Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream
The paper is devoted to experimental measurements and analysis of parameters of the plasma streams generated by magnetoplasma compressor (MPC) upgraded with an external axial magnetic field. Influence of the external axial magnetic field of 0.24 T on helium plasma streams (P=2 Torr) has been studied...
Збережено в:
Дата: | 2021 |
---|---|
Автори: | , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/194731 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream / A.K. Marchenko, O.V. Byrka, V.A. Makhlai, S.S. Herashenko, D.G. Solyakov, Y.E. Volkova, D.V. Yeliseyev, K. Novakowska-Langier // Problems of atomic science and tecnology. — 2021. — № 1. — С. 57-60. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194731 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1947312023-11-29T12:28:18Z Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream Marchenko, A.K. Byrka, O.V. Makhlai, V.A. Herashenko, S.S. Solyakov, D.G. Volkova, Y.E. Yeliseyev, D.V. Novakowska-Langier, K. Plasma dynamics and plasma-wall interaction The paper is devoted to experimental measurements and analysis of parameters of the plasma streams generated by magnetoplasma compressor (MPC) upgraded with an external axial magnetic field. Influence of the external axial magnetic field of 0.24 T on helium plasma streams (P=2 Torr) has been studied. The measurements of average electron density distributions were performedboth with and without an external axial B-field. Distributions of plasma electron density Ne (L) were measured with spectroscopy in the plasma stream and in the compression zone using Stark broadening of He I and He II spectral lines. Plasma-surface interaction processes were also analyzed. Представлено експериментальні вимірювання та аналіз параметрів плазмових потоків, що генеруються магнітоплазмовим компресором (МПК), який було оснащено зовнішнім магнітним полем. Вивчено вплив зовнішнього магнітного поля 0,24 Тл на потоки гелієвої плазми (Р=2 Торр). Представлено просторові розподіли електронної густини плазми як із зовнішнім магнітним полем, так і без нього. Розподіли електронної густини плазми Ne (L) отримано зі штарківського розширення спектральних ліній He I та He II. Також представлені вимірювання розподілів Ne (L) при налітанні пламового потоку МПК на сталеву мішень. Представлены экспериментальные измерения и анализ параметров плазменных потоков, генерируемых магнитоплазменным компрессором (МПК), который был оснащен внешним магнитным полем. Изучено влияние внешнего магнитного поля 0,24 Тл на потоки гелиевой плазмы (P=2 Торр). Представлены пространственные распределения электронной плотности плазмы как с внешним магнитным полем, так и без него. Распределения электронной плотности плазмы Ne (L) получены из штарковского уширения спектральных линий He I и He II. Также привeдены измерения распределений Ne (L) при налетании плазменного потока МПК на мишень из нержавеющей стали. 2021 Article Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream / A.K. Marchenko, O.V. Byrka, V.A. Makhlai, S.S. Herashenko, D.G. Solyakov, Y.E. Volkova, D.V. Yeliseyev, K. Novakowska-Langier // Problems of atomic science and tecnology. — 2021. — № 1. — С. 57-60. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 52.40.Hf; 52.70 http://dspace.nbuv.gov.ua/handle/123456789/194731 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Plasma dynamics and plasma-wall interaction Plasma dynamics and plasma-wall interaction |
spellingShingle |
Plasma dynamics and plasma-wall interaction Plasma dynamics and plasma-wall interaction Marchenko, A.K. Byrka, O.V. Makhlai, V.A. Herashenko, S.S. Solyakov, D.G. Volkova, Y.E. Yeliseyev, D.V. Novakowska-Langier, K. Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream Вопросы атомной науки и техники |
description |
The paper is devoted to experimental measurements and analysis of parameters of the plasma streams generated by magnetoplasma compressor (MPC) upgraded with an external axial magnetic field. Influence of the external axial magnetic field of 0.24 T on helium plasma streams (P=2 Torr) has been studied. The measurements of average electron density distributions were performedboth with and without an external axial B-field. Distributions of plasma electron density Ne (L) were measured with spectroscopy in the plasma stream and in the compression zone using Stark broadening of He I and He II spectral lines. Plasma-surface interaction processes were also analyzed. |
format |
Article |
author |
Marchenko, A.K. Byrka, O.V. Makhlai, V.A. Herashenko, S.S. Solyakov, D.G. Volkova, Y.E. Yeliseyev, D.V. Novakowska-Langier, K. |
author_facet |
Marchenko, A.K. Byrka, O.V. Makhlai, V.A. Herashenko, S.S. Solyakov, D.G. Volkova, Y.E. Yeliseyev, D.V. Novakowska-Langier, K. |
author_sort |
Marchenko, A.K. |
title |
Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream |
title_short |
Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream |
title_full |
Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream |
title_fullStr |
Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream |
title_full_unstemmed |
Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream |
title_sort |
influence of longitudinal magnetic field in the mpc channel on the density of generated plasma stream |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Plasma dynamics and plasma-wall interaction |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194731 |
citation_txt |
Influence of longitudinal magnetic field in the MPC channel on the density of generated plasma stream / A.K. Marchenko, O.V. Byrka, V.A. Makhlai, S.S. Herashenko, D.G. Solyakov, Y.E. Volkova, D.V. Yeliseyev, K. Novakowska-Langier // Problems of atomic science and tecnology. — 2021. — № 1. — С. 57-60. — Бібліогр.: 16 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT marchenkoak influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream AT byrkaov influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream AT makhlaiva influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream AT herashenkoss influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream AT solyakovdg influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream AT volkovaye influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream AT yeliseyevdv influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream AT novakowskalangierk influenceoflongitudinalmagneticfieldinthempcchannelonthedensityofgeneratedplasmastream |
first_indexed |
2025-07-16T22:12:37Z |
last_indexed |
2025-07-16T22:12:37Z |
_version_ |
1837843307558862848 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. №1(131)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2021, №1. Series: Plasma Physics (27), p. 57-60. 57
https://doi.org/10.46813/2021-131-057
INFLUENCE OF LONGITUDINAL MAGNETIC FIELD IN THE MPC
CHANNEL ON THE DENSITY OF GENERATED PLASMA STREAM
A.K. Marchenko
1
, O.V. Byrka
1
, V.A. Makhlai
1,3
, S.S. Herashenko
1,3
,
D.G. Solyakov
1,3
, Y.E. Volkova
1,3
, D.V. Yeliseyev
1
, K. Novakowska-Langier
2
1
Institute of Plasma Physics, National Science Center “Kharkov Institute of Physics and
Technology”, Kharkiv, Ukraine;
2
National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland;
3
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: marchenkoak@kipt.kharkov.ua
The paper is devoted to experimental measurements and analysis of parameters of the plasma streams generated
by magnetoplasma compressor (MPC) upgraded with an external axial magnetic field. Influence of the external axial
magnetic field of 0.24 T on helium plasma streams (P=2 Torr) has been studied. The measurements of average
electron density distributions were performedboth with and without an external axial B-field. Distributions of
plasma electron density Ne (L) were measured with spectroscopy in the plasma stream and in the compression zone
using Stark broadening of He I and He II spectral lines. Plasma-surface interaction processes were also analyzed.
PACS: 52.40.Hf; 52.70
INTRODUCTION
Magnetized plasma streams are of particular interest
for basic plasma dynamics research and also for various
technological applications, such as prospective sources
of high energy beams and radiation in wide wavelengths
[1], testing of fusion reactor materials with high energy
loads [2-4], surface modification and improvement of
material properties [5-7].
Optimization of operation modes of plasma device
for providing effective variation of plasma parameters is
an important aspect in plasma technologies, fusion
science and engineering. For instance, experimental
regimes of MPC plasma facility operation define
theproperties of generated dense plasma flows of
different ions with the ability of effectively varying the
specific energy loads at plasma exposure of materials
[8, 9].
MPC has been studied in our laboratory since 2007
operating in various working modes and using different
working gases [10-12]. Now it has been upgraded with
additional external magnetic field with the aim to
increase the plasma parameters that requires higher
discharge current. According to available numerical
simulations, the external magnetic field should help to
overcome the effect of the “current crisis” [13].
Our first experimental studies of the MPC operation
with external axial magnetic field were described in
[14]. Particular attention was paid to the measurements
of the electric field, the discharge current, and the
potential distribution changes.
In this paper, we report our experimental results on
the influence of additional magnetic field on the plasma
density behavior in compressed plasma stream and also
in front of the target surface during the plasma-surface
interaction.
EXPERIMENTAL SETUP AND
DIAGNOSTICS
The MPC upgraded with a magnetic coil that has
been installed in the accelerating channelis shown in
Fig. 1.
