Ion separation in a plasma mass filter based on the band gap filter principle

The mass separation in a multicomponent collisionless plasma rotating in an axial homogeneous magnetic field and a radial electric field with dc and ac components at the parametric resonance conditions is considered. For given conditions, it is shown that when the variable component of a radial elec...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автор: Ilichova, V.O.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/194703
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ion separation in a plasma mass filter based on the band gap filter principle / V.O. Ilichova // Problems of atomic science and technology. — 2019. — № 1. — С. 138-141. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-194703
record_format dspace
spelling irk-123456789-1947032023-11-29T10:59:07Z Ion separation in a plasma mass filter based on the band gap filter principle Ilichova, V.O. Low temperature plasma and plasma technologies The mass separation in a multicomponent collisionless plasma rotating in an axial homogeneous magnetic field and a radial electric field with dc and ac components at the parametric resonance conditions is considered. For given conditions, it is shown that when the variable component of a radial electric field with ω=0,57 Ω is superposed on the dc component, the resonant uranium dioxide ions are ejected into the wall of the plasma mass filter, which is currently being developed for the separation of nuclear fuel and fission products. The correlation between the oscil-lation frequency of ac voltage component with the modified (vortex) ion-cyclotron frequency is shown. Розглянуто розподіл іонів за масами в багатокомпонентній беззіткненій плазмі, що обертається в осьовому однорідному магнітному полі та радіальному електричному полі з компонентами постійного та змінного струму в умовах параметричного резонансу. Для заданих умов показано, що при суперпозиції змінної компоненти радіального електричного поля з частотою коливань ω = 0,57 Ω та постійної компоненти, резонансні іони двоокису урану виходять на бічну стiнку плазмового фільтра мас, який в даний час розробляється для розділення ядерного палива та продуктів поділу. Показана кореляція частоти коливань з модифікованою іонно-циклотронною частотою. Рассмотрено разделение ионов по массам в многокомпонентной бесстолкновительной плазме, вращающейся в осевом однородном магнитном поле и радиальном электрическом поле с постоянной и переменной компонентами в условиях параметрического резонанса. Для заданных условий показано, что при суперпозиции переменной компоненты радиального электрического поля с частотой колебаний ω =0,57 Ω и постоянной компоненты, резонансные ионы диоксида урана выходят на боковую стенку плазменного фильтра масс, который в настоящее время разрабатывается для разделения ядерного топлива и продуктов деления. Показана корреляция частоты колебаний с модифицированной ионно-циклотронной частотой. 2019 Article Ion separation in a plasma mass filter based on the band gap filter principle / V.O. Ilichova // Problems of atomic science and technology. — 2019. — № 1. — С. 138-141. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 28.41Kw http://dspace.nbuv.gov.ua/handle/123456789/194703 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
spellingShingle Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
Ilichova, V.O.
Ion separation in a plasma mass filter based on the band gap filter principle
Вопросы атомной науки и техники
description The mass separation in a multicomponent collisionless plasma rotating in an axial homogeneous magnetic field and a radial electric field with dc and ac components at the parametric resonance conditions is considered. For given conditions, it is shown that when the variable component of a radial electric field with ω=0,57 Ω is superposed on the dc component, the resonant uranium dioxide ions are ejected into the wall of the plasma mass filter, which is currently being developed for the separation of nuclear fuel and fission products. The correlation between the oscil-lation frequency of ac voltage component with the modified (vortex) ion-cyclotron frequency is shown.
format Article
author Ilichova, V.O.
author_facet Ilichova, V.O.
author_sort Ilichova, V.O.
