Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge
The redistribution of the flow of sputtered material of a target (cathode) between the collector and the target in a plane–parallel electrode system with an anomalous glow discharge is analyzed in the kinetic approximation. Sputtering is the result of bombardment of the target by gas ions accelerate...
Gespeichert in:
Datum: | 2020 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/194653 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge / A.I. Kuzmichev, M.S. Melnichenko, V.G. Shinkarenko, V.M. Shulaev // Problems of atomic science and tecnology. — 2020. — № 6. — С. 103-106. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194653 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1946532023-11-28T14:12:53Z Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge Kuzmichev, A.I. Melnichenko, M.S. Shinkarenko, V.G. Shulaev, V.M. Low temperature plasma and plasma technologies The redistribution of the flow of sputtered material of a target (cathode) between the collector and the target in a plane–parallel electrode system with an anomalous glow discharge is analyzed in the kinetic approximation. Sputtering is the result of bombardment of the target by gas ions accelerated in the near–cathode space charge layer and by fast neutral atoms formed as a result of resonant ion charge exchange. Sputtered atoms partially return to the target due to collisions with gas molecules. The formulas were obtained, which were confirmed in the experiment that makes it possible to correctly estimate the ratio of the sputtered material flows deposited on the collector and the target. The results of the work are used to calculate the parameters of the processes of coating deposition and ion cleaning of the target under conditions of the anomalous glow discharge. Аналізується в кінетичному наближенні перерозподіл потоку розпиленого матеріалу мішені (катода) між колектором і мішенню в плоскопаралельній електродній системі з аномальним тліючим розрядом. Розпилення є результатом бомбардування мішені газовими іонами, прискореними в катодному шарі просторового заряду, і швидкими нейтральними атомами, що утворюються в результаті резонансного перезарядження іонів. Розпилені атоми частково повертаються на мішень через зіткнення з газовими молекулами. Отримано формули, підтверджені в експерименті, які дозволяють коректно оцінити співвідношення потоків розпиленого матеріалу, що осідають на колекторі і мішені. Результати роботи використовуються для розрахунку параметрів процесів нанесення покриттів і іонної очистки мішені в умовах аномального тліючого розряду. Анализируется в кинетическом приближении перераспределение потока распылeнного материала мишени (катода) между коллектором и мишенью в плоскопараллельной электродной системе с аномальным тлеющим разрядом. Распыление является результатом бомбардировки катода–мишени газовыми ионами, ускоренными в прикатодном слое пространственного заряда, и быстрыми нейтральными атомами, образующимися в результате резонансной перезарядки ионов. Распылeнные атомы частично возвращаются на мишень из-за столкновений с газовыми молекулами. Получены формулы, подтвержденные в эксперименте, что позволяет корректно оценить соотношение потоков распыленного материала, осаждающихся на коллекторе и мишени. Результаты работы используются для расчета параметров процессов нанесения покрытий и ионной очистки мишени в условиях аномального тлеющего разряда. 2020 Article Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge / A.I. Kuzmichev, M.S. Melnichenko, V.G. Shinkarenko, V.M. Shulaev // Problems of atomic science and tecnology. — 2020. — № 6. — С. 103-106. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 81.15.Cd; 81.65.Cf http://dspace.nbuv.gov.ua/handle/123456789/194653 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Kuzmichev, A.I. Melnichenko, M.S. Shinkarenko, V.G. Shulaev, V.M. Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge Вопросы атомной науки и техники |
description |
The redistribution of the flow of sputtered material of a target (cathode) between the collector and the target in a plane–parallel electrode system with an anomalous glow discharge is analyzed in the kinetic approximation. Sputtering is the result of bombardment of the target by gas ions accelerated in the near–cathode space charge layer and by fast neutral atoms formed as a result of resonant ion charge exchange. Sputtered atoms partially return to the target due to collisions with gas molecules. The formulas were obtained, which were confirmed in the experiment that makes it possible to correctly estimate the ratio of the sputtered material flows deposited on the collector and the target. The results of the work are used to calculate the parameters of the processes of coating deposition and ion cleaning of the target under conditions of the anomalous glow discharge. |
format |
Article |
author |
Kuzmichev, A.I. Melnichenko, M.S. Shinkarenko, V.G. Shulaev, V.M. |
author_facet |
