of atomic science and tecnology. — 2020. — № 6. — С. 30-35. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.35g, 52.50.Dg http://dspace.nbuv.gov.ua/handle/123456789/194638 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Basic plasma physics
Basic plasma physics
spellingShingle Basic plasma physics
Basic plasma physics
Galaydych, V.K.
Sporov, A.E.
Olefir, V.P.
Azarenkov, N.A.
Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface
Вопросы атомной науки и техники
description The possibilities of the slow surface electromagnetic waves propagation along the flat boundary of a metasurface with a dissipative dielectric are studied. The metasurface is a thin flat slab of metamaterial with simultaneously negative permittivity and permeability with “amplification”. All media were assumed to be isotropic. Dispersion dependences are obtained for the eigenmodes of such a waveguide structure. The possibility of full compensation of the energy losses of surface waves by the appropriate choice of the “gains” values is demonstrated.
format Article
author Galaydych, V.K.
Sporov, A.E.
Olefir, V.P.
Azarenkov, N.A.
author_facet Galaydych, V.K.
Sporov, A.E.
Olefir, V.P.
Azarenkov, N.A.
author_sort Galaydych, V.K.
title Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface
title_short Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface
title_full Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface
title_fullStr Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface
title_full_unstemmed Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface
title_sort low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2020
topic_facet Basic plasma physics
url http://dspace.nbuv.gov.ua/handle/123456789/194638
citation_txt Low surface electromagnetic waves at the metasurface ⁄ dissipative dielectric interface / V.K. Galaydych, A.E. Sporov, V.P. Olefir, N.A. Azarenkov // Problems of atomic science and tecnology. — 2020. — № 6. — С. 30-35. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT galaydychvk lowsurfaceelectromagneticwavesatthemetasurfacedissipativedielectricinterface
AT sporovae lowsurfaceelectromagneticwavesatthemetasurfacedissipativedielectricinterface
AT olefirvp lowsurfaceelectromagneticwavesatthemetasurfacedissipativedielectricinterface
AT azarenkovna lowsurfaceelectromagneticwavesatthemetasurfacedissipativedielectricinterface
first_indexed 2025-07-16T22:02:06Z
last_indexed 2025-07-16T22:02:06Z
_version_ 1837842644089176064
fulltext ISSN 1562-6016. ВАНТ. 2020. №6(130) 30 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 30-35. https://doi.org/10.46813/2020-130-030 SLOW SURFACE ELECTROMAGNETIC WAVES AT THE METASURFACE / DISSIPATIVE DIELECTRIC INTERFACE V.K. Galaydych, A.E. Sporov, V.P. Olefir, N.A. Azarenkov V.N. Karazin Kharkiv National University, Kharkiv, Ukraine E-mail: galaydych@karazin.ua The possibilities of the slow surface electromagnetic waves propagation along the flat boundary of a metasurface with a dissipative dielectric are studied. The metasurface is a thin flat slab of metamaterial with simultaneously neg- ative permittivity and permeability with "amplification". All media were assumed to be isotropic. Dispersion de- pendences are obtained for the eigenmodes of such a waveguide structure. The possibility of full compensation of the energy losses of surface waves by the appropriate choice of the “gains” values is demonstrated. PACS: 52.35g, 52.50.Dg INTRODUCTION The noteworthy progress was made in the manufac- turing of metasurface [1, 2] based on the metamaterials [3] during the last years. The metamaterials are com- posite materials consisting of cells that play the role of atoms for electromagnetic disturbances, the wave- length of which is much larger than the cell’s size. For these artificial “substances” it is possible to get such combination of electromagnetic characteristics which so far unknown for natural substances. In particular, it can manage to achieve simultane- ously negative value of permittivity and permeability. Such double negative metamaterials (DNM) are often referred as left-handed