Plasma-chemical method of grain fungal contamination control
The experimental results n the effect of grain treatment with ozone-air mixture on the level of artificial grain contamination with micromycetes are presented. The contamination dynamics for 1000 kg of wheat grain contaminated with Penicillium nordicum and Aspergillus flavus and stored in the protot...
Збережено в:
Дата: | 2020 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2020
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/194659 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Plasma-chemical method of grain fungal contamination control / G.V. Taran, S.G. Pugach, A.A. Zamuriev, P.O. Opalev, M.O. Yaroshenko // Problems of atomic science and tecnology. — 2020. — № 6. — С. 127-130. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194659 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1946592023-11-28T14:26:24Z Plasma-chemical method of grain fungal contamination control Taran, G.V. Pugach, S.G. Zamuriev, A.A. Opalev, P.O. Yaroshenko, M.O. Low temperature plasma and plasma technologies The experimental results n the effect of grain treatment with ozone-air mixture on the level of artificial grain contamination with micromycetes are presented. The contamination dynamics for 1000 kg of wheat grain contaminated with Penicillium nordicum and Aspergillus flavus and stored in the prototype grain storage unit in ozone environment for 6 months is shown. The study on the effect of ozone on the growth inhibition of Aspergillus flavus or maize grain and Penicillium verrucosum for wheat grain in a 100 dm³ silo is presented. The effect of ozone on the content of aflatoxins in maize grain additionally contaminated with Aspergillus flavus is studied. The efficiency of ozone technologies for large-scale grain storage, as well as for reducing fungal contamination and controlling mycotoxin content in food grains, is shown. Наведено експериментальні результати з впливу обробки зерна озоноповітряною сумішшю на рівень штучного зараження зерна мікроміцетами. Наведено динаміку забруднення 1000 кг зерна пшениці, зараженого Penicillium nordicum і Aspergillus flavus, яке зберігалося в прототипі зерносховища в озоновому середовищі протягом 6 місяців. Представлено дослідження впливу озону на пригнічення росту Aspergillus flavus для зерна кукурудзи і Penicillium verrucosum для зерна пшениці в силосі об’ємом 100 дм³. Вивчено вплив озону на утримання афлатоксинів у зерні кукурудзи, додатково зараженого Aspergillus flavus. Показана ефективність озонових технологій для великомасштабного зберігання зерна, а також для зниження грибкового зараження і контролю вмісту мікотоксинів у продовольчому зерні. Приведены результаты экспериментальных исследований влияния обработки озоновоздушной смесью зерновых культур на степень их контаминации микромицетами при искусственном заражении. Исследована динамика степени контаминации зерна пшеницы массой 1000 кг, которое было заражено грибной инфекцией Penicillium nordicum и Aspergillus flavus и хранилось в прототипе промышленной установки для хранения зерна в среде озона в течение 6 месяцев. Приведено исследование влияния озона на угнетение роста микромицетов Aspergillus flavus на зерне кукурузы и Penicillium verrucosum на зерне пшеницы в модельном силосе объемом 100 дм³. Проведено исследование влияния озона на содержание афлотоксинов в зерне кукурузы, дополнительно зараженном Aspergillus flavus. Показана эффективность озоновых технологий для хранения промышленных партий зерна как для снижения контаминации грибковой инфекции, так и для контроля содержания микотоксинов в продовольственном зерне. 2020 Article Plasma-chemical method of grain fungal contamination control / G.V. Taran, S.G. Pugach, A.A. Zamuriev, P.O. Opalev, M.O. Yaroshenko // Problems of atomic science and tecnology. — 2020. — № 6. — С. 127-130. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.75.-d, 52.77.-j, 52.90.+z, 81.20.-n http://dspace.nbuv.gov.ua/handle/123456789/194659 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Taran, G.V. Pugach, S.G. Zamuriev, A.A. Opalev, P.O. Yaroshenko, M.O. Plasma-chemical method of grain fungal contamination control Вопросы атомной науки и техники |
description |