Kuzmichev, A.I. Melnichenko, M.S. Shinkarenko, V.G. Shulaev, V.M. |
author_sort |
Kuzmichev, A.I. |
title |
Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge |
title_short |
Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge |
title_full |
Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge |
title_fullStr |
Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge |
title_full_unstemmed |
Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge |
title_sort |
redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194653 |
citation_txt |
Redistribution of sputtered material in a plane ion-plasma system with an abnormal glow discharge / A.I. Kuzmichev, M.S. Melnichenko, V.G. Shinkarenko, V.M. Shulaev // Problems of atomic science and tecnology. — 2020. — № 6. — С. 103-106. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kuzmichevai redistributionofsputteredmaterialinaplaneionplasmasystemwithanabnormalglowdischarge AT melnichenkoms redistributionofsputteredmaterialinaplaneionplasmasystemwithanabnormalglowdischarge AT shinkarenkovg redistributionofsputteredmaterialinaplaneionplasmasystemwithanabnormalglowdischarge AT shulaevvm redistributionofsputteredmaterialinaplaneionplasmasystemwithanabnormalglowdischarge |
first_indexed |
2025-07-16T22:03:19Z |
last_indexed |
2025-07-16T22:03:19Z |
_version_ |
1837842720225230848 |
fulltext |
LOW TEMPERATURE PLASMA AND PLASMA TECHNOLOGIES
ISSN 1562-6016. ВАНТ. 2020. №6(130)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 103-106. 103
https://doi.org/10.46813/2020-130-103
REDISTRIBUTION OF SPUTTERED MATERIAL IN A PLANE ION-
PLASMA SYSTEM WITH AN ABNORMAL GLOW DISCHARGE
A.I. Kuzmichev
1
, M.S. Melnichenko
2
, V.G. Shinkarenko
1
, V.M. Shulaev
2
1
Igor Sikorsky Kiev Polytechnic Institute, Kiev, Ukraine;
2
RPE “ОТТОМ”, Ltd., Kharkiv, Ukraine
E-mail: ottom@ottom.com.ua;
E-mail: kuzmichev-kpi@ukr.net
The redistribution of the flow of sputtered material of a target (cathode) between the collector and the target in a
plane-parallel electrode system with an anomalous glow discharge is analyzed in the kinetic approximation.
Sputtering is the result of bombardment of the target by gas ions accelerated in the near-cathode space charge layer
and by fast neutral atoms formed as a result of resonant ion charge exchange. Sputtered atoms partially return to the
target due to collisions with gas molecules. The formulas were obtained, which were confirmed in the experiment
that makes it possible to correctly estimate the ratio of the sputtered material flows deposited on the collector and
the target. The results of the work are used to calculate the parameters of the processes of coating deposition and ion
cleaning of the target under conditions of the anomalous glow discharge.
PACS: 81.15.Cd; 81.65.Cf
INTRODUCTION
Many types of treatment of materials and products in
a gas discharge plasma use physical ion sputtering of
the processed (treatment) object [1, 2]. Ion sputtering, in
particular, is used to clean and etch the surface of parts
(called below as targets) before coating and nitriding,
cementation, nitrocarburizing. In the electronic industry,
ion sputtering is used to create microstructures on the
substrate surface. The result of ion sputtering is the
ejection of surface atoms from the target into the
surrounding space due to its kinetic energy obtained as a
result of energy exchange during the interaction of
bombarding ions with target atoms [1-3].
In many ion-plasma systems, an abnormal glow
discharge (AGD), the cathode of which is the target, is
usually used to generate an ion flux to the target
[1, 2, 4]. AGD voltage is hundreds of volts – several
kilovolts, the current density is of the order of several
milliamps per square centimeter. The pressure of the
working gas (and as usual it is argon) is about 1…50 Pa.
Sputtered atoms are “waste” of the procedure of ion
cleaning or etching, and it is obvious that they should be
disposed of in some way so that they do not interfere
with further processing of the target.
When these atoms move through a gaseous medium,
they collide with gas molecules, give up the latters a
part of their energy and change the direction of further
movement. As a result, some of the sputtered atoms
reach the wall of the process chamber opposite the
target or the surface of another bodies, if any. Such
bodies can be a substrate in the coating process or a
special collector (trap) of sputtered species. The other
part of the sputtered atoms returns back to the target, but
to places remote from the emission place, and the third
part goes to the side surfaces of the camera. If the target
is larger than the distance to the collector (this situation
is typical for plane ion-plasma systems), the interception
of sputtered atoms by the lateral surface of the chamber
plays a small role, and the collector must perform the
main task of collecting sputtered species. Since the part
of the sputtered atoms returns to the target, it is
necessary to evaluate the redistribution of the sputtered
material between the target and the collector.