title Ion separation in a plasma mass filter based on the band gap filter principle
title_short Ion separation in a plasma mass filter based on the band gap filter principle
title_full Ion separation in a plasma mass filter based on the band gap filter principle
title_fullStr Ion separation in a plasma mass filter based on the band gap filter principle
title_full_unstemmed Ion separation in a plasma mass filter based on the band gap filter principle
title_sort ion separation in a plasma mass filter based on the band gap filter principle
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Low temperature plasma and plasma technologies
url http://dspace.nbuv.gov.ua/handle/123456789/194703
citation_txt Ion separation in a plasma mass filter based on the band gap filter principle / V.O. Ilichova // Problems of atomic science and technology. — 2019. — № 1. — С. 138-141. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT ilichovavo ionseparationinaplasmamassfilterbasedonthebandgapfilterprinciple
first_indexed 2025-07-16T22:10:06Z
last_indexed 2025-07-16T22:10:06Z
_version_ 1837843151486713856
fulltext ISSN 1562-6016. ВАНТ. 2019. №1(119) 138 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2019, № 1. Series: Plasma Physics (25), p. 138-141. ION SEPARATION IN A PLASMA MASS FILTER BASED ON THE BAND GAP FILTER PRINCIPLE V.O. Ilichova National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine E-mail: ilichovav@gmail.com The mass separation in a multicomponent collisionless plasma rotating in an axial homogeneous magnetic field and a radial electric field with dc and ac components at the parametric resonance conditions is considered. For given conditions, it is shown that when the variable component of a radial electric field with  57.0 is superposed on the dc component, the resonant uranium dioxide ions are ejected into the wall of the plasma mass filter, which is currently being developed for the separation of nuclear fuel and fission products. The correlation between the oscil- lation frequency of ac voltage component with the modified (vortex) ion-cyclotron frequency is shown. PACS: 28.41Kw Plasma methods for SNF (spent nuclear fuel) repro- cessing are a promising alternative to radiochemical technologies. However, there is a number of problems with plasma separation of fission products (FPs) and nuclear fuel (NF). The difficulties are connected with SNF multicomponent composition, the proximity of masses in case of isotopes and the presence of the mul- ticharged ions. Thus, many problems appear and many variants of their solution are considered [1, 2]. In the light of this so-called ion band gap filter is of interest, which provides various modes of ion separation in a plasma by mass [3]. This paper considers the plasma mass filter for sepa- rating NF and FPs [4] based on the band gap filter prin- ciple. Below the conditions for the separation of ions by mass (mass/charge) in a multicomponent collisionless plasma rotating in an axial homogeneous magnetic field, zB , and a radial electric field, rE , with dc and ac com- ponents are studied. The radial electric field rE is gen- erated by coaxial electrodes – 6. The oscillation fre- quency, , for the ac component of rE is set by a tuner – 7. Fig. 1. Schematic view of the plasma mass filter: 1 – 4 – of the longitudinal collector; 5 – end collector; 6 – coaxial system of electrodes; 7 – tuner; 8 – system of solenoids If rE periodically changes in time, its value can be represented as a superposition of the ac and dc compo- nents. In frequency terms this corresponds to [3]: )cos( tEacEdcE   , (1) where ωE – angular frequency which includes; ωEdc – constant and ωEac – variable components. At a sinusoidal change of ωE, the Mathieu equation for parametric resonance to determine the frequency of orbit oscillations in a plasma can be used: 0)]2cos(4[ 4 1 2  s d sd   . (2) The solution of the Mathieu equation is connected with determination of the coefficients α and . 2/t  , 2 2 /) 4 (     Edc , 24     Eac .