The experimental results n the effect of grain treatment with ozone-air mixture on the level of artificial grain contamination with micromycetes are presented. The contamination dynamics for 1000 kg of wheat grain contaminated with Penicillium nordicum and Aspergillus flavus and stored in the prototype grain storage unit in ozone environment for 6 months is shown. The study on the effect of ozone on the growth inhibition of Aspergillus flavus or maize grain and Penicillium verrucosum for wheat grain in a 100 dm³ silo is presented. The effect of ozone on the content of aflatoxins in maize grain additionally contaminated with Aspergillus flavus is studied. The efficiency of ozone technologies for large-scale grain storage, as well as for reducing fungal contamination and controlling mycotoxin content in food grains, is shown. |
format |
Article |
author |
Taran, G.V. Pugach, S.G. Zamuriev, A.A. Opalev, P.O. Yaroshenko, M.O. |
author_facet |
Taran, G.V. Pugach, S.G. Zamuriev, A.A. Opalev, P.O. Yaroshenko, M.O. |
author_sort |
Taran, G.V. |
title |
Plasma-chemical method of grain fungal contamination control |
title_short |
Plasma-chemical method of grain fungal contamination control |
title_full |
Plasma-chemical method of grain fungal contamination control |
title_fullStr |
Plasma-chemical method of grain fungal contamination control |
title_full_unstemmed |
Plasma-chemical method of grain fungal contamination control |
title_sort |
plasma-chemical method of grain fungal contamination control |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2020 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194659 |
citation_txt |
Plasma-chemical method of grain fungal contamination control / G.V. Taran, S.G. Pugach, A.A. Zamuriev, P.O. Opalev, M.O. Yaroshenko // Problems of atomic science and tecnology. — 2020. — № 6. — С. 127-130. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT tarangv plasmachemicalmethodofgrainfungalcontaminationcontrol AT pugachsg plasmachemicalmethodofgrainfungalcontaminationcontrol AT zamurievaa plasmachemicalmethodofgrainfungalcontaminationcontrol AT opalevpo plasmachemicalmethodofgrainfungalcontaminationcontrol AT yaroshenkomo plasmachemicalmethodofgrainfungalcontaminationcontrol |
first_indexed |
2025-07-16T22:03:47Z |
last_indexed |
2025-07-16T22:03:47Z |
_version_ |
1837842750135861248 |
fulltext |
ISSN 1562-6016. ВАНТ. 2020. №6(130)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2020, № 6. Series: Plasma Physics (26), p. 127-130. 127
https://doi.org/10.46813/2020-130-127
PLASMA-CHEMICAL METHOD OF GRAIN FUNGAL
CONTAMINATION CONTROL
G.V. Taran
1
, S.G. Pugach
1
, A.A. Zamuriev
1
, P.O. Opalev
1
, M.O. Yaroshenko
2
1
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2
National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”
(NSC “IECVM”), Kharkiv, Ukraine
E-mail: tarang@kipt.kharkov.ua
The experimental results on the effect of grain treatment with ozone-air mixture on the level of artificial grain
contamination with micromycetes are presented. The contamination dynamics for 1000 kg of wheat grain
contaminated with Penicillium nordicum and Aspergillus flavus and stored in the prototype grain storage unit in
ozone environment for 6 months is shown. The study on the effect of ozone on the growth inhibition of Aspergillus
flavus for maize grain and Penicillium verrucosum for wheat grain in a 100 dm
3
silo is presented. The effect of
ozone on the content of aflatoxins in maize grain additionally contaminated with Aspergillus flavus is studied. The
efficiency of ozone technologies for large-scale grain storage, as well as for reducing fungal contamination and
controlling mycotoxin content in food grains, is shown.
PACS: 52.75.-d, 52.77.-j, 52.90.+z, 81.20.-n
INTRODUCTION
The most attractive aspects of its application in
comparison with the traditional chemical and
technological processes are no liquid solutions required
and significantly lower energy consumption in these
plasma processes. Plasma processes are potentially
environmentally-friendly.
Also, plasma processes are more energy efficient.
Physical and chemical activities of plasma have been
known for more than 100 years. However, the systematic
extensive studies on chemical reactions under such
conditions began only in the late 50s after significant
advances in plasma physics were achieved and high-
voltage equipment was developed [1].
