The study of the properties of the extended Higgs boson sector within hMSSM model

Using the latest experimental data, performed by ATLAS Collaboration and within the framework of the Minimal Supersymmetric Standard Model, we presented the calculations for cross sections times branching fractions, σ × Br, as a functions of the CP-even, H, Higgs boson mass, CP-odd, A, Higgs boson m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Obikhod, T.V., Petrenko, E.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2019
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/195135
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The study of the properties of the extended Higgs boson sector within hMSSM model / T.V. Obikhod, E.A. Petrenko // Problems of atomic science and technology. — 2019. — № 3. — С. 3-10. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-195135
record_format dspace
spelling irk-123456789-1951352023-12-03T16:00:22Z The study of the properties of the extended Higgs boson sector within hMSSM model Obikhod, T.V. Petrenko, E.A. Nuclear physics and elementary particles Using the latest experimental data, performed by ATLAS Collaboration and within the framework of the Minimal Supersymmetric Standard Model, we presented the calculations for cross sections times branching fractions, σ × Br, as a functions of the CP-even, H, Higgs boson mass, CP-odd, A, Higgs boson mass and charged, H±, Higgs boson mass. Using the restricted parameter set, received from the hMSSM+HDECAY and ”low-tb-high” scenarios, with the help of the computer programs SOFTSUSY, Prospino and SusHi, we received the large values of σ × Br for A and H bosons at tanβ=2 for the planned 14 TeV at the LHC and found the large σ × Br at tanβ=30 for charged Higgs boson. The obtained results are of experimental interest as they are connected with the experimental searches for new physics beyond the Standard Model at the LHC. Використовуючи останні експериментальні дані, отримані ATLAS колаборацією, у рамках Мінімальної суперсиметричної стандартної моделі, ми представили розрахунки по перерізам утворення, помноженим на ширини розпадів, σ × Br, як функції маси СР-парного, H, бозона Хіггса, СР-непарного, A, бозона Хіггса і зарядженого, H±, бозона Хіггса. Використання обмеженого набору параметрів, отриманих з hMSSM + HDECAY і «low-tb-high» сценаріїв, за допомогою комп'ютерних програм SOFTSUSY, Prospino і SusHi, дало можливість отримати великі значення σ × Br задля А і Н бозонів при tanβ=2 для запланованих 14 ТеВ на LHC і велике значення σ × Br при tanβ=30 для зарядженого бозона Хіггса. Отримані результати є важливими для експеримента, оскільки вони пов'язані із експериментальними пошуками нової фізики за межами Стандартної моделі на LHC. Используя последние экспериментальные данные, полученные ATLAS коллаборацией, в рамках Минимальной суперсимметричной стандартной модели, мы представили расчеты по сечениям, умноженным на ширины распадов,σ × Br, как функции массы СР-четного, H, бозона Хиггса, СР-нечетного, A, бозона Хиггса и заряженного,H±, бозона Хиггса. Использование ограниченного набора параметров, полученных из hMSSM + HDECAY и «low-tb-high» сценариев, с помощью компьютерных программ SOFTSUSY, Prospino и SusHi, дало возможность получить большие значения σ × Br для А и Н бозонов при tanβ=2 для запланированных 14 ТэВ на LHC и большое значение σ × Br при tanβ=30 для заряженного бозона Хиггса. Полученные результаты представляют собой интерес для эксперимента, поскольку они связаны с экспериментальными поисками новой физики за пределами Стандартной модели на LHC. 2019 Article The study of the properties of the extended Higgs boson sector within hMSSM model / T.V. Obikhod, E.A. Petrenko // Problems of atomic science and technology. — 2019. — № 3. — С. 3-10. — Бібліогр.: 21 назв. — англ. 1562-6016 PACS: 11.25.-w, 12.60.Jv, 02.10.Ws http://dspace.nbuv.gov.ua/handle/123456789/195135 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Nuclear physics and elementary particles
Nuclear physics and elementary particles
spellingShingle Nuclear physics and elementary particles
Nuclear physics and elementary particles
Obikhod, T.V.
Petrenko, E.A.
The study of the properties of the extended Higgs boson sector within hMSSM model
Вопросы атомной науки и техники
description Using the latest experimental data, performed by ATLAS Collaboration and within the framework of the Minimal Supersymmetric Standard Model, we presented the calculations for cross sections times branching fractions, σ × Br, as a functions of the CP-even, H, Higgs boson mass, CP-odd, A, Higgs boson mass and charged, H±, Higgs boson mass. Using the restricted parameter set, received from the hMSSM+HDECAY and ”low-tb-high” scenarios, with the help of the computer programs SOFTSUSY, Prospino and SusHi, we received the large values of σ × Br for A and H bosons at tanβ=2 for the planned 14 TeV at the LHC and found the large σ × Br at tanβ=30 for charged Higgs boson. The obtained results are of experimental interest as they are connected with the experimental searches for new physics beyond the Standard Model at the LHC.
format Article
author Obikhod, T.V.
