Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH
Water purification from ammonium hydroxide was carried out by using two methods of processing: treatment with ozone generated by a dielectric barrier discharge (DBD) as well as processing in plasma-chemical reactor equipped with a water electrode and a diaphragm, where the main oxidation factors wer...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/194657 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH / V.S. Taran, I.E. Garkusha, V.V. Krasnyj, A.V. Taran, A.S. Lozina, O.G. Chechelnitskyi, I.M. Boldyriev, S.P. Romaniuk // Problems of atomic science and tecnology. — 2020. — № 6. — С. 119-122. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194657 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1946572023-11-28T14:25:09Z Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH Taran, V.S. Garkusha, I.E. Krasnyj, V.V. Taran, A.V. Lozina, A.S. Chechelnitskyi, O.G. Boldyriev, I.M. Romaniuk, S.P. Low temperature plasma and plasma technologies Water purification from ammonium hydroxide was carried out by using two methods of processing: treatment with ozone generated by a dielectric barrier discharge (DBD) as well as processing in plasma-chemical reactor equipped with a water electrode and a diaphragm, where the main oxidation factors were OH hydroxyl radicals. The volume of the treated aqueous solution was 300 ml and the NH₄OH concentration was 0.025 ml in both cases. The phenolphthalein test was used for visual analysis of the content of an aqueous solution of ammonia in water. The ozone concentration was about 5.8 mg/l in water with ozone injection from an ozone generator and 0.7 mg/l in a plasma-chemical reactor, respectively. The analysis of OH and NO radicals in the water-air gap of the plasma-chemical reactor was carried out using a spectrometer operated in the range of 200…800 nm. Очищення води від гідроксиду амонію проводилося двома способами: обробкою озоном, що генерується діелектричним бар’єрним розрядом (ДБР), і обробкою в плазмохімічному реакторі, обладнаному водяним електродом і діафрагмою, в якому основним чинником окислення були гідроксильні радикали ОН. Обсяг обробленого водного розчину становив 300 мл, а концентрація NH₄OH становила 0,025 мл в обох випадках. Фенолфталеїновий тест використовували для візуального аналізу змісту водного розчину аміаку у воді. Концентрація озону становила близько 5,8 мг/л у воді при введенні озону з генератора озону і 0,7 мг/л в плазмохімічному реакторі відповідно. Аналіз радикалів OH і NO в водно-повітряному проміжку плазмохімічного реактора проводився на спектрометрі, що працює в діапазоні 200…800 нм. Очистка воды от гидроксида аммония проводилась двумя способами: обработкой озоном, генерируемым диэлектрическим барьерным разрядом (ДБР), и обработкой в плазмохимическом реакторе, оборудованном водяным электродом и диафрагмой, в котором основным фактором окисления являлись гидроксильные радикалы ОН. Объем обработанного водного раствора составлял 300 мл, а концентрация NH₄OH составляла 0,025 мл в обоих случаях. Фенолфталеиновый тест использовали для визуального анализа содержания водного раствора аммиака в воде. Концентрация озона составляла около 5,8 мг/л в воде при вводе озона из генератора озона и 0,7 мг/л в плазмохимическом реакторе соответственно. Анализ радикалов OH и NO в водно-воздушном зазоре плазмохимического реактора проводился на спектрометре, работающем в диапазоне 200…800 нм. 2020 Article Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH / V.S. Taran, I.E. Garkusha, V.V. Krasnyj, A.V. Taran, A.S. Lozina, O.G. Chechelnitskyi, I.M. Boldyriev, S.P. Romaniuk // Problems of atomic science and tecnology. — 2020. — № 6. — С. 119-122. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 52.80.Hc, 41.75.Lx, 41.60.Bq http://dspace.nbuv.gov.ua/handle/123456789/194657 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Taran, V.S. Garkusha, I.E. Krasnyj, V.V. Taran, A.V. Lozina, A.S. Chechelnitskyi, O.G. Boldyriev, I.M. Romaniuk, S.P. Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH Вопросы атомной науки и техники |
description |