The main feature of plasma-chemical processes is that
many reactive particles, such as excited molecules,
electrons, atoms, atomic and molecular ions, free radicals
(some of these particles can be formed only in plasma)
responsible for the new types of chemical reactions, are
formed in plasma in much higher concentrations than
under normal conditions of chemical reactions. Plasma-
chemical reactions, as a rule, are multichannel processes,
due to which the whole variety of experimental reactions
is determined in low-temperature plasma. [2, 3]. By
changing the conditions of plasma generation and
regulation of its composition, reactions can be directed
through one or another channel [4].
The main feature of plasma-chemical processes is
formation of reactive particles in plasma in much higher
concentrations, than under normal conditions of chemical
reactions. The reactive articles such as excited molecules,
electrons, atoms, atomic and molecular ions, free radicals
(some of these particles can be formed only in plasma)
are responsible for new types of chemical reactions.
Plasma-chemical reactions, as a rule, are multichannel
processes, due to which the whole variety of
experimental reactions is determined in low-temperature
plasma. [2, 3]. By changing the conditions of plasma
generation and regulation of its composition, reactions
can be directed through one or another channel [4].
One of the most promising types of gas discharge for
effective implementation of plasma-chemical processes is
a barrierless discharge which occurs in sharply
inhomogeneous electric fields and is characterized by a
diffuse glow in the discharge gap. This type of discharge
is characterized by ionization propagation over the entire
discharge gap, which makes it possible to obtain large
amounts of weakly ionized gas at atmospheric pressure
[5].
The issue of environmental pollution and
contamination of feed substrates with the spores of
microscopic fungi becomes more acute every year [6-9].
This problem is associated with violation of ecological
balance in myco- and microcenoses, increasing the
photooxidant concentration in the atmosphere (air
pollution), decreasing the resistance to phytopathogens
and using fertilizers and pesticides
Each type of parasitic fungi has its own physiological
characteristics and methods of influence on the growth
substrate, respectively. The development of such fungi as
Aspergillus flavus in maize grain and Penicillium
verrucosum in wheat grain during storage leads to
product quality deterioration. As a result, such grain
cannot be used for food purposes [7]. Therefore, the main
goal of the experimental studies was to determine the
ozone treatment effect on the level of contamination with
micromycetes at artificial contamination. A wheat grain
was artificially contaminated with Penicillium
verrucosum and a maize grain – with Aspergillus flavus.
The effect of ozone on the content of aflatoxins in maize
grain additionally contaminated with Aspergillus flavus
was studied.
MATERIAL AND METHOD
The effect of ozone on fungal infection was studied
using the prototype unit for wheat storage in ozone
environment. The prototype consists of the following
functional units: the air compressor GOORUI (China)
with a capacity of up to 47 m
3
/h and the maximum
pressure of up to 100 kPa, the float-type flowmeter
(DFG-25), the ozone generator "Stream Ozone" with the
maximum ozone productivity of 10 g/h, the ozone meter
mailto:tarang@kipt.kharkov.ua
128 ISSN 1562-6016. ВАНТ. 2020. №6(130)
"Stream Ozone" with a measurement range of
0...1000 ppm, the silo prototype with a volume of 2 m
3
made of moisture-resistant wooden board OSB-3 to
accommodate 1 t of grain (Fig. 1). Some part of grain
(250 kg) was artificially contaminated with a complex of
fungi (Aspergillus flavus and Penicillium nordicum) to
study.
Ozone-air mixture with the flow rate of 17 m³/h was
fed to the grain. Ozone concentration in the mixture was
100 mg/m³ (~50 ppm). The treatment was carried out
every other week within 3 days. Sampling was carried out
once a month. Both the quantitative (the number of
spores in 1 g of grain) and qualitative characteristics of
contamination (the percentage of contaminated grain in
its total mass) were studied. During the experiment, the
ambient temperature was monitored.