Obviously, the smaller the gap g between the target
and the collector, the larger the fraction of sputtered
atoms will be intercepted by the collector. However, the
quantity g must exceed the length d of the dark cathode
space, i.e. a layer of positive space charge (PSC), in
which plasma ions acquire energy from an electric field
[4]. This energy is necessary for ion sputtering of the
target at a given rate and knocking out secondary
cathode electrons. The cathode electrons accelerated in
the PSC layer ionize the gas in the so-called negative
glow (NG); this glow is a source of ions reaching the
cathode [4]. It is generally accepted that in diode
sputtering systems with AGD (target is a cathode,
collector is an anode), the minimum distance g should
be larger than 1.5d. In this case, there are no problems
with forming the NG plasma and generating ions for
bombardment of the cathode. In AGD, almost all the
discharge voltage U drops on the PSC layer [4].
Formulas have been proposed for estimating the
fraction of sputtered atoms reaching the collector in ion
sputtering systems [2, 5]. In early works [5], it was
assumed that the energy of sputtered atoms was equal to
the thermal energy of gas particles, although the energy
of the former is tens to hundreds of times greater than
the energy of the latter, and therefore the calculated
collection of sputtered atoms by the collector was
greatly underestimated. In [2, p. 48-51], the indicated
energy ratio was taken into account, but other
simplifications were made for calculating mass transfer,
due to which the calculated collection of sputtered
atoms by the collector decreased at a much lower
pressure than was observed in practice.
The aim of this work is to analyze the process of
sputtering and mass transfer of sputtered atoms through
a gaseous medium from the target surface to the
collector surface under AGD conditions with plane-
parallel electrodes and to construct a method in the
kinetic approximation for calculating the ratio of the
parts of sputtered atoms collected by the collector and
returning to the target. The calculation results will be
104 ISSN 1562-6016. ВАНТ. 2020. №6(130)
compared with experimental data on the tantalum
sputtering in argon medium [6]. This task is especially
relevant for ion cleaning technologies, in which
increased pressures of working gases are used in
comparison with the high vacuum technology and
multiple collisions of sputtered atoms with gas
molecules occur.
CALCULATION OF THE SPUTTERED
ATOMS MOTION THROUGH A GASEOUS
MEDIUM
Consider the passage of sputtered metal atoms with
an energy of several electron-volts through the braking
medium of the working gas. We will deal with a plane-
parallel “target-collector” system. Due to the low
thermal energy of gas molecules, they can be considered
as immobile. A friction force F acts on metal atoms:
dt
dv
mF ,
where m is the sputtered atom mass, v is the average
atomic velocity; angle brackets indicate the average
value. The average time interval between the collisions
of metal atoms with gas molecules is
1 nvadt , (1)
where a is the cross section of metal atom–gas
molecule interactions, and n is the concentration of gas
molecules. Assuming the interaction is elastic, we have
the velocity after collision [7]:
,m/M
Mm
m
vv
2sincos 2
0
where v0 is the velocity of the metal atom before
collision, M is the gas molecules mass (later it is the
mass of gas ions), is the scattering angle. In this case,
the directional velocity changes
0
2 2
0
cos
cos
1 cos sin .
dv v v
m
v M / m
m M
(2)
The distribution function over the angles [7] has the
form
.M/m
,
m/M
m/M
f
arcsin
sin
sin
cos2
0
221
21
Note, the distribution function over the angles for
scattered particles is uniform or isotropic [7,8].
Substituting (1) and (2) into the expression for F
and averaging over the angles, we obtain
21mMvMmnaF .
We use this expression to determine the dependence
of the mass flux density of the sputtered material, Sm(x),
on distance x from the target (x = 0) toward to the
collector (x = g)
axmSxmS /exp0 ,
where the mean free path of the sputtered metal atoms is
naMMma .
