Radiation of charge passing by impedance wedge
The diffraction radiation generated by a charge passing by a plasma wedge is considered in impedance approximation. In the perfect conductivity limit, the total radiated energy is not varying with the wedge rotation around the edge fixed along with the charge motion line. The impedance increase may...
Gespeichert in:
Datum: | 2021 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/194737 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Radiation of charge passing by impedance wedge / V. Ostroushko // Problems of atomic science and tecnology. — 2021. — № 1. — С. 84-87. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-194737 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1947372023-11-29T12:44:26Z Radiation of charge passing by impedance wedge Ostroushko, V. Low temperature plasma and plasma technologies The diffraction radiation generated by a charge passing by a plasma wedge is considered in impedance approximation. In the perfect conductivity limit, the total radiated energy is not varying with the wedge rotation around the edge fixed along with the charge motion line. The impedance increase may lead to the total radiated energy increase, due to effective surface wave generation, when the charge motion to the edge is almost parallel to a face of wedge. Розглянуте в імпедансному наближенні дифракційне випромінювання, утворене зарядом при русі повз плазмового клина. У граничному випадку ідеальної провідності загальна випромінена енергія не змінюється при обертанні клину навколо ребра, фіксованого разом з лінією руху заряду. Збільшення імпеданса може вести до збільшення загальної випроміненої енергії завдяки ефективному утворенню поверхневої хвилі, коли рух заряду до ребра майже паралельний до грані клину. Рассмотрено в импедансном приближении дифракционное излучение, созданное зарядом при движении мимо плазменного клина. В пределе идеальной проводимости полная излученная энергия не изменяется при повороте клина вокруг ребра, фиксированного вместе с линией движения заряда. Увеличение импеданса может вести к увеличению полной излученной энергии благодаря эффективному созданию поверхностной волны, когда движение заряда к ребру почти параллельно к грани клина. 2021 Article Radiation of charge passing by impedance wedge / V. Ostroushko // Problems of atomic science and tecnology. — 2021. — № 1. — С. 84-87. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 41.60.-m http://dspace.nbuv.gov.ua/handle/123456789/194737 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Ostroushko, V. Radiation of charge passing by impedance wedge Вопросы атомной науки и техники |
description |
The diffraction radiation generated by a charge passing by a plasma wedge is considered in impedance approximation. In the perfect conductivity limit, the total radiated energy is not varying with the wedge rotation around the edge fixed along with the charge motion line. The impedance increase may lead to the total radiated energy increase, due to effective surface wave generation, when the charge motion to the edge is almost parallel to a face of wedge. |
format |
Article |
author |
Ostroushko, V. |
author_facet |
Ostroushko, V. |
author_sort |
Ostroushko, V. |
title |
Radiation of charge passing by impedance wedge |
title_short |
Radiation of charge passing by impedance wedge |
title_full |
Radiation of charge passing by impedance wedge |
title_fullStr |
Radiation of charge passing by impedance wedge |
title_full_unstemmed |
Radiation of charge passing by impedance wedge |
title_sort |
radiation of charge passing by impedance wedge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/194737 |
citation_txt |
Radiation of charge passing by impedance wedge / V. Ostroushko // Problems of atomic science and tecnology. — 2021. — № 1. — С. 84-87. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT ostroushkov radiationofchargepassingbyimpedancewedge |
first_indexed |
2025-07-16T22:13:07Z |
last_indexed |
2025-07-16T22:13:07Z |
_version_ |
1837843340373000192 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. №1(131)
84 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2021, №1. Series: Plasma Physics (27), p. 84-87.
https://doi.org/10.46813/2021-131-084
RADIATION OF CHARGE PASSING BY IMPEDANCE WEDGE
V. Ostroushko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: ostroushko-v@kipt.kharkov.ua
The diffraction radiation generated by a charge passing by a plasma wedge is considered in impedance
approximation. In the perfect conductivity limit, the total radiated energy is not varying with the wedge rotation
around the edge fixed along with the charge motion line. The impedance increase may lead to the total radiated
energy increase, due to effective surface wave generation, when the charge motion to the edge is almost parallel to a
face of wedge.
PACS: 41.60.-m
INTRODUCTION
A diffraction radiation may be emitted by a bunch of
the charged particles passing by a plasma structure,
which plays a role of antenna [1]. For effective
wideband emission, antenna should have no
characteristic length. At the low frequency the antenna
may be considered as perfectly conductive. Resistance
can be taken into account in impedance approximation.