Fig. 1. The silo simulator for a ton of grain
To study the effect of ozone on the inhibition of
Aspergillus flavus and Penicillium verrucosum growth
in artificially contaminated maize and wheat (grain
weight of 100 kg, respectively), a model silo with the
volume of 100 dm
3
was developed (Fig. 2). The grain
was treated for 3 days once in 2 weeks in a 100-liter silo
simulator. Ozone concentration in the mixture was
100 mg/m³. The grain was stored at the temperature of
15...20 °C and humidity of 40...50 %.
Fig. 2. The silo simulator for 100 kg of grain
The content of mycotoxins in wheat and maize
samples was studied using a specially designed
experimental stand. The experimental stand included
such functional units as the air compressor “Secoh
sangyo” (Japan) with the capacity up to 50 l/min and the
maximum pressure up to 12.7 kPa, gas flow meter (RM-
4 GU3), laboratory ozone generator “Ozone-agro 1L”,
ozone monitor “Teledyne instruments” (USA) 454H
with the measuring range of 0.1…100 g/m
3
, test
chamber for samples and ozone destructor (Fig. 3).
Liquid chromatography method (LC/MS/MS) was
used to study the content of Aflatoxins (B1, B2, G1,
G2) in the wheat grain volume additionally
contaminated with Penicillium verrucosum at a low
level of fungal contamination (less than 1∙10
4
spores/g).
The samples of wheat and maize grain were treated with
ozone-air mixture for 3 days. The ozone concentration
was 100 mg/m
3
.
Fig. 3. The block diagram of the third experimental
stand
To obtain a high level of fungal contamination (about
3∙10
5
spores/g), the culture of Aspergillus flavus was
incubated on a sterile maize grain at the humidity of 70%
and temperature of 27 °C for 14 days in thermostat. Then
the whole mass of the contaminated maize was divided
into two parts in the ratio of 1 to 3. One part was kept as a
reference and 3 parts were treated with ozone at the output
concentration of 100 mg/m³. The samples of treated maize
were taken after 3, 4, and 5 days of treatment.
Mycotoxin content was determined in accordance with
the “Guidelines for sanitary-mycological assessment and
improvement of feed quality” by thin-layer
chromatography (TLC) on “Sorbfil” plates. The plates
were chromatographed in TEM (toluene-ethyl acetate-
formic acid) system at the ratio of 6:3:1. To detect
Aflatoxin B, the plates were examined under a UV
radiation source with the wavelength of 254 and 365 nm
(chromatographic emitter UFS-254). Aflatoxin B was
visualized as a fluorescent bright blue spot of Rf of 0.36.
EXPERIMENTAL RESULTS
As a result of studies, it is shown that ozone-air mixture
has inhibitory effect on the spores of the studied
microscopic fungi. The research lasted within 6 months
(November 2018-May 2019) has shown that ozone inhibits
fungus growth during storage. The percentage of
contamination with Aspergillus flavus after ozone
treatment at wheat storage for 6 months without additional
contamination with Penicillium nordicum averaged 25 %
(75 % was inhibited).
The percentage of residual contamination with
Aspergillus flavus at additional contamination with
Penicillium nordicum was 40% (60% was inhibited). At
contamination with Penicillium nordicum, the percentage
of residual fungal contamination in both cases was 40 %
(60 % was inhibited). Variability of data on the quantitative
content of micromycetes at different periods of storage is
associated with temperature fluctuations and uneven
contamination distribution over the stored grain volume.
Changes in the level of fungal contamination with
Aspergillus flavus are shown in Figs. 4, 5.
Fig. 4. Dynamics of the influence of ozone-air mixture
on Aspergillus flavus contamination for 6 months (in %)
ISSN 1562-6016. ВАНТ. 2020. №6(130) 129
Fig. 5. Dynamics of the influence of ozone-air mixture
on Aspergillus flavus contamination for 6 months
(in CFU/g)
The Ozone effect on the development of Aspergillus
flavus in artificially contaminated maize, as well as of
Penicillium verrucosum in artificially contaminated
wheat (grain samples were taken 2 times a month) was
studied during the experiments. It has been found that
ozone not only inhibits fungal growth and its content in
samples, but also reduces significantly d the number of
colonies in 1 g of grain (from 3 to 6 times in different
grain samples) (Figs. 6, 7).