Water purification from ammonium hydroxide was carried out by using two methods of processing: treatment with ozone generated by a dielectric barrier discharge (DBD) as well as processing in plasma-chemical reactor equipped with a water electrode and a diaphragm, where the main oxidation factors were OH hydroxyl radicals. The volume of the treated aqueous solution was 300 ml and the NH₄OH concentration was 0.025 ml in both cases. The phenolphthalein test was used for visual analysis of the content of an aqueous solution of ammonia in water. The ozone concentration was about 5.8 mg/l in water with ozone injection from an ozone generator and 0.7 mg/l in a plasma-chemical reactor, respectively. The analysis of OH and NO radicals in the water-air gap of the plasma-chemical reactor was carried out using a spectrometer operated in the range of 200…800 nm. |
format |
Article |
author |
Taran, V.S. Garkusha, I.E. Krasnyj, V.V. Taran, A.V. Lozina, A.S. Chechelnitskyi, O.G. Boldyriev, I.M. Romaniuk, S.P. |
author_facet |
Taran, V.S. Garkusha, I.E. Krasnyj, V.V. Taran, A.V. Lozina, A.S. Chechelnitskyi, O.G. Boldyriev, I.M. Romaniuk, S.P. |
author_sort |
Taran, V.S. |
title |
Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH |
title_short |
Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH |
title_full |
Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH |
title_fullStr |
Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH |
title_full_unstemmed |
Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH |
title_sort |
application of dielectric barrier discharge and plasma-chemical reactor for water purification from nh₄oh |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194657 |
citation_txt |
Application of dielectric barrier discharge and plasma-chemical reactor for water purification from NH₄OH / V.S. Taran, I.E. Garkusha, V.V. Krasnyj, A.V. Taran, A.S. Lozina, O.G. Chechelnitskyi, I.M. Boldyriev, S.P. Romaniuk // Problems of atomic science and tecnology. — 2020. — № 6. — С. 119-122. — Бібліогр.: 17 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT taranvs applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh AT garkushaie applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh AT krasnyjvv applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh AT taranav applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh AT lozinaas applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh AT chechelnitskyiog applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh AT boldyrievim applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh AT romaniuksp applicationofdielectricbarrierdischargeandplasmachemicalreactorforwaterpurificationfromnh4oh |
first_indexed |
2025-07-16T22:03:37Z |
last_indexed |
2025-07-16T22:03:37Z |
_version_ |
1837842739495960576 |
fulltext |
ISSN 1562-6016. ВАНТ. 2020. №6(130)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 119-122. 119
https://doi.org/10.46813/2020-130-119
APPLICATION OF DIELECTRIC BARRIER DISCHARGE
AND PLASMA-CHEMICAL REACTOR FOR WATER PURIFICATION
FROM NH4OH
V.S. Taran
1
, I.E. Garkusha
1
, V.V. Krasnyj
1
,
A.V. Taran
1
,
A.S. Lozina
1
,
O.G. Chechelnitskyi
1
, I.M. Boldyriev
2
, S.P. Romaniuk
3
1
Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
Public Joint Stock Company “HARTRON”, Kharkiv, Ukraine;
3
Petro Vasylenko Kharkiv National Technical University of Agriculture, Kharkiv, Ukraine
E-mail: avtaran@ukr.net
Water purification from ammonium hydroxide was carried out by using two methods of processing: treatment
with ozone generated by a dielectric barrier discharge (DBD) as well as processing in plasma-chemical reactor
equipped with a water electrode and a diaphragm, where the main oxidation factors were OH hydroxyl radicals. The
volume of the treated aqueous solution was 300 ml and the NH4OH concentration was 0.025 ml in both cases. The
phenolphthalein test was used for visual analysis of the content of an aqueous solution of ammonia in water. The
ozone concentration was about 5.8 mg/l in water with ozone injection from an ozone generator and 0.7 mg/l in a
plasma-chemical reactor, respectively. The analysis of OH and NO radicals in the water-air gap of the plasma-
chemical reactor was carried out using a spectrometer operated in the range of 200...800 nm.