(3) Frequency intervals in which the ions have localized and non-localized orbits are shown in Fig. 2. Fig. 2. A graph of the first few confined and unconfined regions of the solution for s in - space: 4α0>-32β2 for the interval (0); 1–8β<4α1<1+8β for the interval (1); 4–16/3β2<4α2(β)<4+80/3β2 for the interval (2). The dashed regions are the unconfined regions [3] The combinations of the coefficients  and  , which correspond to dc and ac components of the radial electric field rE , determine the penetration to the zones of magnetized / unmagnetized ions. To determine the conditions for the separation of ions in the plasma mass filter [4], let's consider the frequency characteristics at ISSN 1562-6016. ВАНТ. 2019. №1(119) 139 the boundaries of the instability intervals, that is, at the threshold of the transition from a stable state, where the ions are magnetized, to the unstable one, where the ions are not magnetized. This correlates with the equation of the forces balance in the plasma mass filter with posi- tive radial electric field, that is discussed below. There are three forces acting on a charged particle (ion) in a collisionless plasma rotating in EH fields [5]: centrifugal – 2 iic rmF  , electric – rE eEF  , and magnetic – ziB BerF  , where mi – mass of i-kind ion, i is the angular rotation frequency for i-kind ion, r is the particle's distance to the axis of rotation, rE is radial electric field strength proportional to r ( rEr / =const), zB is a value of magnetic field on the axis, and e – the charge of the electron. Rotation of a plasma is obtained by its interaction with radial electric field, rE and axial magnetic field, zB . In the plasma mass filters with a positive potential, the electric and centrifugal forces are directed outward, and Lorenz force is directed inward. An equilibrium conditions in a radial direction can be expressed: 0 rF , (4) or 02  zirii BereErm  . (5) The ion cyclotron freduency for the i-kind ion is written: iz mzeB / . (6) Thus, the solution of equation becomes: ))/(411(2/  zri rBE , (7) where i is an angular freguency of the i-kind ion. The critical options of plasma rotation can be deter- mined from the discriminant of the equation equal to zero, that is, at 1)/(4 zr rBE , which corresponds to RrBBEE cr zz cr rr  ,, . In turn, from the solution of the Mathieu equation this state corresponds to the point ( 0,0   ) (Fig. 2) at the boundary of the instability interval (0) [3]: 25 0 24   . (8) At 0 , separation of ions into heavy and light ions occurs in the mode of operation of the Ohkawa (Archi- medes) plasma mass filter [5]. Separation mass of crM is determined by critical value of electric field cr rE r and magnetic field cr zB : )4/()( 2 cr r cr zcr EBzeRM  , (9) or )8/()( 22 dc cr zcr UBzeRM  , (10) where 0dcU is the positive potential of electric field along the longitudinal axis, R is the radius of the cylin- drical chamber. In this case, the light ions with cri Mzm / have lo- calized orbits, and the heavy ions cri Mzm / have non-localized orbits. The parameters RBE cr z cr r ,, deter- mine the conditions of separation process in the plasma mass filter. For 1)/(4 zr rBE , that is, for cr rr EE 0 , equation (5) has a real solution (7), and ions with mass cri Mzm / have localized orbits. To set the parameters for ion separation in a multi- component collisionless plasma rotating in EH fields, it is necessary to consider the modified (vortex) cyclo- tron frequency i , that determines the phase of decel- eration and acceleration for i-kind singly charged ion [6]: cr i i M m  1 . (11) At 0 i the value of i is equal to the sub- harmonic of the cyclotron frequency ( 2/i ) [6]. In this case, a system with rotating plasma appears on the boundary of the instability interval (0) at the point 0,0   (see Fig. 2). At 1)/(4 zr rBE , expression (7) has imaginary roots. In this case, the ions with cri Mzm / have non- localized orbits in the instability interval (0), and the forces in (5) are not balanced (see Fig. 2). The instabilities in a plasma are associated with the presence of oscillations. In particular, a harmonic analy- sis of plasma oscillations in a rotating plasma at cyclo- tron resonance instability conditions showed that there was a number of harmonics of the fundamental ion cy- clotron frequency  in the spectrum [7]. In addition, the instability in a plasma due to the relative motion of plasma components and nonlinear effects in the move- ment of charged particles