Fig. 6. The influence of ozone-air mixture on
Aspergillus flavus in maize grain
Fig. 7. The influence of ozone-air mixture on
Penicillium verrucosum in wheat grain
The effect of ozone on the content of mycotoxins in
wheat and maize samples was studied. As a result of the
experiments, it was shown that at a low level of wheat
grain fungal contamination with Penicillium
verrucosum (less than 1∙10
4
spores/g), Aflatoxins (B1,
B2, G1, G2) were not detected in both control and
treated samples (less than 0.002 mg/kg). Then, the
content of Aflatoxins at a high level of fungal
contamination (about 30∙10
4
spores/g) was studied. The
culture of Aspergillus flavus was grown on sterile maize
grain at the humidity of 70% and temperature of 27
0
C
for 14 days in thermostat.
Maize grain contaminated with Aspergillus flavus is
shown in Fig. 8 after the treatment with ozone-air
mixture.
Fig. 8. Maize grain contaminated with Aspergillus
flavus and treated by ozone during 3, 4, and 5 days
In Fig. 9, the “Sorbfil” plate is shown in the process
of chromatographic run.
Fig. 9. The plate with Aflatoxin stains in the
process of chromatographic run
Changing Aflatoxin B content (in mg/kg) in the
reference sample as well as in samples treated with
ozone-air mixture for 3, 4, and 5 days is presented in the
graph (Fig. 10).
Fig. 10. Changes in the content of Aflatoxin B for
the control sample and after the treatment with ozone-
air mixture
In the graphs above, it is shown that ozone reduces
the content of Aflatoxin B in maize grain by more than
2 times in 5 days of treatment.
CONCLUSIONS
As a result of studies carried out using a 1000 kg
grain silo, a persistent effect of growth inhibition for
Aspergillus flavus up to 75 % and Penicillium nordicum
up to 60 % was shown during 6 months. Additional
contamination of the part of grain volume with
Penicillium nordicum reduced the level of
contamination inhibition for Aspergillus flavus to 60 %.
130 ISSN 1562-6016. ВАНТ. 2020. №6(130)
The ozone effect on the development of
micromycetes in maize and wheat grain artificially
contaminated with Aspergillus flavus and Penicillium
verrucosum respectively in 100 kg silo was studied. It
was found that ozone inhibited the growth of fungal
contamination and the number of colonies in 1 g of feed
grains decreased on average by 3-6 times.
In accordance with the experimental results on the
effect of ozone on the content of mycotoxins in wheat
grain contaminated with Penicillium verrucosum at a
low level of contamination (less than 1.0∙10
4
spores/g),
Aflatoxins (B1, B2, G1, G2) were not detected (less
than 0.002 mg/kg). At a high level of maize grain
contamination with Aspergillus flavus (more than
3.0∙10
5
spores/g), the content of Aflatoxins decreased by
2.5 times (by 60%). These data are consistent with the
results of changes in the number of spores after the
treatment with ozone-air mixture.
Thus, the efficiency of ozone technologies for large-
scale storage of grain was shown both to reduce the
level of fungal contamination and control the content of
mycotoxins in food grains.
ACKNOWLEDGEMENTS
This work has been carried out within the
framework of the MycoKey project of the European
Horizon 2020 program.
REFERENCES
1. L.S. Polak, A.A. Ovsyannikov, D.I. Slovetskiy.
Theoretical and applied plasma chemistry. M.:
«Nauka», 1975, 304 p.
2. O.V. Manuilenko, A.Yu. Dulphan, V.I. Golota,
D.V. Kudin. Ozone decay in chemical reactor with the
developed inner surface: air-ethylene mixture //
Problems of Atomic Science and Technology. Series
«Plasma Electronics and New Methods of Acceleration»
(116). 2018, № 4, p.139-143.
3. V.I. Golota, O.V. Manuilenko, G.V. Taran,
L.M. Zavada, D.V. Kudin Decomposition of ethylene in
low temperature plasma of barrier less discharge //
Problems of Atomic Science and Technology. Series
«Plasma Electronics and New Methods of Acceleration»
(116). 2018, № 4, p.160-163.