PACS: 52.80.Hc, 41.75.Lx, 41.60.Bq
INTRODUCTION
Water purification from ammonia is an urgent
problem at various industrial and agricultural facilities,
in artificial reservoirs and pools. Ammonia can be
present in water in two forms, either ammonium
hydroxide (NH3*H2О or more common NH4OH) or as
the ammonium ion (NH4). The total sum of the
concentrations of ammonium and ammonia is called
total ammonia nitrogen (TAN). The source of ammonia
in water is salts and dissolved ammonia as well as
nitrogen-containing substances resulting from the
decomposition of protein compounds. Ammonia is a
colorless gas, readily soluble in water, with a
characteristic odor, has a toxic effect on the aquatic
flora and fauna and can occur in an aqueous solution at
a pH of less than 8 in the form of ammonia, at a pH of
more than 11 in the form of ammonium, between pH
8...11 both ammonium and ammonia exist. Taking into
consideration the environmental hazard of ammonia, a
number of methods are aimed at its removal, both in air
and in the aquatic environment.
Today, there are various methods which can
significantly reduce the ammonia content in water.
Known methods of chemical precipitation, purging,
desorption and adsorption are usually used for the
purification of ammonia-nitrogen wastewater with a low
concentration.
The chemical precipitation method is designed to
reduce the solubility of ammonia nitrogen in water by
forming an insoluble salt. The purge method typically
uses NaOH to adjust the pH to basic wastewater and
ammonia nitrogen can exist in the form of free ammonia
(NH3). Then, ammonia nitrogen leaves the aqueous
solution and exits into the atmosphere. The removal of
ammonia by desorption is a process that is often
considered as one of the possible ways of wastewater
treatment, but it does not find wide practical application.
In addition, to remove nitrogen from water, which exists
in the wastewater in the form of free ammonia,
ammonium salts and nitrites, it is possible to use the
reduction of nitrates to molecular nitrogen in a
biological way (denitrification). First, it is necessary to
oxidize ammonia nitrogen into nitrites and nitrates
(nitrification) [1]. However, biological nitrification
layers are subject to significant fluctuations in
efficiency, since nitrifying bacteria in the biofilter layers
are sensitive to environmental disturbances and changes
in working conditions, which are often associated with
color, smell and taste problems and, in addition, worsen
the biofilter function [2]. When removing nitrogen in
the ammonium form, it is advisable to use ion-exchange
filters, in particular, filtering waste water through
loading from natural zeolites [3]. Free chlorine
(HOCl
+
OCl
-
) is usually used in water and wastewater
treatment to disinfect and remove ammonia. However,
in addition to the desired effects, residual free chlorine
can also have a number of undesirable ones: for
example, it is toxic to organisms existing in the water,
lowers the palatability of drinking water, and is
aggressive in the industrial use of water. Thus, free
chlorine should be removed from water or at least
reduced in its content.
Ozone (O3) is a strong oxidizing agent, especially in
the presence of OH
-
, H2O2/HO
-
, Fe2, UV, and other
activators or accelerators of free radicals [4, 5]. Under
the influence of excited radicals and accelerators, ozone
will cause a large number of hydroxyl radicals (OH) in
the reaction system, which will lead to chain reactions
and then more reactive radicals will be produced.
Studies by Hoigne J. and Bader H. [6] showed that
ozone-induced oxidation of ammonia in water can be
the result of a direct reaction of ozone with ammonia, as
120 ISSN 1562-6016. ВАНТ. 2020. №6(130)
well as reactions of hydroxyl radicals generated by the
decomposition of ozone. The direct ozone reaction
predominates at pH < 9, but in the presence of low
concentrations of free ammonia this is a slow reaction.
At pH > 9, the hydroxyl ionic and radical-catalyzed
decomposition of ozone to a reactive intermediate
hydroxyl radical determines the kinetics of ammonia
oxidation. The reaction rate constant of the hydroxyl
radical with ammonia is relatively small. Whenever the
mechanism of hydroxyl radicals is activated, ammonia
is easily protected by other dissolved substances, which
also consume hydroxyl radicals.
According to De Pena and Olszyna [7, 8], NH3 can
react with O3 to form ammonium nitrate (NH4NO3). In
these reaction processes, NH3 is first oxidized to nitric
acid and then reacts with nitric acid to form NH4NO3.
Xianping Luo, Qun Yan et al. [9] studied the
purification process using the two-stage method of
ozone oxidation of wastewater with ammonia nitrogen
content (about 100 mg/l). Also, the effect of the ozone
flow rate and the initial pH on the removal of ammonia
was investigated. It was determined that after the initial
stage of ozone oxidation, the ammonia removal
efficiency reached 59.32 %, and the pH decreased from
11 to 6.63 at an ozone flow rate of 1 l/min, and after the
second stage, the removal efficiency was more than
85 %. In [10], when treating ammonia in air, it was
shown that 1.8 mg of O3 is necessary for the oxidation
of 1 mg of NH3.