Fig. 1. MPC accelerating channel with installed
solenoid
The length of the magnetic coil is 17 cm, and the
inner diameter is 15 cm. This coil is supplied from
acapacitor bank with a total capacitance of 700 µF. It
can provide inside the MPC channel an axial magnetic
field up to 0.4 T that decreases two fold at the channel
outlet. Fig. 2 illustrates the distribution of axial
magnetic field Bz inside the MPC accelerating channel.
The MPC is installed in the 2-meter long vacuum
chamber with diameter of 40 cm. The MPC discharge is
supplied by a capacitor bankwith a stored energy of
28 kJ (at 25 kV).
For measurements of the plasma streams parameters
complex of optical diagnostic consisting of diffractional
spectrometer DFS-452 and monochromator MDR-23
mailto:marchenkoak@kipt.kharkov.ua
58 ISSN 1562-6016. ВАНТ. 2021. №1(131)
was in use. These measurements are integrated along
the observation chord as well as over discharge time.
Piezo-detectors, bolometers, local copper calorimeters,
electrical and magnetic probes have been also used in
addition to spectroscopy for plasma parameters
measurements.
Fig. 2. Distribution of axial magnetic field Bz inside the
MPC accelerating channel
DISTRIBUTIONS OF PLASMA ELECTRON
DENSITY IN MPC WITH AN EXTERNAL
MAGNETIC FIELD AND WITHOUT IT
During these experiments the capacitor bank was
charged up to 20 kV. The maximum value of the
discharge current acieved 400 kA with a half period of
10 µs. Helium chosen as the working gas, the vacuum
chamber was filled by Heunder residual pressure of
2 Torr. This operation mode was analyzed earlier in [11,
12]. Measurements were performed either with external
magnetic field (B = 0.24 T) or without it (B = 0 T).
The analysis of the Stark-broadening spectral lines is
one of the widely used plasma diagnostics techniques,
especially formonitoring of the plasma electron density
[15]. Distributions of plasma electron density Ne (L)
were obtained in the plasma stream and, in particular, in
compression zone using Stark broadening of He I and
He II spectral lines after the procedure of instrumental
broadening exception (∆λi = 0.2 Å). Fig. 3 shows the
comparison of experimental and theoretical shapes of
the He II (4685 Å) and He I (4471 Å) spectral lines.
Presumably spectral lines of different ionization stages
characterize different parts of plasma stream, so analysis
of both contours provides more complete data about
plasma density [15, 16]. It must be pointed out that the
fitting result includes only the purely Lorentz
component of the spectral lines contour, excluding
Gaussian one. It is easy to see that the experimental and
theoretical data have a good agreement. It can indicate
thatour experimental conditions correspond to the local
thermodynamic equilibrium.
To determine the effect of the additional magnetic
field on the evolution and magnitude of the plasma
electron density, experimentally obtained half-width
values of the working gas spectral lines were used to
acquire the spatial distributions of Ne in MPC plasma
stream both with and without B-field. Fig. 4 shows that
for the He I spectral line (4471 Å), which characterizes
the neutrals in plasma, there are no changes in the value
and behavior of the Ne. In this case the density near the
electrodes (L = 0 cm) and at the distance of 10 cm from
them are equal – Ne = 1.5·10
16
cm
-3
, and only at
L = 4...6 cm electron density is twice higher.
a
b
Fig. 3. Typical wave forms and fitting results (Lorentz
component) of He I (4471 Å) (a) and He II (4685Å)(b)
in plasma stream with B=0.24
Fig. 4. Spatial distributions of plasma electron density
Ne (L) in MPC with axial magnetic field
B = 0.24 T and B = 0
In absence of an external magnetic field, the
behavior of the electron density evaluated from the He
II (4685 Å), which characterizes the dynamics of single
ionized helium atoms, significantly differs from the Ne
(L) when an additional magnetic field is turned on.
Namely, the value of Ne = 2·10
17
cm
-3
at B = 0 T
exceeds twice the density with a magnetic field
B = 0.24 T – Ne = 1·10
17
cm
-3
for distances up to 6 cm
from electrodes. But further, sharp decrease to
Ne = 0.85·10
17
cm
-3
occursat the distances of 6 to 9 cm
from the electrode system of MPC. This can be
explained by the fact that ions of different ionization
ISSN 1562-6016. ВАНТ. 2021. №1(131) 59
stages characterize different spatial layers of the plasma
stream. Thus, the analysis of the electron density
distributions showed that an external magnetic field in
the MPC channel is not affecting the averagedensity of
helium neutrals. However, the density of single charged
ions, which are more sensitive to the influence of the
magnetic field, increased twice.
