Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma
Over the past decade the production of multi-gigaelectrons from laser-driven and electron-bunch-driven plasma accelerators has been successfully demonstrated. However, applications require improvements of accelerated bunch size and its energy spread. One promising candidate to satisfy these requirem...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/194641 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma / V.I. Maslov, R.T. Ovsiannikov, N. Delerue, V. Kubytskyi, I.P. Levchuk, I.N. Onishchenko // Problems of atomic science and tecnology. — 2020. — № 6. — С. 47-49. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194641 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1946412023-11-28T12:36:40Z Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma Maslov, V.I. Ovsiannikov, R.T. Delerue, N. Kubytskyi, V. Levchuk, I.P. Onishchenko, I.N. Basic plasma physics Over the past decade the production of multi-gigaelectrons from laser-driven and electron-bunch-driven plasma accelerators has been successfully demonstrated. However, applications require improvements of accelerated bunch size and its energy spread. One promising candidate to satisfy these requirements is to externally inject an electron bunch into an electron-bunch-driven plasma accelerator. We present studies on the optimization of the self-consistent distribution of an accelerating wakefield of plateau type, which can lead to improvement of final quality of the externally injected and accelerated electron bunch, using simulations with the particle-in-cell code LCODE. We quantified the effect of the injected bunch density on the plateau formation in the blowout regime. За останнє десятиліття було успішно продемонстровано отримання електронів з енергією декілька гігаелектронвольт у плазмових прискорювачах з лазерним імпульсом і електронним згустком. Однак застосування вимагають поліпшення розміру згустку, що прискорюється, і його енергетичного розкиду. Одним з перспективних кандидатів для задоволення цих вимог є інжекція електронного згустку ззовні в плазмовий прискорювач, керований електронним згустком. Ми представляємо дослідження з оптимізації самоузгодженого розподілу прискорюючого кільватерного поля типу плато, яке може привести до поліпшення кінцевої якості зовні інжектованого і прискореного електронного згустку, з використанням моделювання за допомогою PIC-коду LCODE. Ми кількісно оцінили вплив щільності інжектованого згустку на формування плато в нелінійному режимі перекидання. За последнее десятилетие было успешно продемонстрировано получение электронов с энергией несколько гигаэлектронвольт в плазменных ускорителях с лазерным импульсом и электронным сгустком. Однако приложения требуют улучшения размера ускоряемого сгустка и его энергетического разброса. Одним из многообещающих кандидатов для удовлетворения этих требований является инжекция электронного сгустка извне в плазменный ускоритель, управляемый электронным сгустком. Мы представляем исследования по оптимизации самосогласованного распределения ускоряющего кильватерного поля типа плато, которое может привести к улучшению конечного качества внешне инжектируемого и ускоренного электронного сгустка, с использованием моделирования при помощи PIC-кода LCODE. Мы количественно оценили влияние плотности инжектированного сгустка на формирование плато в нелинейном режиме опрокидывания. 2020 Article Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma / V.I. Maslov, R.T. Ovsiannikov, N. Delerue, V. Kubytskyi, I.P. Levchuk, I.N. Onishchenko // Problems of atomic science and tecnology. — 2020. — № 6. — С. 47-49. — Бібліогр.: 22 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx http://dspace.nbuv.gov.ua/handle/123456789/194641 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Basic plasma physics Basic plasma physics |
spellingShingle |
Basic plasma physics Basic plasma physics Maslov, V.I. Ovsiannikov, R.T. Delerue, N. Kubytskyi, V. Levchuk, I.P. Onishchenko, I.N. Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma Вопросы атомной науки и техники |
description |
Over the past decade the production of multi-gigaelectrons from laser-driven and electron-bunch-driven plasma accelerators has been successfully demonstrated. However, applications require improvements of accelerated bunch size and its energy spread. One promising candidate to satisfy these requirements is to externally inject an electron bunch into an electron-bunch-driven plasma accelerator. We present studies on the optimization of the self-consistent distribution of an accelerating wakefield of plateau type, which can lead to improvement of final quality of the externally injected and accelerated electron bunch, using simulations with the particle-in-cell code LCODE. We quantified the effect of the injected bunch density on the plateau formation in the blowout regime. |