materials or negative refractive media. In our previous paper [4] it was demonstrated the full loss compensation for the surface electromagnetic wave that propagates in plane waveguide structure along the interface between the thin layer of the high- permittivity dielectric with strong losses and the iso- tropic DNM material with gain. The aim of this work is to determine the possibility of propagation of the plane slow surface electromag- netic waves in the plane structure consisting of the metasurface and the dissipative dielectric. The task geometry has shown in Fig. 1. Fig. 1. The geometry of problem A dissipative dielectric (DD) possesses the moderate value of power losses. The metasurface we call the one side of a thin flat slab of the metamaterial with "gain" and simultaneously negative both dielectric permittivi- ty and magnetic permeability. At another side, this metamaterial layer is adjacent to dissipative dielectric material. Similarly to our previous paper [4] it was assumed the existence of the gains in the metamaterial to compensate the wave energy losses and is not dis- cussed mechanisms of such gains [3]. 1. TASK SETTINGS We investigate the electromagnetic waves propagat- ing along a plane waveguide structure in the Z - axis direction. Let the X - axis been perpendicular to the interface. The semi-infinite region 0x  is occupied by dissipative dielectric without dispersion, but with losses described with help the imaginary part of the permittivi- ty 1 4 0.05  i , 1 1 . The gap 0 x d  is filled by metamaterial that characterized by the commonly used the effective per- mittivity    and permeability    [5]: 2 ( ) 1 ( ) p Gi          , (1) 2 2 0 ( ) 1 ( )G F i            , (2) Throughout it was considered the metamaterial with / 2 10p   GHz, 0 / 2 4   GHz, and 0.56F  [5] with thickness 0.716d  cm, so 0 0.6  d c . Such choice of the metamaterial parameters leads to the appearance of the frequency interval 01 1.5    where   0   and   0   simultaneously (DNM). The values of ,G G  are en- tered for modelling the “electric and magnetic gains” of electromagnetic waves in the metamaterial. The semi-infinite region x d is occupied by the air or vacuum without both dispersion and losses with constant permittivity 2 1 and permeability 2 1 . We will consider the slow surface electromagnetic wave that can propagate in this structure. We will find the solutions for the plane wave disturbances that de- creasing exponentially far away from the boundaries. The spatial-temporal dependence of the wave compo- nents has such a form: 3, ( ), ( )exp[ ( )]E H E x H x i k z t  . (3) https://doi.org/10.46813/2020-130-026 ISSN 1562-6016. ВАНТ. 2020. №6(130) 31 Here the amplitudes of the wave fields decrease expo- nentially from the boundaries, axis Z lies at the sepa- ration plane, and x is the coordinate perpendicular to the wave propagation direction and 3 3 3Re( ) Im( )  k k i k . Just like [5] it is possible to split the Maxwell equations on two independent sub-systems. One of them describes the waves of H-type that contain ( , , )x y zH E H – components, and another – waves of E- type that contain ( , , )x y zE H E – components. The dispersion equation for E-type mode of struc- ture considered has the form:     1 2 2 1 2 2 1 2 1 2 ( )cosh[ ] ( )sinh[ ] 0 h h d h h d                 , (4) where 2 2 1,2 3 1,2 1,2h k k   ,    2 2 3k k      - are the transverse wave vectors, /k c , were c is the light speed. The wave of H-type possesses the dispersion relation of the similar form:     1 2 2 1 2 2 1 2 1 2 ( )cosh[ ] ( )sinh[ ] 0 h h d h h d                 . (5) 2. MAIN RESULTS Two dispersion equations (4), (5) were solved nu- merically. From the beginning these equations was solved for ideal structure: both losses and gains were assumed to be zero (Fig. 2). The inclined line Q and curve S correspond to the conditions 1 0h  and 0  , respectively. They separate the region, where the am- plitudes of the wave fields decrease exponentially from the boundaries. So the slow surface electromag- netic waves can exist in that region of Figs. 2, 