in the electric field under os- cillations can lead to the appearence of a parametric resonance, that may influence on an ion separation pro- cess [8, 9]. The growth of the ac component of a radial electric field (at growth ) for the critical parameters of plasma rotation in the plasma mass filter (at 0 , see Fig. 2) leads to the transition to the instability interval (1) cor- responding to the main parametric resonance. The resonant conditions for the instability interval (1) in the frequency terms are given by [3]: 2 22 8 mR zeU dc , (12) where  is the frequency of ac voltage component. If 0dcU the oscillation frequency  in the gap of frequency interval (1) is equal to the ion cyclotron fre- quency,  . In this case, the acceleration of the resonant ions occurs at the fundamental harmonic . These conditions determine the separation regime for isotope separation, similar to the ICR (ion cyclotron resonance) method [3]. In the case of 0dcU , under the conditions of par- ametric resonance, another separation mode can be real- ized, when in a plasma mass filter, together with ions of cri Mzm / , it is possible to allocate the target ions of cri Mzm / [3]. 140 ISSN 1562-6016. ВАНТ. 2019. №1(119) This separation mode is considered for ejection of uranium dioxide ions to the longitudinal collector of the plasma mass filter (Fig. 1). Let's determine the radius R for the separation of the molecular ions of the multicomponent oxides with cri Mzm / at initial conditions T 0.1=Bz , 0E =400 V/m and 400crM . In accordance with ex- pression (9) m 1.3=R . The oscillation frequency  for the resonant condi- tions (12) in mass terms [3] becomes: cr i zM m  1 . (13) Thus, at paramatric resonance conditions the fre- quency  is equal to the modified ion cyclotron fre- quency i (11). So, there is correlation between equa- tions (2) and (5) in respect to i , that is, at parametric resonance conditions, the oscillation frequency  of the resonant (i-kind) ion orbit is connected with the self- oscillations of i-kind ion determined at critical plasma rotation options. Thus, for 400crM and 270/ zmi , which corre- sponds to to the molecular ions UO2 +, from (13) we ob- tain ω = 0.57 Ω. It follows, that at superposition of ac voltage component with ω = 0.57 Ω and dc component the uranium dioxide ions are filtered out to the collector of the plasma mass filter (see Fig. 1). This is confirmed in the calculation of the trajectories for the resonant uranium dioxide ions at their ejection into the chamber wall of R = 1.3 m (Fig. 3,a). a b Fig. 3. Trajectories of ions in the plasma mass filter [4] at oscillation frequency ω = 0.57 Ω (UO2 +) of ac volt- age component: UO2 + (a); La2O3 + for initial conditions described in [10] (b) From expression (6) the value of Ω for BZ=0.1 T and 270/ zmi is defined: Ω(UO2 +) = 3.56104 rad/s, and, correspondingly, f = 5.6 kHz (f=Ω/2π). The width of the parametric resonance is determined according [3]: 22 )2(4      m m , (14) where ( 2 ) – is the growth of the amplitude of oscil- lations. The transition to the interval of instability (1) at cr rr EE  is carried out at the boundary )8/1,0(   (see Fig. 2). The value of  was obtained from the boundary equation:  81)(4 1   (15) Substituting the value of  in (14), mm  may be written as: 22 2      m m . (16) At ω=0.57 Ω the resonance width becomes 25,0  m m . Thus, in the resonant conditions, the ions with mass numbers of 270±68, that is, the total spectrum of single- charged actinide ions and their oxides can reach to the longitudinal collector. As can be seen (Fig. 3,b), in these conditions, the mass corresponding to single-charged molecular ions of lanthanide oxides are also filtered out to m 1.3=R . In order to exclude these ions from the resonant condi- tions, the operating frequency for the tuner should be ω < 0.57 Ω (UO2 +). The results of calculations [10] showed that this problem can be solved at exact value of ω = 0.5 Ω (UO2 +), that is, a.c. voltage component must be tuned to a radio frequency of 2.8 kHz at given initial conditions. CONCLUSIONS 1. The correlation between the ion orbit oscillation frequency and the modified (vortex) ion-cyclotron fre- quency in parametric cyclotron mass filter is shown. 