Considering the above mentioned, all methods have
their own characteristics, but each of them has its own
limitations or has different levels of investment in
equipment, high operating costs, secondary pollution
and other disadvantages [11-15]. Therefore, it is
necessary to find effective, practical methods for
removing ammonia. In so doing, considerable interest is
given to non-equilibrium low-temperature plasma and,
in particular, dielectric barrier discharge (DBD) used for
ammonia removal from aqueous medium.
1. EXPERIMENTAL SETUP
1.1. OZONE REACTOR BASED ON DBD
A reactor based on a dielectric barrier discharge with
air-cooled plane-parallel electrodes was used as an
ozone generator (Fig. 1).
Fig. 1. Scheme of NH4OH oxidation with ozone in DBD:
1 – stainless steel container with plexiglass cover;
2 – water; 3 – ozone reactor based on a dielectric
barrier discharge; 4 – ozone concentration meter of
M454 DIN type;5 – system for obtaining a solution for
analysis
Glass with ɛ = 6 was used as a dielectric. The reactor
is powered by a high-voltage pulse supply of 7 kV and
power consumption comprised 10 W. The ozone
concentration at the reactor outlet was 25 mg/l at a dry
air flow rate of 0.2 mg/l. The concentration of NH4OH
was 0.025 ml. NH4OH treatment was carried out in a
stainless steel container with a volume of 0.5 l; the
ozone concentration in water without ammonia was
5.8 mg/ l at a water temperature of 20°C.
1.2. PLASMA-CHEMICAL REACTOR
A diaphragm discharge was used to generate ozone
in a plasma-chemical reactor. The NH4OH solution was
processed inside the discharge chamber – a container
made of a dielectric material with a separating dielectric
diaphragm membrane having holes of 1 mm in
diameter. A general view of the diaphragm reactor is
shown in Fig. 2. The diaphragm reactor was described
in more detail in [16]. The ozone concentration in water
was determined by using an automated stand equipped
with MDR-2 monochromator and a photomultiplier tube
(PMT) and amounted to about 0.7 mg/l. The NH4OH
concentration was 0.025 ml.
Fig. 2. Schematic view of plasma-chemical reactor and
diaphragm discharge
1.3. DISCUSSION
Plasma in an oxygen-containing environment in
contact with an aqueous solution is a source of such
strong oxidants as O, OH, HO2, H2O2, O3, which,
penetrating into the solution, lead to the destruction of
organic pollutants. Regardless of the type of discharge,
the emission spectrum contains bands of N2, OH, and
NO molecules and lines of O and H atoms during a
discharge in air and oxygen [17].
The performed spectroscopic studies in the range of
200...800 nm in the water-air gap of the discharge
revealed the presence of OH and NO lines in the water-
air gap (Fig. 3).
Fig. 3. The emission spectrum of the discharge in the
air-water gap depending on the applied voltage
290 295 300 305 310 315 320 325 330
0
400
800
1200
18 kV
17 kV
16 kV
OH(306nm)
N2(297,7nm)
E
m
is
si
o
n
i
n
te
n
si
ty
[
ar
b
.
u
n
it
s]
Wavelength [nm]
ISSN 1562-6016. ВАНТ. 2020. №6(130) 121
The change in the intensity of the OH and N2 peaks
in the discharge was also obtained depending on the
applied voltage. We assume that the presence of
hydroxyl radicals in the discharge has a significant
effect on the treated impurities in water, because this
ozone concentration may not be enough for NH4OH
oxidation.
To visually determine the oxidation of the NH4OH
solution, a phenolphthalein sample was used, which
stains the solution in a raspberry color. When the
NH4OH solution was treated with a diaphragm
discharge, coloration was not observed after 10 min of
treatment, and when treated with ozone, which was
generated by a dielectric barrier discharge after 20 min.
The absence of coloration confirms the fact that the
solution is not alkaline. Fig. 4 shows the change in the
color of the NH4OH solution when using a
phenolphthalein sample (a – during oxidation in a
diaphragm discharge; b – during oxidation with ozone
generated by the DBD reactor).