Petrenko, E.A.
author_facet Obikhod, T.V.
Petrenko, E.A.
author_sort Obikhod, T.V.
title The study of the properties of the extended Higgs boson sector within hMSSM model
title_short The study of the properties of the extended Higgs boson sector within hMSSM model
title_full The study of the properties of the extended Higgs boson sector within hMSSM model
title_fullStr The study of the properties of the extended Higgs boson sector within hMSSM model
title_full_unstemmed The study of the properties of the extended Higgs boson sector within hMSSM model
title_sort study of the properties of the extended higgs boson sector within hmssm model
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2019
topic_facet Nuclear physics and elementary particles
url http://dspace.nbuv.gov.ua/handle/123456789/195135
citation_txt The study of the properties of the extended Higgs boson sector within hMSSM model / T.V. Obikhod, E.A. Petrenko // Problems of atomic science and technology. — 2019. — № 3. — С. 3-10. — Бібліогр.: 21 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT obikhodtv thestudyofthepropertiesoftheextendedhiggsbosonsectorwithinhmssmmodel
AT petrenkoea thestudyofthepropertiesoftheextendedhiggsbosonsectorwithinhmssmmodel
AT obikhodtv studyofthepropertiesoftheextendedhiggsbosonsectorwithinhmssmmodel
AT petrenkoea studyofthepropertiesoftheextendedhiggsbosonsectorwithinhmssmmodel
first_indexed 2025-07-16T22:56:56Z
last_indexed 2025-07-16T22:56:56Z
_version_ 1837846100867809280
fulltext NUCLEAR PHYSICS AND ELEMENTARY PARTICLES THE STUDY OF THE PROPERTIES OF THE EXTENDED HIGGS BOSON SECTOR WITHIN hMSSM MODEL T.V.Obikhod ∗, E.A.Petrenko Institute for Nuclear Research National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine (Received January 29, 2018) Using the latest experimental data, performed by ATLAS Collaboration and within the framework of the Minimal Supersymmetric Standard Model, we presented the calculations for cross sections times branching fractions, σ×Br, as a functions of the CP-even, H, Higgs boson mass, CP-odd, A, Higgs boson mass and charged, H±, Higgs boson mass. Using the restricted parameter set, received from the hMSSM+HDECAY and ”low-tb-high” scenarios, with the help of the computer programs SOFTSUSY, Prospino and SusHi, we received the large values of σ × Br for A and H bosons at tanβ=2 for the planned 14 TeV at the LHC and found the large σ × Br at tanβ=30 for charged Higgs boson. The obtained results are of experimental interest as they are connected with the experimental searches for new physics beyond the Standard Model at the LHC. PACS: 11.25.-w, 12.60.Jv, 02.10.Ws 1. INTRODUCTION The searches for supersymmetry (SUSY) are moti- vated by the solutions of the most important prob- lems: the hierarchy problem, gauge coupling unifi- cation and dark matter problem [1]. Experimental searches for SUSY in the most probable channels for the superparticle production at the LHC did not lead to the desired results and set new lower limits in the mass range about 2 TeV for gluino and squarks [2]. This fact led to the need for SUSY searches in other sectors, for example, in the electroweak sector. As highlighted in CERN Courier [3]: ”Based on data recorded in 2016, CMS has covered models of elec- troweak production of ”wino”-like charginos and neu- tralinos with searches in different final states. More results are expected soon, and the sensitiv- ity of the searches will largely profit from the exten- sion of the data set in the remaining two years of LHC Run 2”. Another important sector for SUSY searches in low mass range of 1 TeV are the searches for extended Higgs boson sector predicted by Min- imal Supersymmetric Standard Model (MSSM) [4], that consists of five Higgs bosons: CP even Higgs bosons, h and H, CP odd Higgs boson, A, charged Higgs bosons, H±. The purpose of our paper is to calculate the pro- duction cross section of such particles at the energy of 14 TeV at the LHC in the most optimal space of parameters of the MSSM model. 2. OPTIMAL PARAMETER SPACE FOR STUDYING OF THE PROPERTIES OF MSSM HIGGS BOSONS The masses of five Higgs bosons of MSSM model at tree level are calculated through the masses of gauge boson, MW , MZ , and two additional parame- ters such as the pseudoscalar mass, MA and the ratio of vacuum expectation values of two Higgs doublets, tanβ ≡ υu/υd [5]: M2 H± = M2 A +M2 W , M2 h,H= 1 2 ( M2 A+M2 Z∓ √ (M2 A+M2 Z)2−4M2 AM2 Zcos22β ) . In the paper [6] the theoretical predictions of the MSSM Higgs particles in the low tanβ regime, 1 ≤tanβ ≤ 3 are reviewed, with the assumption that SUSY should be in the range of 1 TeV. It was showed that the heavier MSSM neutral H/A and charged H± states can decay into gauge bosons, lighter Higgs bosons and top quarks, presented in Fig.1. In the Handbook of LHC Higgs cross sections, 2017 [5] are given examples of sensitivity on the [tanβ, MA] parameter space for the ”model inde- pendent” hMSSM approach [6], compared to the second approach [7] so called ”low-tb-high” approach in the MSSM, that is orthogonal to the one pre- vious. Relative differences in BR(H→ WW) be- tween the predictions of the ”low-tb-high” scenario and the corresponding predictions obtained with the hMSSM+HDECAY combination are presented in Fig.2. ∗Corresponding author E-mail address: obikhod@kinr.kiev.