format |
Article |
author |
Maslov, V.I. Ovsiannikov, R.T. Delerue, N. Kubytskyi, V. Levchuk, I.P. Onishchenko, I.N. |
author_facet |
Maslov, V.I. Ovsiannikov, R.T. Delerue, N. Kubytskyi, V. Levchuk, I.P. Onishchenko, I.N. |
author_sort |
Maslov, V.I. |
title |
Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma |
title_short |
Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma |
title_full |
Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma |
title_fullStr |
Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma |
title_full_unstemmed |
Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma |
title_sort |
numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Basic plasma physics |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194641 |
citation_txt |
Numerical simulation of plateau formation by an electron bunch on the distribution of an accelerating wakefield in a plasma / V.I. Maslov, R.T. Ovsiannikov, N. Delerue, V. Kubytskyi, I.P. Levchuk, I.N. Onishchenko // Problems of atomic science and tecnology. — 2020. — № 6. — С. 47-49. — Бібліогр.: 22 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT maslovvi numericalsimulationofplateauformationbyanelectronbunchonthedistributionofanacceleratingwakefieldinaplasma AT ovsiannikovrt numericalsimulationofplateauformationbyanelectronbunchonthedistributionofanacceleratingwakefieldinaplasma AT deleruen numericalsimulationofplateauformationbyanelectronbunchonthedistributionofanacceleratingwakefieldinaplasma AT kubytskyiv numericalsimulationofplateauformationbyanelectronbunchonthedistributionofanacceleratingwakefieldinaplasma AT levchukip numericalsimulationofplateauformationbyanelectronbunchonthedistributionofanacceleratingwakefieldinaplasma AT onishchenkoin numericalsimulationofplateauformationbyanelectronbunchonthedistributionofanacceleratingwakefieldinaplasma |
first_indexed |
2025-07-16T22:02:21Z |
last_indexed |
2025-07-16T22:02:21Z |
_version_ |
1837842659180281856 |
fulltext |
ISSN 1562-6016. ВАНТ. 2020. №6(130)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 47-49. 47
https://doi.org/10.46813/2020-130-047
NUMERICAL SIMULATION OF PLATEAU FORMATION BY AN
ELECTRON BUNCH ON THE DISTRIBUTION OF AN ACCELERATING
WAKEFIELD IN A PLASMA
V.I. Maslov
1,2
, R.T. Ovsiannikov
1
, N. Delerue
3
, V. Kubytskyi
3
, I.P. Levchuk
2
,
I.N. Onishchenko
2
1
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine;
2
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
3
LAL, Univ. Paris-Saclay, CNRS/IN2P3, Orsay, France
E-mail: vmaslov@kipt.kharkov.ua
Over the past decade the production of multi-gigaelectrons from laser-driven and electron-bunch-driven plasma
accelerators has been successfully demonstrated. However, applications require improvements of accelerated bunch size
and its energy spread. One promising candidate to satisfy these requirements is to externally inject an electron bunch
into an electron-bunch-driven plasma accelerator. We present studies on the optimization of the self-consistent
distribution of an accelerating wakefield of plateau type, which can lead to improvement of final quality of the externally
injected and accelerated electron bunch, using simulations with the particle-in-cell code LCODE. We quantified the
effect of the injected bunch density on the plateau formation in the blowout regime.
PACS: 29.17.+w; 41.75.Lx
INTRODUCTION
Plasma wakefield accelerators have the ability to sustain
accelerating gradients to 100 GV/m [1, 2]. In conventional
accelerators, due to breakdown which occurs on the walls of
the accelerating structure at high electric fields, accelerating
gradients are currently limited to approximately 100 MV/m
[3] due to breakdown. Successful experiments on electron-
bunch-driven wakefield acceleration have demonstrated
acceleration of GeV-class electrons [2] and have therefore
confirmed the relevance of this acceleration method. Because
the plasma accelerators provide large accelerating gradients
the plasma [4-21] accelerators are intensively investigated.
However, the quality of electron bunch produced in
plasma accelerators is not yet sufficient for the realization
applications. Precise control over the injected electron bunch
properties is a key problem for plasma wakefield accelerators.
One promising strategy towards the improvement of final
quality of the accelerated electron bunch is the use of an
electron beam from a conventional electron linac. Well-
developed technologies of radio-frequency linacs allow
electron bunches of good quality: small size and small energy
spread to be provided.