3. Three solutions have been obtained of the dispersion equa- tions (4), (5): one solution for E – wave and two solu- tions for H – waves. Curves H1-wave, H2-wave correspond to the waves of H-type and the curve E-wave corresponds to wave of E-type. Let’s introduce such dimensionless quantities: the frequency 0/   , the wavenumber   3 0Re( ) /k c  , the decrement 3 0Im( ) /k c  , the “electric” 0/G   and “magnetic” gains 0/G   . The considered E-wave and H2-wave are forward (both phase and group velocities are positive) and H1- wave is backward (phase velocity is positive and group velocity is negative). It can be argued that the losses do not put an appreciable changes the dispersion dependences of the considered waves (see Figs. 2, 3) Fig. 2. The dependence of the normalized frequency  on the wavenumber  for the metamaterial layer with zero gains 0 G G  and for non-dissipative dielec- tric with 1 4 Fig. 3. The dependence of the frequency  and decre- ment  on the wavenumber  for the metamaterial gains values 0   , and for dissipative dielectric: 1 4 0.001  i Fig. 4. The normalized phase velocity 3/phV ck versus normalized frequency  32 ISSN 1562-6016. ВАНТ. 2020. №6(130) Fig. 5. The normalized group velocity 1 3/grV c d dk versus normalized frequency  Fig. 6. The dependence of the normalized decrement  and the frequency  of the E wave versus normalized wavenumber  for different values of “magnetic” gain (1 0.0;2 0.005;3 0.01;4     – 0.015; 5 – 0.02 for 1 4 0.05  i and 0  According to Fig. 4 the phase velocities of modes considered in 2...3 times less then the light speed. The group velocity of the forward modes decrease with increasing frequency, but increases for the backward mode H1 (Fig. 5). The Figs. 6-11 illustrate the separate influences of the DNM “electric and magnetic gains” on the depend- encies of the decrements and the mode frequencies ver- sus wavenumber in the presence of dielectric’s dissipa- tion. It's remarkable that the influence of “electric and magnetic gains” on the modes dispersive curves is ra- ther weak. At the same time, the influence of "electric and magnetic amplification" on the values of the damp- ing decrements of the modes under consideration is sig- nificant. Fig. 7. The dependence of the decrement  and the frequency  of the H2-wave versus wavenumber  for different values of “magnetic” gain (1 0.0;   2 0.01; 3 0.02; 4 0.03;  5 0.05) for 1 4 0.05  i and 0  Fig. 8. The dependence of the normalized decrement  and the frequency  of the H1-wave versus normalized wavenumber  under different values of “magnetic” gain (1 0.0;2 0.005;3 0.01;    4 0.02; 5 0.03; 6 0.04) for 1 4 0.05  i and 0  The type of influence of "electric and magnetic gains" on the damping decrements is enough different. That’s why we represent all of them. ISSN 1562-6016. ВАНТ. 2020. №6(130) 33 Fig. 9. The dependence of the decrement  and the mode frequency  of the E-wave versus wavenumber  for different values of “electric” gain (1 0.0;2 0.005;3     0.01;4 0.015;5 0.02)  for 1 4 0.05  i and 0  Fig. 10. The dependence of the normalized decrement  and the mode frequency  of the H2-wave versus wavenumber  for different values of “electric” gain (1 0.0;2 0.01;3     0.02;4 0.03;5 0.04;  6 0.05) for 1 4 0.05  i and 0  The Figs. 12-17 present the full compensation ( 0  ) for set of the system parameters for three modes. We figure out that condition of full dissipative compensation 0 is reachable for each of the three modes. We see that both the “magnetic” and “electric gains” can to compensate the losses for the all consid- ered modes. We have established a rather unexpected fact. It turned out that it is possible to compensate the dielectric losses for each mode with the help of only one non-zero "gain" at a zero value of the other "gain". Thus, such full compensations (for a given 4.0  ) are possible: for the E-wave: a) 0  , 0.007  ; b) 0  , 0.01  ; for H2-wave: a) 0  , 0.0003  ; b) 0  , and 0.015  ; for H1-wave: a) 0  , 0.00015 ; b) 0  , and 0.005  . It was shown, that the gain values needed for the full compensation of the electromagnetic