Note, the mass flux density Sm(x) is related to the
forward flying part of the total flux of sputtered atoms
to the collector; the second part is the diffusionly
scattered one [2, 8]. Accordingly, we can write the
following expression for the total flux of sputtered
atoms toward to the collector
/dxadnamDa/xmSxtot.mS exp0 ,
where Da is the diffusion coefficient of metal atoms in
the working gas, na is the concentration of sputtered
metal atoms. Integrating the last expression with the
boundary conditions na(x=0) = na(0) and na(x=g), we
obtain
./exp1
/00.
a
amaatotm
g
gS/gnmDgS
(3)
Obviously, for metals under typical AGP conditions,
the first term in the right side of (3) can be neglected
compared to the second, and the maximum contribution
from the exponent is about 15%. From here we obtain
the following formula
/gamSgmS 0 ,
where gmS is the mass flux density of sputtered
material onto the collector. The back sputtered material
deposition rate by mass onto the unit area of the target
(or returning sputtered material onto the target) is
/gamSmB 10 ,
as we consider
0mSmBgmS .
Taking the density of the deposit condensate on the
collector equal to the density of the target material, we
obtain an expressions for determining the volumetric
rates of deposition of the condensate on the collector, D,
and of the back condensate on the target, B,
respectively:
/gaSD , (4)
/gaSB 1 , and agaBD ,
where S = Sm(0)/q is the rate of volumetric sputtering of
the target material without taking into account returning
the sputtered particles due to back moving, q is the
density of the target material.
One can see the ration a/g determines the part of the
sputtered target material, which is transferred to the
collector, and 1–a/g determines the part of the
sputtered atoms returning to the target. Thus, in the
average, even one collision of a sputtered atom with a
gas molecule deprives the atom of a chance to reach the
collector and it returns to the target. The fact that we
neglected the first term in the right side of (3) indicates
that we consider the role of diffusion of sputtered atoms
in their transport to the collector surface to be
insignificant. Indeed, at relatively low gas pressures, the
mean free paths of sputtered atoms and their energy are
quite large, and the process of sputtered material
transfer to the collector occurs in the mode of almost
forward flight movement of atoms with their rare
collisions with gas molecules. With increasing pressure,
the number of collisions increases and the energy of
atoms decreases, approaching the energy of gas
molecules, and the nature of the transfer of the sputtered
atoms to the collector acquires a diffusion (“Brownian”)
character. Since the diffusion coefficient decreases with
ISSN 1562-6016. ВАНТ. 2020. №6(130) 105
increasing pressure, there is an accumulation of slow
sputtered atoms after thermalization near the target, and,
accordingly, the diffusion flux of sputtered atoms will
be mainly directed to the surface of the target. Thus,
neglecting the diffusion flux in (3) has a physical basis,
since this flux is directed, as we believe, mainly back to
the target. This is reflected in formula (4).
VALIDATION OF CALCULATION
RESULTS WITH EXPERIMENT DATA AND
DISCUSSION
For validation of calculation results we will
numerically determine the volumetric rates of
deposition of the condensate on the collector, Dcall, for
the conditions in the experimental sputtering system
with AGD and then compare Dcall with experimentally
measured Dexp in the same experimental sputtering
system with tantalum target and argon as working gas.
Let us estimate the value of a for the sputtering of
tantalum by argon ions. Using the atomic radii of
tantalum RTa = 1.43 Å and of argon RАr = 1.92 Å [9], we
obtain
T/p.nMRRMma
2101722
ArTa ,
where T is the gas temperature, the gas pressure p is in
[Pa].
Experimental reference conditions for tantalum film
deposition are U = 5 kV, j = 0.46 mA/cm
2
, g = 5 cm, p =
6.6 Pa, T = 573 K. For this case, a = 1.87 cm. The
experimental data of the authors on the deposition rate
of tantalum films in argon are well approximated by the
following formula, which is valid for said above
operating mode of AGD [6]:
gq.jU.expD 340813 ,
where Dexp is in [cm/s], g is in [cm], q is in [μg/cm
3
], U
is in [kV], j in [mA/cm
2
]. If we take the film density q
equal to the density of the target material (Ta), then for
the above conditions, the volumetric deposition rate is
Dexp = 5.4 Å/s [6].
For determining Dcall we use the theory of AGD,
presented in [10] and based on the physical kinetics
equations for distribution functions of ions Ar
+
and fast
neutral atoms Ar
0
after charge exchanges and the Poison
equation for electric field in the dark cathode space, i.e.
in the PSC layer. Approximations of the well known
literature data on the cross section for argon ion
resonance charge exchange and the secondary electron
emission coefficients of the tantalum cathode at
bombardment by Ar
+
ions and fast neutrals Ar
0
were
used for the dependencies of the cross section of charge
exchange and the secondary electron emission
coefficients on the velocity of primary particles. The
numerical calculation was performed with the “big
particles” method using the algorithm [10].