It has been proposed to use the beam loading effect [18,
19] to compensate the energy spread of an electron beam in
plasma wakefield accelerators.
In this paper, we report on numerical investigations on
optimization of the self-consistent distribution of an
accelerating wakefield of plateau type, which can lead to
minimizing the bunch quality degradation during acceleration
by an electron-bunch-driven plasma wakefield accelerator
with external injection. By analyzing the dependence of
distribution of an accelerating wakefield on accelerated bunch
density in the blowout regime, we have found a mechanism to
compensate the energy spread.
We present results of numerical simulation of plasma
wakefield excitation in blowout regime by a driver-bunch and
of wakefield modification by witness-bunch, made with 2.5D
code LCODE [22] that treats plasma electrons and bunches as
ensembles of macro-particles. We consider the bunch,
electrons in which are distributed according to Gaussian in the
transverse direction along the radius. We use the cylindrical
coordinate system (r, z) and draw the plasma and beam
densities and longitudinal electric field at some z as a function
of the dimensionless time τ=ωpt or =Vbt-z, Vb is the bunch
velocity. Time is normalized on electron plasma frequency
ωpe
-1
, distance – on c/ωpe, bunch current Ib – on Icr=mc
3
/4e,
fields – on mcωpe/e. e, m are the charge and mass of the
electron, c is the light velocity.
INVESTIGATION OF THE PLATEAU
FORMATION ON THE DISTRIBUTION OF
AN ACCELERATING WAKEFIELD IN A
PLASMA BY AN ELECTRON BUNCH
To begin with, we consider the wakefield excitation
in plasma in blowout regime by short electron bunch
(Fig. 1).
Fig. 1. The on-axis wakefield excitation Ez (green line)
by electron bunch-driver. The mean field E0 is shown to
be red as a function of the coordinate along the
plasma. Density of bunch-driver nb on the axis is shown
by red. Plasma electron density is shown by blue. The
length of uniform bunch-driver is equal to 0.08 of
bubble length. The maximum current of bunch-driver is
equal to Ib=12.24 kA. The direction of movement of the
bunch-driver is shown by a one-way arrow. The area
(a) of 1st bubble is shown by a double-headed arrow
(a)
https://doi.org/10.46813/2020-130-047
mailto:vmaslov@kipt.kharkov.ua
48 ISSN 1562-6016. ВАНТ. 2020. №6(130)
One can see that the electrons have not completely left
bubble (see the distribution of plasma electron density
ne() in region (a) in Fig. 1, =z-Vbt). However, this
case is good because on the acceleration interval, a
linear longitudinal distribution of the accelerating
wakefield Ez() is observed. Then, if we achieve the
formation of a plateau on Ez() at some point , then the
plateau will be maintained at all points in the process
of witness acceleration and its shift inside the bubble.
Indeed, in Fig. 2 one can see that witness-bunch of a
certain charge leads to the formation of a plateau at
Ez() at the bubble periphery. It also leads to the
formation of a plateau on Ez() at its shift inside the
bubble (Figs. 3, 4)
Fig. 2. The on-axis wakefield excitation Ez by bunch-
driver and plateau formation on Ez() by bunch-witness,
=z-Vbt. Densities of bunches nb on the axis are shown
by red. Plasma electron density is shown to be blue as a
function of the coordinate along the plasma. The
parameters are the same as in Fig. 1. The maximum
current of bunch-witness is equal to Ib=1.0 kA. The
arrow shows the plateau
Fig. 3. The on-axis wakefield excitation Ez by bunch-
driver and plateau formation on Ez() by bunch-witness.
Densities of bunches nb on the axis are shown by red.
Plasma electron density is shown to be blue. The
parameters are the same as in Figs. 1, 2. The arrow
shows the plateau
Fig. 4. The on-axis wakefield excitation Ez by bunch-
driver and plateau formation on Ez() by bunch-witness.
Densities of bunches nb on the axis are shown by red.