surface waves en- ergy losses in the dissipative dielectric are quite reason- able. Fig. 11. The dependence of the normalized decrement  and the mode frequency  of the H1-wave versus wavenumber  for different values of “electric” gain (1 0.0;2 0.01;    3 0.02; 4 0.03;  5 0.04; 6 0.05) for 1 4 0.05  i and 0  Fig. 12. The dependences of the of the decrement  and the mode frequency  of E-wave on the value of gain  if 0  for 4.0  34 ISSN 1562-6016. ВАНТ. 2020. №6(130) Fig. 13. The dependences of the decrement  and the mode frequency  of E-wave on the value of gain  if 0  for 4.0  Fig. 14. The dependences of the decrement  and the mode frequency  of H2-wave on the value of gain  if 0  for 4.0  Fig. 15. The dependences of the of the decrement  and the mode frequency  of H2-wave on the value of gain  if 0  for 4.0  Fig. 16. The dependences of the of the decrement  and the mode frequency  of H1-wave on the value of gain  if 0  for 4.0  Fig. 17. The dependences of the decrement  and the mode frequency  of H1-wave on the value of gain  if 0  for 4.0  CONCLUSIONS It was obtained that slow surface electromagnetic waves can be sustained by boundary between metasurface and dissipative dielectrics. The loss of wave energy is compensated by the use of the met- amaterials with "gains". The results obtained in this work can be useful for the various practical applications of metamaterials in technology, life science, and medicine. This work was supported by the Ministry of Edu- cation and Science of Ukraine, under the grants 0118U002023. ISSN 1562-6016. ВАНТ. 2020. №6(130 35 REFERENCES 1. O. Quevedo-Teruel et al. Roadmap on metasurfaces // J. Opt. 2019, v. 21, p. 073002. 2. S.S. Bukhari J.C. Vardaxoglou, W. Whittow. A metasurfaces review: Definitions and applications // Appl. Sci. 2019, v. 9(13), p. 2727. 3. Nonlinear, tunable and active metamaterials / Ed. by Ilya V. Shadrivov, Mikhail Lapine, Yuri S. Kivshar. Springer, 2015. 4. V.K. Galaydych, N.A. Azarenkov, V.P. Olefir, A.E. Sporov. Modelling of the electromagnetic surface waves propagation on the interface between the left- handed metamaterial and the dissipative dielectric // Problems of Atomic Science and Technology. Series «Plasma Physics» (25). 2018, № 6, p. 109-112. 5. I.V. Shadrivov, A.A. Sukhorukov, Yu.S. Kivshar. Guided modes in negative-refractive-index waveguides // Phys. Rev. 2003, E 67, p. 057602-4. Article received 22.09.2020 МЕДЛЕННЫЕ ПОВЕРХНОСТНЫЕ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ НА ГРАНИЦЕ РАЗДЕЛА МЕТАПОВЕРХНОСТЬ / ДИССИПАТИВНЫЙ ДИЭЛЕКТРИК В.К. Галайдыч, А.Е. Споров, В.П. Олефир, Н.А. Азаренков Изучены свойства медленных поверхностных электромагнитных волн, распространяющихся вдоль плос- кой границы метаповерхности с диссипативным диэлектриком. Метаповерхность представляет собой узкий плоский слой метаматериала с одновременно отрицательными диэлектрической и магнитной проницатель- ностями с «усилением». Все среды считались изотропными. Получены дисперсионные зависимости для соб- ственных мод такой волноводной структуры. Продемонстрирована возможность полной компенсации по- терь энергии поверхностных волн соответствующим выбором значений «усилений». ПОВІЛЬНІ ПОВЕРХНЕВІ ЕЛЕКТРОМАГНІТНІ ХВИЛІ НА МЕЖІ ПОДІЛУ МЕТАПОВЕРХНЯ / ДИСИПАТИВНИЙ ДІЕЛЕКТРИК В.К. Галайдич, О.Є. Споров, В.П. Олефір, М.О. Азарєнков Вивчено властивості повільних поверхневих електромагнітних хвиль, що поширюються уздовж плоскої межі метаповерхні з дисипативним діелектриком. Метаповерхня є вузький плоский шар метаматеріалу з негативними як діелектричною, так і магнітною проникливостями з «підсиленням». Усі середовища вважа- лись ізотропними. Отримано дисперсійні залежності власних мод такої хвилеводної структури. Продемонс- тровано можливість повної компенсації втрат енергії поверхневих хвиль відповідним вибором значень «під- силень». http://www.rsphysse.anu.edu.au/nonlinear/papers/IlyaShadrivov.shtml#PRE_2003_67_57602 http://www.rsphysse.anu.edu.au/nonlinear/papers/AndreySukhorukov.shtml#PRE_2003_67_57602 http://www.rsphysse.anu.edu.au/nonlinear/papers/YuriKivshar.shtml#PRE_2003_67_57602