The approximations of the dependencies of the
sputtering coefficients k(v) for tantalum on the velocity
v of ions and fast atoms after charge exchanges are
presented by (5), where velocity v is in [cm/s]. The error
of the approximations is a few percents [3].
The calculation results are presented in Table, where
jd is total discharge current density, ji.a is ion current
density from NG (from “plasma anode”), е is the
electron charge, Гc is fast neutrals flow density at the
cathode, Фi is flow density of Ta atoms sputtered by
ions Ar
+
, Фn is flow density of Ta atoms sputtered by
fast neutrals Ar
0
, Ф = Фi + Фn, Sm = mФ.
cm/s
cm/s
cm/s
cm/s
cm/s
cm/s
–.v.
–.v.
–.v.
–.v.
,–.v.
,–.<v
,v.
,v.
,v.
,v.
.v).(
k(v)=
7109461044
61044610692
610692610082
61008261071
61071610391
610391
74310610795
76611310279
20242810022
38585510447
72187101974103
0
. (5)
The sputtering system parameters for Ta cathode at Ar pressure of 6.65 Pa
U, kV 2.5 5.0
d, cm 1.0 2.0 3.0 1.0 2.0 3.0
jd, mA/cm
2
0.753 0.142 0.052 2.436 0.462 0.169
ji.a, mA/cm
2
0.648 0.122 0.050 1.908 0.362 0.133
еГc, mA/cm
2
3.596 1.487 0.864 9.316 3.907 2.287
eГc/ji.a, rel. units 5.549 12.19 17.28 4.882 10.79 17.20
Фi, 10
15
s
-1
∙cm
-2
2.066 0.259 0.068 8.754 1.212 0.350
Фn, 10
15
s
-1
∙cm
-2
6.090 1.534 0.593 25.06 7.371 3.249
Ф, 10
15
s
-1
∙cm
-2
8.156 1.793 0.661 33.81 8.583 3.599
S, Å/s 14.68 3.23 1.19 60.86 15.45 6.49
One can see eГc/ji.a >> 1 and Фn > Фi, that is the
contribution of fast neutrals Ar
0
in sputtering of the
cathode material is larger than the contribution of ions
due to the often charge exchange collisions of ions
during movement to the cathode. At U = 5 kV,
d = 2 cm, the volumetric sputtering rate without
106 ISSN 1562-6016. ВАНТ. 2020. №6(130)
returning sputtered atom to the target S = 15.45 Å/s, that
is much bigger than the experimental Dexp. However,
taking into account (4), one can see Dcall =
15.45∙(1.87/5) = 5.78 Å/s, that is close to the
experimental value of Dexp = 5.4 Å/s.
One can see (1...1.87/5) = 0.625 part or 62.5 % of
the primary sputtered atoms returns to the target.
Herein, the ratio D/B = 1.87/(5...1.87) = 0.6 and
B/D = 1.67. All this shows that in the typical regime of
AGD a large part of the initially sputtered material
returns to the target-cathode.
CONCLUSIONS
Within the framework of the kinetic approach, the
formulas for calculation of the transfer of the sputtered
metal cathode (target) material in the anomalous glow
discharge to the collector (substrate) in the plane-
parallel electrode system are derived. The formulas
determine the ratio of the numbers of sputtered atoms
that have reached the collector and returned back to the
cathode as a result of collisions of sputtered atoms with
working gas molecules. The formulas have been tested
by the example of tantalum sputtering in an argon
atmosphere and can be recommended for calculating the
parameters of the coating deposition and ion cleaning of
the target under conditions of an anomalous glow
discharge.
It is shown that, under typical conditions for
maintaining an anomalous glow discharge (AGD), most
of the sputtered atoms return to the cathode.
This reduces either the rate of coating deposition on
substrates or the rate and quality of ionic cleaning of the
target. Reducing the backflow of the sputtered material
can be achieved by reducing the gas pressure p and the
distance g between the cathode (target) and the
collector. However, in the order to obtain a significant
result, it is necessary to reduce pg to values at which
conventional AGD is not maintained. In this case, it is
necessary to apply additional methods for enhancing the
gas ionization at low pg, for example, due to the
magnetron effect (that is the use of crossed electric and
magnetic fields).