Plasma electron density is shown to be blue. The
parameters are the same as in Figs. 1, 2. The arrow
shows the plateau
CONCLUSIONS
The evolution of the distribution of an accelerating
wakefield of plateau type has been investigated during
acceleration through bubble in blowout regime by an
electron-bunch-driven plasma wakefield accelerator using
2.5D PIC simulations by LCODE. The final quality of the
accelerated bunch strongly depends on the distribution of an
accelerating wakefield. The investigations presented here
show that the accelerated bunch density and its shape can
support plateau type distribution of an accelerating
wakefield during acceleration through bubble in blowout
regime. This can lead to energy spread decrease.
ACKNOWLEDGEMENTS
This work is supported by National Research Fund
of Ukraine "Support for research of leading and young
scientists" grant “Transport of electron/positron bunches
at high-gradient acceleration by electromagnetic fields
excited in dielectric structures or plasma by a high
power electron bunches and an intense laser pulse”
2020.02/0299.
REFERENCES
1. A.J. Gonsalves, K. Nakamura, J. Daniels, et al.
Petawatt Laser Guiding and Electron Beam Acceleration
to 8 GeV in a Laser-Heated Capillary Discharge
Waveguide // Phys. Rev. Lett. 2019, v. 122, p. 084801.
2. I. Blumenfeld, C.E. Clayton, F.-J. Decker, et al. Enery
doubling of 42 GeV electrons in a metre-scale plasma wakefield
accelerator // Nature Letters. 2007, v. 445, p. 741-744.
3. E. Esarey, C.B. Schroeder, W.P. Leemans. Physics of
laser-driven plasma-based electron accelerators // Rev.
Mod. Phys. 2009, v. 81, p. 1229-1285.
4. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Plasma Wakefield Excitation, Possessing of
Homogeneous Focusing of Electron Bunches //
Problems of Atomic Science and Technology. Series
«Plasma Physics». 2013, № 1, p. 134-136.
5. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Fields
excited and providing a uniform focusing of short
ISSN 1562-6016. ВАНТ. 2020. №6(130) 49
relativistic electron bunches in plasma // East European
Journal of Physics. 2014, v. 1, № 2, p. 92-95.
6. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
Transformer Ratio at Interaction of Long Sequence of
Electron Bunches with Plasma // Problems of Atomic
Science and Technology. Series «Plasma Physics». 2011,
№ 3, p. 87-91.
7. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya.
Transformer Ratio at Excitation of Nonlinear Wakefield
in Plasma by Shaped Sequence of Electron Bunches
with Linear Growth of Charge // Problems of Atomic
Science and Technology. Series «Plasma Physics».
2012, № 4, p. 128-130.
8. K.V. Lotov, V.I. Maslov, I.N. Onishchenko
Transformer Ratio in Wake-Field Method of
Acceleration for Sequence of Relativistic Electron
Bunches // Problems of Atomic Science and Technology.
Series «Plasma Physics». 2010, № 4, p. 85-89.
9. V.I. Maslov, I.N. Onishchenko, I.P. Yarovaya. Wakefield
Excitation in Plasma by Sequence of Shaped Electron
Bunches // Problems of Atomic Science and Technology.
Series «Plasma Physics». 2012, № 6, p. 161-163.
10. I.P. Levchuk, V.I. Maslov, I.N. Onishchenko.
Transformer Ratio at Wakefield Excitation by Linearly
Shaped Sequence of Short Relativistic Electron Bunches
// Problems of Atomic Science and Technology. Series
«Plasma Physics». 2015, № 6, p. 37-41.
11. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, et al.
Mechanisms of Synchronization of Relativistic Electron
Bunches at Wakefield Excitation in Plasma // Problems
of Atomic Science and Technology. Series «Plasma
Physics». 2013, № 4, p. 73-76.
12. I.Y. Kostyukov, A.M. Pukhov. Plasma-based
methods for electron acceleration: current status and
prospects // Phys. Usp. 2015, v. 58 (1), p. 81.
13. J. Thomas, I.Yu. Kostyukov, J. Pronold, A. Golovanov,
A. Pukhov. Non-linear theory of a cavitated plasma wake in
a plasma channel for special applications and control //
Phys. Plasm. 2016, v. 23, p. 053108.
14. T. Tajima, J.M. Dawson. Laser Electron Accelerator
// Phys. Rev. Lett. 1979, v. 43, p. 267.
15. T. Tajima, K. Nakajima, G. Mourou. Laser Acceleration
// Rivista del Nuovo Cimento. 2017, v. 40, p. 33.