2. For given conditions, it is shown that when ac voltage component with oscillation frequency ω = 0.57 Ω (UO2 +) is superposed on the dc component, the resonant uranium dioxide ions are ejected into the wall of the plasma mass filter [4]. 3. For given conditions, the resonance width has been determined: mm  =270±68. Thus, to the longi- tudinal collector, in addition to the uranium dioxide ions it is possible to filter out the ions of actinides and their oxides. 4. An analysis of the results showed that for the sep- aration of the molecular ions of actinides and lantha- nides oxides in the mass filter under consideration, a.c.voltage component must be tuned to ω = 0.5 Ω (UO2 +) . ISSN 1562-6016. ВАНТ. 2019. №1(119) 141 ACKNOWLEDGEMENTS The author expresses the gratitude to Prof. V. Yuferov for fruitful discussions. REFERENCES 1. D.A. Dolgolenko, Yu.A. Muromkin. On separation of mixtures of chemical elements in plasma // Uspekhi Fizicheskikh Nauk. 2017, 187(10)1071±1096 (in Rus- sian). 2. S.J. Zweben, R. Gueroult, N.J. Fisch. Plasma mass separation // Physics of Plasmas. 2018, v. 25, p. 090901. 3. T. Ohkawa, R.L. Miller. Band gap ion mass filter // Phys. Plasmas. 2002, v. 9, № 12, p. 5116-5120. 4. V.B. Yuferov, S.V. Katrechko, V.O. Ilichova, S.V. Shariy, A.S. Svichkar, M.O. Shvets, E.V. Mufel, A.G. Bobrov. Developing the Concept of Multi-Stage Spent Fuel Cleaning From Fission Products by Physical Methods // Problems of Atomic Science and Technolo- gy. Series “Vacuum, Pure Materials, Superconductors” (113). 2018, № 1, p.118-126. 5. US Patent №6096220. Plasma Mass Filter / Tihiro Ohkawa // Fil. 16.11.1998. Publ. 01.08.2000. 6. Yu.N. Yeliseyev. Ion motion in crossed fields and separation mechanism in "Archimedes plasma mass filter // Problems of Atomic Science and Technology. Series ”Plasma Physics” (22). 2016, № 6, p. 203-206. 7. A.М. Rozhkov, K.N. Stiepanov, V.A. Suptunenko, V.I. Farenik, V.V. Vlasov. Cyclotron Resonance In- stsbility in Rotating Plasma // Plasma Physics. 1972, v. 27, p. 519-527. 8. V.V. Olshansky, K.N. Stepanov. Parametric Instabil- ity Influence on Isotope Separation by Ion-cyclotron Resonance Method // Problems of Atomic Science and Technology. Series “Plasma Physics” (12). 2006, № 6, p. 204-206. 9. K.P. Shamrai, E.N. Kudriavchenko. Electromagnetic Fields and Heavy-ion Orbiting in a low-temperature Plasma with a Magnetic Pumping // Problems of Atomic Science and Technology. Series “Plasma Physics” (14). 2008, № 6, p. 183-185. 10. V.B. Yuferov, S.V. Shariy, T.I. Tkachova, V.V. Katrechko, A.S. Svichkar, V.O. Ilichova, M.O. Shvets, E.V. Mufel. Calculations of Ion Trajecto- ries at Magnetoplasma Separation and Experiments with Polyatomic Gases // Acta Polytechnica. 2017, v. 57(1), p. 71-77. Article received 12.12.2018 СЕПАРАЦИЯ ИОНОВ В ПЛАЗМЕННОМ ФИЛЬTРЕ МАСС С ПРИНЦИПОМ ДЕЙСТВИЯ ПОЛОСОВОГО ФИЛЬТРА В.О. Ильичева Рассмотрено разделение ионов по массам в многокомпонентной бесстолкновительной плазме, вращающейся в осевом однородном магнитном поле и радиальном электрическом поле с постоянной и переменной компонентами в условиях параметрического резонанса. Для заданных условий показано, что при суперпозиции переменной компоненты радиального электрического поля с частотой колебаний ω=0,57 Ω и постоянной компоненты, резонансные ионы диоксида урана выходят на боковую стенку плаз- менного фильтра масс, который в настоящее время разрабатывается для разделения ядерного топлива и продуктов деления. Показана корреляция частоты колебаний с модифицированной ионно-циклотронной частотой. СЕПАРАЦІЯ ІОНІВ У ПЛАЗМОВОМУ ФІЛЬТРІ МАС З ПРИНЦИПОМ ДІІ ПОЛОСОВОГО ФІЛЬТРА В.О. Ільічова Розглянуто розподіл іонів за масами в багатокомпонентній беззіткненій плазмі, що обертається в осьово- му однорідному магнітному полі та радіальному електричному полі з компонентами постійного та змінного струму в умовах параметричного резонансу. Для заданих умов показано, що при суперпозиції змінної компоненти радіального електричного поля з частотою коливань ω = 0,57 Ω та постійної компоненти, резо- нансні іони двоокису урану виходять на бічну стiнку плазмового фільтра мас, який в даний час розробляється для розділення ядерного палива та продуктів поділу. Показана кореляція частоти коливань з модифікованою іонно-циклотронною частотою.