NE BEHAVIOR DURING PLASMA-
SURFACE INTERACTION
Studies of plasma-surface interaction were carried
out using stainless steel target with a diameter of 2 cm
that was located at the distance of 6.5 cm from the outer
electrode of MPC. Measurements of electron density
distributions near exposed surface were performed on
the base of emission spectra of the plasma stream
interacted with target. Results for MPC regimeswith
external magnetic field are presented in Fig. 5.
a
b
Fig. 5. Different parts of emission spectra
3875…4150 Å (a) and 4175…4500 Å (b) of plasma
stream near the steel target in the presence of an
external magnetic field B = 0.24 T
Analysis of plasma radiation spectra showed that in
addition to the spectral lines of the working gas He I
(3888; 4026; 4471 Å) and He II (4685 Å) a number of
impurity spectral lines – N II (3995; 4041; 4237; 4432;
4447 Å), C II (4267; 4325 Å), N III (4097; 4103 Å)
have been identified. It should be noted that nitrogen
was selected as a small diagnostic dope for more precise
measurements whilecarbon is appeared as a result of
sputtering of target material.
Fig. 6 shows comparison of Ne spatial distributions
in a free plasma stream and near the steel target exposed
by the plasma in regimes with magnetic field
B = 0.24 T (a) and without it (b) accordingly. The
electron density dynamics, as determined from He
spectral lines profiles, remains almost the same
((1.5….2) ·10
17
cm
-3
) until L = 5 cm, where the
influence of target becomes noticeable and the electron
density increases twice.
But Ne value determined from the impurity spectral
lines (N II) is higher because it corresponds to the
central part of plasma stream, in contrast to one
evaluated from helium, which is attributed to the
periphery.
a
b
Fig. 6. Spatial distributions of plasma electron
density near the stainless steel target and in a free
plasma stream in MPC in the presence of an external
magnetic field B = 0.24 T (a) and B = 0 T (b)
At the distance of 3 cm from the electrodes, where
effect of the target presence is not yet appreciable, there
is a slight decrease from 8 to 5·10
17
cm
-3
. Ne that
estimated from N II spectral lines is about 1·10
18
cm
-3
.
This indicates that the spectral lines of impurity
elements characterize the core dense part of the plasma
stream in MPC. In the case when magnetic field is turn
off (see Fig. 6,b), it is seen that the density values rather
similar, but its spatial behavior differs.
CONCLUSIONS
Influence of an external magnetic field on the
distributions and values of plasma electron density has
been studied. A magnetic coil generating an axial
magnetic field 0.24 T has been installed in the MPC
accelerating channel to affect the plasma streams
dynamics and its parameters.
Obtained spatial distributions of the averageplasma
electron density in free plasma stream and in the
60 ISSN 1562-6016. ВАНТ. 2021. №1(131)
vicinity of the exposed steel target allowsevaluation of
the energy density distribution in plasma stream and
specific energy load to the target surface during the
plasma-surface interaction.
ACKNOWLEDGEMENTS
This work has been supported in part by National
Academy Science of Ukraine projects № П-9/24-2020
and П-2/24-2020 as well as the Ministry of Education
and Science of Ukraine within bilateral Polish-
Ukrainian project.
REFERENCES
1. R. Kwiatkowski, E. Skladnik-Sadowska, et al.
Measurements of electron and ion beams emitted from
the PF-1000 device in the upstream and downstream
direction // Nukleonika. 2011, v. 56(2), p. 119-123 (in
Russian).
2. A.A. Shoshin et al. Plasma-surface interaction
during iter type i ELMs: Comparison of Simulation with
QSPA Kh-50 and the GOL-3 Facilities // Fusion
Science and Technology. 2011, v. 59(1 T), p. 57-60.
3. I.E. Garkusha, V.A. Makhlai, et al. Tungsten melt
losses under QSPA Kh-50 plasma exposures simulating
ITER ELMS and disruptions // Fusion Science and
Technology. 2014, v. 65(2), p. 186-193.
4. S. Pestchanyi, I. Garkusha, I. Landman Simulation
of residual thermostress in tungsten after repetitive
ELM-like heat loads // Fusion Engineering and Desig.
2011, v. 86(9-11), p. 1681-1684.
5. I.E. Garkusha, O.V. Byrka, V.V. Chebotarev, et al.
Properties of modified surface layers of industrial steel
samples processed by pulsed plasma streams // Vacuum.
2000, v. 58(2), p. 195-201 (in Russian).