16. N.I. Ayzatsky, A.N. Dovbnya, V.A. Kushnir, et al.
Electron resonant high-current accelerator for research
of collective acceleration methods // Plasma Phys. 1994,
v. 20, № 7,8, p. 671-673.
17. A.V. Kirichok, V.M. Kuklin, A.V. Mischin, et al.
Modelling of Superradiation Processes Driven by an Ultra-
Short Bunch of Charged Particles Moving through a Plasma
// Problems of Atomic Science and Technology. Series
«Plasma Physics». 2015, № 4(98), p. 255-257.
18. S. Romeo, M. Ferrario, A.R. Rossi. Beam loading
assisted matching scheme for high quality plasma
acceleration in linear regime // Phys. Rev. Accel. Beams.
2020, v. 23, p. 071301.
19. T. Katsouleas, S. Wilks, P. Chen, T.J.M. Dawson,
J.J. Su. Beam Loading in Plasma Accelerators // Particle
Accelerators. 1987, v. 22, p. 81-99.
20. S.S. Baturin, A. Zholents. Upper limit for the
accelerating gradient in the collinear wakefield
accelerator as a function of the transformer ratio // Phys.
Rev. Accel. Beams. 2017, v. 20, p. 061302.
21. R.J. Shalloo, C. Arran, L. Corner, et al.
Hydrodynamic optical-field-ionized plasma channels //
Phys. Rev. E. 2018, v. 97, p. 053203.
22. A.P. Sosedkin, K.V. Lotov. LCODE: A parallel
quasistatic code for computationally heavy problems of
plasma wakefield acceleration // Nucl. Instr. and Meth.
in Phys. Res. A. 2016, v. 829, p. 350-352.
Article received 12.10.2020
ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФОРМИРОВАНИЯ ПЛАТО ЭЛЕКТРОННЫМ СГУСТКОМ
НА РАСПРЕДЕЛЕНИИ УСКОРЯЮЩЕГО КИЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМЕ
В.И. Маслов, Р.Т. Овсянников, N. Delerue, V. Kubytskyi, И.П. Левчук, И.Н. Онищенко
За последнее десятилетие было успешно продемонстрировано получение электронов с энергией несколько
гигаэлектронвольт в плазменных ускорителях с лазерным импульсом и электронным сгустком. Однако приложения
требуют улучшения размера ускоряемого сгустка и его энергетического разброса. Одним из многообещающих
кандидатов для удовлетворения этих требований является инжекция электронного сгустка извне в плазменный
ускоритель, управляемый электронным сгустком. Мы представляем исследования по оптимизации
самосогласованного распределения ускоряющего кильватерного поля типа плато, которое может привести к
улучшению конечного качества внешне инжектируемого и ускоренного электронного сгустка, с использованием
моделирования при помощи PIC-кода LCODE. Мы количественно оценили влияние плотности инжектированного
сгустка на формирование плато в нелинейном режиме опрокидывания.
ЧИСЛОВЕ МОДЕЛЮВАННЯ ФОРМУВАННЯ ПЛАТО ЕЛЕКТРОННИМ ЗГУСТКОМ
НА РОЗПОДІЛІ ПРИСКОРЮЮЧОГО КІЛЬВАТЕРНОГО ПОЛЯ В ПЛАЗМІ
В.I. Маслов, Р.Т. Овсянников, N. Delerue, V. Kubytskyi, I.П. Левчук, I.Н. Онищенко
За останнє десятиліття було успішно продемонстровано отримання електронів з енергією декілька
гігаелектронвольт у плазмових прискорювачах з лазерним імпульсом і електронним згустком. Однак застосування
вимагають поліпшення розміру згустку, що прискорюється, і його енергетичного розкиду. Одним з перспективних
кандидатів для задоволення цих вимог є інжекція електронного згустку ззовні в плазмовий прискорювач, керований
електронним згустком. Ми представляємо дослідження з оптимізації самоузгодженого розподілу прискорюючого
кільватерного поля типу плато, яке може привести до поліпшення кінцевої якості зовні інжектованого і прискореного
електронного згустку, з використанням моделювання за допомогою PIC-коду LCODE. Ми кількісно оцінили вплив
щільності інжектованого згустку на формування плато в нелінійному режимі перекидання.
|