The case when antenna is a perfectly conductive half-
plane and the particle motion direction is perpendicular
to its edge is studied in [2]. In [3] the direction is
arbitrary. In the present work, antenna is a perfectly
conductive or an impedance wedge and the charged
particle moves uniformly along a line, which does not
cross the wedge faces.
1. PROBLEM FORMULATION
In the following study, the Cartesian coordinates
( , , )x y z , ( , , ) , and ( , , )x y z and the polar
coordinates ( , , )r and ( , , )z are used (Fig. 1).
a b
Fig. 1. The views from z (a) and (b)
The axis z is the edge of wedge, the sector
( , ) with ( 2, ) is free space, the axis
is the line of the particle’s motion, the axis is
directed to the edge along the shortest line segment
between two points, at the motion line and at the edge,
e denotes the segment length, the axis x is parallel to
the motion line projection on a plane perpendicular to
the edge,
e denotes the angle between the directions
x and x ,
e denotes the angle between the directions
and z . It is assumed that the particle moves from the
half-space 0y to the half-space 0y , and so, the
wedge is in the half-space 0y , and e ( , ) .
The coordinates are connected by the equalities
e ecos sinz ,
e esin cosx ,
ey , cosz r , sinr , cosx ,
siny ,
ecos( )x ,
esin( )y .
The particle motion is determined by the equalities
0 , 0 , ct , where t is time, c is the speed
of light, (0,1) . In free space, the electromagnetic
field obeys Maxwell’s equations, and it may be given by
the sum of E- and H- waves. The space-time
dependence of electric and magnetic field strength
components of these waves has the form
Re[ ( , )exp( )]zF x y ik z i t , where F stands for E or
H . The amplitudes of the longitudinal components
obey the equations 2 2 0z zF k F , where
x x y ye e , 2 2 1 2( )zk k k , k c , e with
indexes are unit vectors of relevant directions, with
indexes are derivatives with respect to relevant
variables. The amplitudes of the transverse components
are determined by ones of the longitudinal components,
2 [ ]z z z zk E ik H e ik E ,
2 [ ]z z z zk H ik E e ik H .
It is assumed that impedance for both faces is
identical and depends on frequency, s
s( )
p
ik ,
where
s is skin layer depth and the power index,
sp is
connected with the skin effect type. So,
s
s s( ) exp( )
p
k i , where
s s 2p . If one
proceeds from the equality 2 1 1 2
e{1 [ ( )] }i ,
where
e and are plasma and collision frequencies
then the cases of normal and anomalous skin effect
(related to the frequency ranges
e and
e ) correspond to s 1 2p , 2
s ec ,
and s 1p , s ec , respectively, and dependence of
on k is near to power one at s 1k (and then
| | 1 ).
Both for E-waves, and for H-waves the problem is
reduced to the plane one: for the given field of an
external source e
zF , it should be found the scattered
field s
zF , which obeys the equation 2 s 2 s 0z zF k F ,
the radiation condition, and Meixner’s edge condition,
and the full field, f s eF F F , should obey the
impedance boundary conditions,
f f f f
z zE H E H (at ), which may be
ISSN 1562-6016. ВАНТ. 2021. №1(131) 85
written in the form f 1 f( ) sinz z FF F ik
, where
,E H are determined by the equations,
sin ( )E k k , sin ( )H k k , (1)
and the condition
,0 Re 2E H .
2. PROBLEM SOLUTION
The solution of the problem of one plane wave
scattering on impedance wedge is described
circumstantially in the original papers and books [4, 5].
The result is briefly described below. Let the incident
scalar plane wave with unit amplitude in the 2D space
has the spatial dependence exp( )x yik x ik y , where
xk
is real and 2 2 1 2( )y xk k k
. Then the sum of the wave
and the scattered field may be given in the form of
Sommerfeld integral,
1( , , ) (2 )
exp( cos ) ( , )
z
C z
f i
dw ik w s w
. (2)
Here
0 i( , ) ( ) ( , ) ( , )zs w s w P w P w ,
0 i i( ) cos( ) [sin( ) sin( )]s w k k w k w k w ,
(2 )k ,
{ } 2( , ) (( 2) )P w w ,
0
1
( ) exp{ [ch( ) 1]
[2 ch( 2)sh(2 )] }
w d w
,
i e arcosh( )xw i k k
. (3)
The integration path C in (2) consists of two parts: C
,
in the half-plane Im 0w , and C
, symmetrical to C
with respect to the point 0w . The path C
goes
along the parts of three straight lines, from i to
i , passing through the points i and
i , consecutively, where and should
obey the inequalities 0 2 and
i| Im |w . The
quantity should be taken from (1). The quantity
iRew corresponds to the angle (with respect to x axis)
of the wave incidence direction. The function
0 ( )s w has
the pole at
iw w , corresponding to the incident wave.