Fig. 4. Visual observation of NH4OH removal by color
change during oxidation in a – diaphragm discharge,
b – DBD
For a more accurate determination of the oxidation
state of NH4OH in ozone, we used a method for
determining the concentration of ozone in water on an
automated stand using an MDR-2 monochromator
(LOMO, Russia) and a photomultiplier tube (PMT).
First, in the presence of NH4OH in water, the device
recorded the absence of ozone in the water. When the
ozone concentration started to increase, this meant that
ozone was present in the water and NH4OH was
oxidized. Ozone concentration was recorded every
5 min. With a diaphragm discharge, small values of the
ozone concentration began to be recorded after 10 min
of treatment, and with DBD – after 20 min. As a result it
was calculated that 4 g of O3 generated by DBD is
sufficient for the oxidation of 1 ml of NH4OH. For the
oxidation of 1 ml of NH4OH in a plasma-chemical
reactor, this device must be in operation for at least 6 h.
CONCLUSIONS
Two methods of water purification from NH4OH are
proposed: treatment with ozone generated by DBD and
plasma-chemical treatment. A comparison of the
kinetics of their oxidative processes is also given. The
phenolphthalein sample was used to visually observe
the NH4OH oxidation process. The change in the color
of NH4OH upon treatment with ozone indicated the
oxidation process sequence. As a result of the work
carried out, it was calculated that for the oxidation of
1 ml of NH4OH, 4 g of O3 is sufficient, which is
generated by DBD or at least 6 h of operation of the
plasma-chemical reactor.
REFERENCES
1. V.I. Grinevich, А.А. Gushin, N.A. Plastinina //
Izvestia VUZ. Chemistry and chemical technology.
2009, v. 52, № 2, p. 130-134.
2. D.W. Graham, C.W. Knapp, E.S. Vleck, K. Bloor,
T.B. Lane, C.E. Graham. Experimental demonstration
of chaotic instability in biological nitrification// ISME J.
2007, № 1, p. 385-393.
3. P.J. Udeh. A Guide to Healthy Drinking Water //
Universe: «Bloomington», IN, USA, 2004.
4. B. Li, J.Y. Zhao, J.F. Lu. Numerical study of the
simultaneous oxidation of NO and SO2 by ozone //Int. J.
Environ. Res. Public Health. 2015, № 12, p. 1595-1611.
5. Y. Ishizuka, M. Tokumura, A. Mizukoshi, M. Miyuki
Noguchi, Y. Yanagisawa. Measurement of Secondary
Products during oxidation reactions of terpenes and
ozone based on the Prt-MS analysis: Effects of
coexistent carbonyl compounds // Int. J. Environ. Res.
Public Health. 2010, № 7, p. 3853-3870.
6. J. Hoigné, H. Bader. Ozonation of water: kinetics of
oxidation of ammonia by ozone and hydroxyl radicals //
Environmental Science and Technology.1978, v. 12,
p. 79-84.
7. R.G.De Pena, K. Olszyna, J. Heicklen. Kinetics of
Particle Growth. I. Ammonium Nitrate from the
Ammonia-Ozone Reaction // Phys. Chem. 1973, № 77,
p. 438-443.
8. K.J. Olszyna, J. Heicklen. Reaction of Ozone with
Ammonia// Adv. Chem. Series. 1972, p. 191-210.
9. Luo Xianping, Yan Qun, Wang Chunying, Luo
Caigui, Zhou Nana, Chensheng Jian. Treatment of
Ammonia Nitrogen Wastewater in Low Concentration
by Two-Stage Ozonization // Int. J. Environ. Res. Public
Health. 2015, v. 12.
10. V.S. Taran, V.V. Krasnyj, A.S. Lozina,
O.G. Chechelnitskyi, A.V. Schebetun. Investigation of
ozone decay half-life in dependence of temperature and
humidity as H2S and NH3 oxidation mechanism //
Problems of Atomic Science and Technology. Series
«Plasma Physics». 2017, № 1, p. 244-246.
11. I. Mahamudur, P. Rajkishore. Synthesis and
physicochemical characterization of Zn/Al chloride
layered double hydroxide and evaluation of its nitrate
removal efficiency // Desalination. 2010, № 256,
p. 120-128.