6. A. Marchenko, K. Nowakowska-Langier, et al. //
IOP Conf. Series: Journal of Physics: Conf. Series.
2018, v. 959, p. 012006.
7. A. Marchenko et al. // Problems of Atomic Science
and Technology. Series «Plasma Physics» (25). 2019,
№ 1, p. 74-77.
8. V.M. Astashynski, A.H. Sari, S.I. Ananin, et al.
Studies on Dynamic Pressure of Compression Plasma
Flow // Problems of Atomic Science and Technology.
Series «Plasma Physics». 2014, v. 6, p. 157-159.
9. I.P. Dojcinovic, M.M. Kuraica, et. al. Optimization of
plasma flow parameters of the magnetoplasma compressor //
Pl. Sour. Sci. Techn. 2007, v. 16, p. 72-79.
10. I.E. Garkusha, T.N. Cherednychenko,
M.S. Ladygina, V.A. Makhlay, et al. // Problems of
Atomic Science and Technology. Series «Plasma
Physics». 2016, № 6(106), p. 125-128.
11. I.E. Garkusha, T.N. Cherednychenko,
M.S. Ladygina, V.A. Makhlay, et al. // Physica Scripta.
2014, v. T161, p. 014037.
12. Y.E. Volkova, D.G. Solyakov,
T.N. Cherednychenko, et al. // Problems of Atomic
Science and Technology. Series «Plasma Physics».
2018, № 6, p. 130-133.
13. A. Kozlov // J. Plasma Physics. 2007, v. 74, p. 261-286.
14. D.G. Solyakov, Y.E. Volkova,
T.N. Cherednychenko, et al. // Problems of Atomic
Science and Technology. 2019, № 1, p. 208-211.
15. M. A. Gigosos, S. Djurovi´c, et al. Stark broadening
of lines from transition between states n =3 to n = 2 in
neutral helium // Astronomy and Astrophysics. 2014,
v. 561, A135 DOI:10.1051/0004-6361/201322866.
16. M.A. Gigosos, M.Á. González. Stark broadening
tables for the helium I 447.1 line // Astronomy and
Astrophysics. 2009, v. 503, p. 293-299, DOI:
10.1051/0004-6361/200912243
Article received 21.01.2020
ВЛИЯНИЕ ПРОДОЛЬНОГО МАГНИТНОГО ПОЛЯ В КАНАЛЕ МПК НА ИНТЕГРАЛЬНУЮ
ПЛОТНОСТЬ ПЛАЗМЕННОГО ПОТОКА
А.К. Марченко, О.В. Бырка, В.А. Махлай, И.Е. Гаркуша, С.С. Геращенко,
Д.Г. Соляков, Ю.Е. Волкова, Д.В. Елисеев, К. Новаковская-Лангер
Представлены экспериментальные измерения и анализ параметров плазменных потоков, генерируемых
магнитоплазменным компрессором (МПК), который был оснащен внешним магнитным полем. Изучено
влияние внешнего магнитного поля 0,24 Тл на потоки гелиевой плазмы (P=2 Торр). Представлены
пространственные распределения электронной плотности плазмы как с внешним магнитным полем, так и
без него. Распределения электронной плотности плазмы Ne (L) получены из штарковского уширения
спектральных линий He I и He II. Также привeдены измерения распределений Ne (L) при налетании
плазменного потока МПК на мишень из нержавеющей стали.
ВПЛИВ ПОЗДОВЖНЬОГО МАГНІТНОГО ПОЛЯ В КАНАЛІ МПК НА ІНТЕГРАЛЬНУ
ГУСТИНУ ПЛАЗМОВОГО ПОТОКУ
А.К. Марченко, О.В. Бирка, В.О. Махлай, І.Є. Гаркуша, С.С. Геращенко,
Д.Г. Соляков, Ю.Є. Волкова, Д.В. Єлисеєв, К. Новаковська-Лангер
Представлено експериментальні вимірювання та аналіз параметрів плазмових потоків, що генеруються
магнітоплазмовим компресором (МПК), який було оснащено зовнішнім магнітним полем. Вивчено вплив
зовнішнього магнітного поля 0,24 Тл на потоки гелієвої плазми (Р=2 Торр). Представлено просторові
розподіли електронної густини плазми як із зовнішнім магнітним полем, так і без нього. Розподіли
електронної густини плазми Ne (L) отримано зі штарківського розширення спектральних ліній He I та He II.
Також представлені вимірювання розподілів Ne (L) при налітанні пламового потоку МПК на сталеву мішень.
|