Also, it can have the poles at
i2w w (if
iRe ( , )w ) and at
i2w w (if
iRe ( , )w ), corresponding to the waves
reflected from top and bottom faces.
To use the written relations for the considered
problem solving, one has to present the field connected
with the moving charge
0e by integral Fourier over the
plane waves coming to the line 0y in 2D problem.
The time-dependent Liénard-Wiechert potentials are:
e e
t tA e , e 2 2 2 2 1 2
0[( ) (1 )( )]t e ct .
For { 0k , 0 }, performing the Fourier transform,
e 1 eˆ (2 ) exp( ) tdt ikct
, one gets
e 1 1
0 0
1 e
ˆ ( ) K ( )exp( )
exp( )
e c f ik
dk ik ik
,
where 2 2 1 2( ) , ( )f k , 2 1 2(1 ) ,
2 2 1 2( )f k ,
e 1
0 (2 )e c ,
0K is
McDonald’s function. Relevant transform for the
electric field strength gives
e 1 e
, , , ,
ˆ exp( ) ( )E dk ik ik E k
,
where e eE , e eE ik ,
e 1 2 e(1 )E ik . Replacing k with
1
e esin coszk k k and taking
1 1
e e(sin ) ( cos )x zk k k , (4)
one gets e eˆ exp( ) ( , )z z z x z zF dk ik z ik x F k
, where
e 1 e
e e( , ) (sin ) ( cos ) exp( )z z zE k i k k ,
e e( , ) exp( )z zH k .
That is, for the given
zk , the wedge is illuminated by
one E-wave and one H-wave. They decrease
exponentially in the direction y . Their amplitudes,
e
e( , )z zE k and e
e( , )z zH k , depend on
e through the
factor
eexp( ) , where 2 2 1 2( )f k ,
1
e e( sin ) ( cos )zk k k .
The longitudinal field strength components for the
sum of the incident and scattered waves are given by 2D
distributions e
e( ) ( , ) ( , , )z z z z z FF k F k f , where the
quantities
E ,
H , and
iw are dependent on the ratio
z zc k k (through (1), (3), and (4)). The 3D
distributions for the set of waves are given by the
equality ˆ ( , , ) exp( ) ( )z z z z zF r dk ik z F k
.
In the wave zone of 2D space, where 1k , the
angular distribution of amplitude is obtained in [5], by
the stationary phase method,
( , , )z Ff 1 2[ (2 )] exp( ) ( , )F zi k ik c ,
where
{ }( , ) [ ( , )]F z z Fc s . The incident
and reflected waves related to the uniform charge
motion are exponentially decreased in relevant
direction, and they do not contribute to the radiation
field. Similarly, in the wave zone of 3D space, where
1kr , one gets
ˆ ( , , )zF r 1 e
eexp( ) ( cos , ) (cos , )z Fikr r F k .
(5)
For the components of E- and H- waves, respectively,
there are the relations *
zE H 2| |zE k k and
*
zE H 2| |zH k k , with asterisk denoting the
complex conjugate. The substitution coszk k ,
corresponding to the arguments of the functions in (5),
implies coszc ,
i e ( )w i ,
1 1 2
e( sin ) ( )k D ,
where
e e( ) arcosh[(1 cos cos ) ( sin sin )] ,
2 2 2
e e( ) (1 )sin ( cos cos )D . The
radiation field distribution depends on e through the
factor 1 1 2
e eexp[ ( sin ) ( )]k D , which is
independent on . As a result, if the particle motion
line is translated parallel to itself then relative
distribution of the radiation field with respect to azimuth
86 ISSN 1562-6016. ВАНТ. 2021. №1(131)
angle , at the given frequency, for the given polar
angle , is not changed, the power flux density for the
different is changed in accordance with the same
factor written just above. Such azimuthal invariance of
the radiation field takes place for the arbitrary z ‒
uniform structure, but under the condition of the plane
existence, with respect to which the structure and the
particle motion line are in the different half-spaces. In
such conditions the scattered field distribution is fully
determined by the ‘incident’ field at the mentioned
plane, and the Fourier transforms of the ‘incident’ field
components depend on
e exponentially, with
increment dependent on
zk .