REFERENCES
1. B.S. Danilin, V.Yu. Kireev. Usage of low-temperature
plasma for etching and cleaning of materials.
M.: «Energoatomizdat», 1989, p. 328.
2. B.S. Danilin. Usage of low-temperature plasma to
deposition of thin films. M.: «Energoatomizdat», 1989.
3. Sputtering by Particle Bombardment. V.1. Physical
Sputtering of Single-Element Solids / Ed. R. Behrisch.
“Springer-Verlag», 1981.
4. A.von Engel. Ionized Gases. “AIP-Press”, 1994,
p. XIV.
5. F.M. Penning, J.H.A. Moubis. Cathode sputtering in a
magnetic field // Proc. Kon. Ned. Akad. Wet. 1940,
v. 43, № 1-5, p. 41-56.
6. Yu.G. Kononenko, A.I. Kuzmichev. Velocity of film
deposition in diode discharge device // Vacuum
technique and technology. 1992, v. 2, № 1, p. 13-18.
7. L.D. Landau, E.M. Lifshitz. Mechanics / 3rd ed.
“Butterworth-Heinemann”, 1976.
8. Yu.V. Gott. Interaction of particles with the matter in
plasma investigations. M.: “Atomizdat”, 1978.
9. Physical-chemical properties of elements: Handbook
/ Ed. G.V. Samsonov. Kiev: «Naukova Dumka», 1965.
10. O.D. Volpian, A.I. Kuzmichev, Yu.A. Obod,
A.S. Sigov. Modelling of fast neutral atoms flow
generation in channel rays of glow discharge // J. Phys.
Conf. Ser. 2018, v. 1121, p. 012034 (1-4).
Article received 08.09.2020
ПЕРЕРАСПРЕДЕЛЕНИЕ РАСПЫЛЕННОГО МАТЕРИАЛА В ПЛОСКОЙ ИОННО-ПЛАЗМЕННОЙ
СИСТЕМЕ С АНОМАЛЬНЫМ ТЛЕЮЩИМ РАЗРЯДОМ
А.И. Кузьмичев, М.С. Мельниченко, В.Г. Шинкаренко, В.М. Шулаев
Анализируется в кинетическом приближении перераспределение потока распылeнного материала
мишени (катода) между коллектором и мишенью в плоскопараллельной электродной системе с аномальным
тлеющим разрядом. Распыление является результатом бомбардировки катода-мишени газовыми ионами,
ускоренными в прикатодном слое пространственного заряда, и быстрыми нейтральными атомами,
образующимися в результате резонансной перезарядки ионов. Распылeнные атомы частично возвращаются
на мишень из-за столкновений с газовыми молекулами. Получены формулы, подтвержденные в
эксперименте, что позволяет корректно оценить соотношение потоков распыленного материала,
осаждающихся на коллекторе и мишени. Результаты работы используются для расчета параметров
процессов нанесения покрытий и ионной очистки мишени в условиях аномального тлеющего разряда.
ПЕРЕРОЗПОДІЛ РОЗПИЛЕНОГО МАТЕРІАЛУ В ПЛОСКІЇ ІОННО-ПЛАЗМОВІЙ СИСТЕМІ
З АНОМАЛЬНИМ ТЛІЮЧИМ РОЗРЯДОМ
А.І. Кузьмічев, М.С. Мельніченко, В.Г. Шінкаренко, В.М. Шулаєв
Аналізується в кінетичному наближенні перерозподіл потоку розпиленого матеріалу мішені (катода) між
колектором і мішенню в плоскопаралельній електродній системі з аномальним тліючим розрядом.
Розпилення є результатом бомбардування мішені газовими іонами, прискореними в катодному шарі
просторового заряду, і швидкими нейтральними атомами, що утворюються в результаті резонансного
перезарядження іонів. Розпилені атоми частково повертаються на мішень через зіткнення з газовими
молекулами. Отримано формули, підтверджені в експерименті, які дозволяють коректно оцінити
співвідношення потоків розпиленого матеріалу, що осідають на колекторі і мішені. Результати роботи
використовуються для розрахунку параметрів процесів нанесення покриттів і іонної очистки мішені в
умовах аномального тліючого розряду.
|