4. Mc Taggart F. Plasma-chemical reactions in
electrical discharges. M.: «Atomizdat», 1972, 256 p.
5. V.I. Golota, G.V. Taran, A.A. Zamuriev,
P.O. Opalev, S.G. Pugach, S.N. Mankovskyi,
V.P. Petrenkova, I.N. Nyska. The use of ozone
technologies in grain storage // Problems of Atomic
Science and Technology. Series «Plasma Electronics
and New Methods of Acceleration» (116). 2018, № 4,
р. 185-188.
6. A.M. Kholdoenko. Epizootological monitoring under
the conditions of industrial poultry farming // Extended
abstract of Cand. Sci. (Veterinary Science) Dissertation.
2002, v. 24, p. 123.
7. V.I. Bilay, N.M. Pidoplichko. Toxin-forming
microscopic fungi and the diseases they cause in
humans and animals. K.: «Naukova Dumka», 1970,
291 p.
8. D. Sutton. Determinant of pathogenic and
opportunistic fungi: Translation from English. [Text] /
Manual for universities / O. Sutton, A. Fothergill,
M. Rinaldi; under general editorship of D.G.
Zvyagintsev. M.: «Mir», 2001, 487 p.
9. S.V. Abraskova, Yu.K. Shashko, M.N. Shashko.
Biological safety of feed. Minsk: «Belaruskaya
Navuka», 2013, 257 p.
Article received 10.09.2020
ПЛАЗМОХИМИЧЕСКИЙ МЕТОД КОНТРОЛЯ КОНТАМИНАЦИИ ГРИБНОЙ ИНФЕКЦИЕЙ
ЗЕРНОВЫХ КУЛЬТУР
Г.В. Таран, С.Г. Пугач, А.А. Замуриев, П.О. Опалев, М.О. Ярошенко
Приведены результаты экспериментальных исследований влияния обработки озоновоздушной смесью
зерновых культур на степень их контаминации микромицетами при искусственном заражении. Исследована
динамика степени контаминации зерна пшеницы массой 1000 кг, которое было заражено грибной
инфекцией Penicillium nordicum и Aspergillus flavus и хранилось в прототипе промышленной установки для
хранения зерна в среде озона в течение 6 месяцев. Приведено исследование влияния озона на угнетение
роста микромицетов Aspergillus flavus на зерне кукурузы и Penicillium verrucosum на зерне пшеницы в
модельном силосе объемом 100 дм
3
. Проведено исследование влияния озона на содержание афлотоксинов в
зерне кукурузы, дополнительно зараженном Aspergillus flavus. Показана эффективность озоновых
технологий для хранения промышленных партий зерна как для снижения контаминации грибковой
инфекции, так и для контроля содержания микотоксинов в продовольственном зерне.
ПЛАЗМОХІМІЧНИЙ МЕТОД КОНТРОЛЮ КОНТАМІНАЦІЇ ГРИБНОЮ ІНФЕКЦІЄЮ
ЗЕРНОВИХ КУЛЬТУР
Г.В. Таран, С.Г. Пугач, О.О. Замурієв, П.О. Опалєв, М.О. Ярошенко
Наведено експериментальні результати з впливу обробки зерна озоноповітряною сумішшю на рівень
штучного зараження зерна мікроміцетами. Наведено динаміку забруднення 1000 кг зерна пшениці,
зараженого Penicillium nordicum і Aspergillus flavus, яке зберігалося в прототипі зерносховища в озоновому
середовищі протягом 6 місяців. Представлено дослідження впливу озону на пригнічення росту Aspergillus
flavus для зерна кукурудзи і Penicillium verrucosum для зерна пшениці в силосі об'ємом 100 дм
3
. Вивчено
вплив озону на утримання афлатоксинів у зерні кукурудзи, додатково зараженого Aspergillus flavus.
Показана ефективність озонових технологій для великомасштабного зберігання зерна, а також для зниження
грибкового зараження і контролю вмісту мікотоксинів у продовольчому зерні.
|