Proceeding from the equality
1(4 ) ([ ] )t t tW c d dz E H e
,
for the power flux through the cylinder with radius ,
integrating it by time, moving from the functions to
their Fourier transforms, and performing the limit
transition , for the total radiated energy W one
gets
04W c dkW , (6)
where 1 2 2
,(4 ) | ( ) | ( )k
k z F E H z z F zW ck dk k F k I c
,
2( ) | ( , ) |F z F zI c d c
. (7)
Replacing of integration variable, coszk k , gives
3 1 2 1
0 0 e
2
e
(16 ) (sin ) exp( 2 )
[ (cos ) (cos ) (cos cos ) ( )]H E
W c e d
I I D
. (8)
3. RESULTS
In the case of perfect conductivity, Im E ,
0H , one gets
0( , ) ( )z Es s ,
1( , ) ( )z Hs s ,
where 1
1 i( ) cos( )[sin( ) sin( )]s k k k k w
, and
integration in (7) gives
,
2 2 2
(cos ) 2 coth[ ( )]
sin ( ) {cosh [ ( )] cos ( )}
E HI k k
k k k
. (9)
As it follows from (6), (8), and (9), in the case of perfect
conductivity, the total radiated energy does not depend
on the angle
e . So, if the particle motion line and the
edge of wedge are fixed and the wedge is rotated around
the edge then the total radiated energy is not changed.
After the next limit transition, to the perfectly
conductive half-plane, for which , one gets
1 2
, e(cos ) 2 sin sin ( )E HI D ,
2 2 2 2 2
0 e e e3 sin [8 (1 cos )]W e ,
in agreement with [2] and [3].
In the Fig. 2, an example of directional radiation
pattern (the quantity
2
e 0exp(2 ) ( sin )c dW e d d d ) is presented for
the case 0.9,
s , 150,
e 45,
e 60,
30. Sloped straight lines correspond to the angles
and
e . The curves correspond to the frequencies,
at which | | , 0.03, 0.3 (from right to left, at the
horizontal wedge symmetry plane).
Appearance of nonzero impedance with
s (0, 2) , may lead both to decrease of the total
radiated energy and to its increase. The radiation field is
determined by the charge and current distributions on
the wedge faces. The increase of impedance
corresponds to the resistance increase and may lead to
decrease of the currents, and so, to the radiated power
decrease. In particular, very small values of the
radiation flux in the directions near to the symmetry
plane in the Fig. 2, for the sufficiently large value of
impedance, are connected with very small currents over
the edge of wedge. On the other hand, near the surface
with nonzero impedance, the surface wave exists. At
| | 1 , its speed is near to the speed of light. When a
particle moves to the edge almost parallel to a face of
wedge then it effectively generates the waves, which
speed projection on the particle motion direction is near
to the particle speed. At the edge of wedge, a part of
wave field transforms into a radiation field. In some
conditions, an appearance and increase of impedance
can yield an increase of the radiated energy.
Fig. 2. Directional radiation pattern
To obtain simple approximate relations, it is
expedient to consider the case when particle is
relativistic, 1 , the distance between the motion line
and edge is so large, that
e s , the value of
esin is
not small, and the motion line is almost parallel to the
lower wedge face, so that the angle
f e is
small,
f 1 . Then the main part of energy is radiated
within the angle 1 near the motion directions of the
particle and its mirror reflection in the lower wedge face,
and for
e| | 1 one gets the relations
( ) 2 1 2
e(1 ) ( sin ) ,
( )D 2 2 2
esin (1 ) , 2 1 2(1 )k , where
e( ) . Due to the relation e s the factor
eexp( 2 ) in (8) may be not small only at the
frequencies, which obey the relation s 1k , and so,
give | | 1 . That is, the relation e s implies that
ISSN 1562-6016. ВАНТ. 2021. №1(131) 87
the main contribution to the integral by k in (6) is given
by the frequencies, at which impedance is small. Using of
the equality 2
{ } (( 2) ) ( 2)cos( 2)w k w
(from [5]), for
e| | 1 , gives
(cos )EI 2 ( ) ,
(cos ) (cos )H EI I
f1 2[ ( ) Im Re ]H H
2 2 1
f{( Re ) [ ( ) Im ] }H H .