122 ISSN 1562-6016. ВАНТ. 2020. №6(130)
12. H. Yang, H. Cheng. Controlling nitrite level in
drinking water by chlorination and chloramination //
Sep. Purif. Technol. 2007, № 56, p. 392-396.
13. Z. Guo, Z. Zheng, C. Gu, Y. Zheng. Gamma
irradiation-induced removal of low-concentration nitrite
in aqueous solution // Radiat. Phys. Chem. 2008, № 77,
p. 702-707.
14. G. Markou, D. Vandamme, K. Muylaert. Using
natural zeolite for ammonia sorption from wastewater
and as nitrogen releaser for the cultivation of
Arthrospira platensis // Bioresour. Technol. 2014,
№ 155, p. 373-378.
15. H.Wang, K.G. Zhou. The research development on
the treatment of ammonia-nitrogen wastewater // Ind.
Saf. Environ. Prot. 2006, № 32, p 7-9.
16. V.S. Taran, V.V. Krasnyj, A.S. Lozina,
O.M. Shvets. Investigation of pulsed barrier discharge
in water air gap // Problems of Atomic Science and
Technology. Series «Plasma Physics». 2013, № 1,
p. 249-251.
17. E.S. Bobkova, Ya.V. Khodor, O. N. Kornilova,
V.V. Rybkin. The chemical composition of the plasma
of a dielectric barrier discharge of atmospheric pressure
with a liquid electrode // Thermophysics of high
temperatures. 2014, v. 52, № 4, p. 535-542.
Articlereceived 05.10.2020
ПРИМЕНЕНИЕ ДИЭЛЕКТРИЧЕСКОГО БАРЬЕРНОГО РАЗРЯДА И ПЛАЗМОХИМИЧЕСКОГО
РЕАКТОРА ДЛЯ ОЧИСТКИ ВОДЫ ОТ NH4OH
В.С. Таран, И.Е. Гаркуша, В.В. Красный, А.В. Таран, А.С. Лозина, О.Г. Чечельницкий,
И.Н. Болдырев, С.П. Романюк
Очистка воды от гидроксида аммония проводилась двумя способами: обработкой озоном, генерируемым
диэлектрическим барьерным разрядом (ДБР), и обработкой в плазмохимическом реакторе, оборудованном
водяным электродом и диафрагмой, в котором основным фактором окисления являлись гидроксильные
радикалы ОН. Объем обработанного водного раствора составлял 300 мл, а концентрация NH4OH составляла
0,025 мл в обоих случаях. Фенолфталеиновый тест использовали для визуального анализа содержания
водного раствора аммиака в воде. Концентрация озона составляла около 5,8 мг/л в воде при вводе озона из
генератора озона и 0,7 мг/л в плазмохимическом реакторе соответственно. Анализ радикалов OH и NO в
водно-воздушном зазоре плазмохимического реактора проводился на спектрометре, работающем в
диапазоне 200...800 нм.
ЗАСТОСУВАННЯ ДІЕЛЕКТРИЧНОГО БАР’ЄРНОГО РОЗРЯДУ І ПЛАЗМОХІМІЧНОГО
РЕАКТОРУ ДЛЯ ОЧИЩЕННЯ ВОДИ ВІД NH4OH
В.С. Таран, І.Є. Гаркуша, В.В. Красний, А.В. Таран, А.С. Лозина, О.Г. Чечельницький,
І.М. Болдирев, С.П. Романюк
Очищення води від гідроксиду амонію проводилося двома способами: обробкою озоном, що генерується
діелектричним бар'єрним розрядом (ДБР), і обробкою в плазмохімічному реакторі, обладнаному водяним
електродом і діафрагмою, в якому основним чинником окислення були гідроксильні радикали ОН. Обсяг
обробленого водного розчину становив 300 мл, а концентрація NH4OH становила 0,025 мл в обох випадках.
Фенолфталеїновий тест використовували для візуального аналізу змісту водного розчину аміаку у воді.
Концентрація озону становила близько 5,8 мг/л у воді при введенні озону з генератора озону і 0,7 мг/л в
плазмохімічному реакторі відповідно. Аналіз радикалів OH і NO в водно-повітряному проміжку
плазмохімічного реактора проводився на спектрометрі, що працює в діапазоні 200...800 нм.
|