Denoting
f f esin , 2
e| | sinZ Z , using the
variable
e( ) , and assuming that
f and
Z are
not very large, from (8) one gets
0W W 2 1 2
0(4 ) Zc e
2 1 2
eexp[ 2 (1 ) ]d k
2 1 2
s s fcos [tan (1 ) ] ( )G , (10)
where 2 1 2 2 2
s f s( ) [(1 ) sin ] ( cos )Z ZG
and
0W is the value of W in the perfect conductivity
case. From (6) and (10), changing the integration order,
by and k , and changing the variable, cot , one
gets
0W W s 11 2 2
s 0 s e e( ) [( ) (2 )] sin
p
e
2
s s s f s s f( 1)cos ( 1, )[tan ( 1, )]p S p R p , (11)
where
0W is related to the in the perfect conductivity
case, is gamma-function,
2 2( , ) ( 1, ) ( , )R p S p S p ,
2
0( , ) (sin ) (1 sin )pS p q d q .
If the faces are resistive (
s 0 ,
scos 0 ) then the
right hand side of (11) may be both positive and negative.
In the case of normal skin effect it is zero at
f 1.194.
For smaller angle
f it is positive and appearance of
resistance leads to increase of the radiated energy.
CONCLUSIONS
The wide-band electromagnetic pulse may be
generated by particle bunch created in the pulse
accelerator and passing by antenna. If the bunch is
relativistic then the main part of radiation is emitted in
the directions near to the direction of the bunch motion.
The case of plasma wedge-form antenna and single
charge moving uniformly is considered in impedance
approximation. For the perfectly conductive wedge
(zero impedance) it is shown that the total radiated
energy does not depend on the direction of the charge
motion line projection on a plane perpendicular to the
edge of wedge. That is, if the particle motion line and
the edge are fixed and the wedge is rotated around the
edge then the total radiated energy is not changed.
Appearance and increase of impedance may lead both to
decrease and to increase of the total radiated energy. Its
decrease can be caused by the decrease of the surface
currents, through the resistance increase. The increase
of the total radiated energy is observed in the
conditions, favorable for the surface wave generation,
when the charge moves to the edge almost parallel to a
face of wedge and the particle velocity is near to the
wave velocity.
REFERENCES
1. V.A. Balakirev, N.I. Gaponenko, A.M. Gorban', et al.
Excitement of TEM-horn antenna by impulsive
relativistic electron beam // Problems of Atomic Science
and Technology. Series «Plasma Physics» (5). 2000,
№ 3, p. 118-119.
2. A.P. Kazantsev, G.I. Surdutovich. The radiation of
the charged particle flying near the conductive screen //
Dokl. Akad. Nauk SSSR. 1962, v. 147, № 1, p. 74-77 (in
Russian).
3. A.P. Potylitsyn, M.I. Ryazanov, M.N. Strikhanov,
A.A. Tishchenko. Diffraction radiation of the charged
particles. Tomsk, 2008, 347 p.
4. G.D. Malyuzhinets. The excitation, reflection and
radiation of surface waves in a wedge-like region with
given face impedances // Dokl. Akad. Nauk SSSR. 1958,
v. 121, № 3, p. 436-439 (in Russian).
5. V.M. Babich, M.A. Lyalinov, V.E. Grikurov.
Sommerfeld-Malyuzhinets technique in diffraction
theory. Saint-Petersburg, 2004, 103 p.
Article received 08.01.2021
ИЗЛУЧЕНИЕ ЗАРЯДА ПРИ ДВИЖЕНИИ МИМО ИМПЕДАНСНОГО КЛИНА
В. Остроушко
Рассмотрено в импедансном приближении дифракционное излучение, созданное зарядом при движении
мимо плазменного клина. В пределе идеальной проводимости полная излученная энергия не изменяется при
повороте клина вокруг ребра, фиксированного вместе с линией движения заряда. Увеличение импеданса
может вести к увеличению полной излученной энергии благодаря эффективному созданию поверхностной
волны, когда движение заряда к ребру почти параллельно к грани клина.
ВИПРОМІНЮВАННЯ ЗАРЯДУ ПРИ РУСІ ПОВЗ ІМПЕДАНСНОГО КЛИНА
В. Остроушко
Розглянуте в імпедансному наближенні дифракційне випромінювання, утворене зарядом при русі повз
плазмового клина. У граничному випадку ідеальної провідності загальна випромінена енергія не змінюється
при обертанні клину навколо ребра, фіксованого разом з лінією руху заряду. Збільшення імпеданса може
вести до збільшення загальної випроміненої енергії завдяки ефективному утворенню поверхневої хвилі,
коли рух заряду до ребра майже паралельний до грані клину.
|