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2019, N3(121). Series: Nuclear Physics Investigations (71), p.3-10. 3 Fig.1. The branching ratios as functions of masses of MSSM Higgs bosons (A left, H center, H± right) for tanβ=2.5, from [6] Fig.2. Relative differences in BR(H→WW) between the hMSSM+HDECAY scenario and the ”low-tb-high” scenario, from [5] The results of ATLAS [8] and CMS [9] Collab- orations excluded at the 95% confidence level (CL) a significant part of the [tanβ, MA] plane. We’ll use the benchmark scenarios of the model indepen- dent approach for the Higgs sector, the hMSSM with Mh = 125 GeV for the experimental limits on the cross sections times branching ratios in the context of the MSSM [10]. The results for the branching frac- tions received with the program HDECAY [11] for the Higgs decays in the [tanβ, MA] plane are displayed in Fig.3 with red area for the large decay rates and blue area for the small one. The production cross sections for A and H bosons are displayed in Fig.4 in the [tanβ, MA] hMSSM pa- rameter space for 14 TeV at the LHC. Fig.3. The branching ratios of the neutral Higgs bosons in the [tanβ; MA] parameter space of the hMSSM model, from [12] 4 Fig.4. The production cross sections of the Higgs bosons A (left) and H (right) at the LHC with √ s=14 TeV in the [tanβ; MA] hMSSM plane, from [12] 3. CALCULATIONS OF THE PRODUCTION CROSS SECTIONS TIMES BRANCHING FRACTIONS FOR HIGGS BOSONS 1) CP-even Higgs boson, H. Searches for heavy Higgs bosons by Run-2 ATLAS Collaboration at the LHC in the H → ZZ and H → WW decay channels are relevant due to the possibil- ity of evidence for new particles beyond the Standard Model. The limits on σ(pp → H) × BR(H → ZZ) and σ(pp → H) × BR(H → WW ) at 95% CL from [13] and [14] correspondingly are presented in Fig.5. Fig.5. Limits on σ(pp → H) × BR(H → ZZ) (a) and σ(pp → H) × BR(H → WW ) (b) via gluon-gluon fusion at 95% CL Using the restricted parameter set for [tanβ; MA] plane, presented in the previous section and com- puter programs SusHi [15] and SOFTSUSY4.0 [16], we calculated σ(pp → H) × BR(H → ZZ) and σ(pp → H)×BR(H → WW ) for √ s=14 TeV at the LHC, presented in Fig.6. 5 Fig.6. σ(pp → H)×BR(H → ZZ) (left) and σ(pp → H)×BR(H → WW ) (right) for √ s=14 TeV at the LHC From Fig.6 we can see the increase in value σ×Br for ggh fusion process compared with bbh fusion pro- cess of heavy Higgs boson, H production. Since the branching ratios for the decays H → bb and H → tt are significant values according to our calcu- lations with SOFTSUSY4.0 program, we have per- formed calculations of σ(pp → H) × BR(H → tt) and σ(pp → H) × BR(H → bb) for the planned at the LHC energy of 14 TeV, presented in Fig.7. Fig.7. σ(pp → H)×BR(H → bb) (left) and σ(pp → H)×BR(H → tt) (right) for √ s=14 TeV at the LHC From the comparison of our calculations, pre- sented above, we can see significant predominance of the values σ × Br for the second variant (see Fig.7) compared to the first one (see Fig.6). It is also im- portant to stress the necessity of N3LO calculations for essential enlargement of the σ ×Br value. 2) CP-odd Higgs boson, A. In this section we have considered the following de- cay processes of A boson: A → bb and A → tt. The consideration of these processes of A boson decay is connected with the large value of branching ratio, that is represented in Fig.1. As we have calculated the process A → Zh in [17] and currently there are no other experimental data, for future experimental searches it was of interest to perform calculations for the two other decay channels from the three maxi- mal. Using the computer programs SOFTSUSY4.0 and SusHi, we have performed the calculations of σ×Br for CP-odd Higgs boson, A. As the branching ratio for A boson is maximal for the decays A → bb and A → tt in the selected set of parameters, it was interesting to calculate σ×Br for this both processes over a wide range of boson masses, from 500 GeV to 3450 GeV. The results of our calculations are pre- sented in Fig.8. 6 Fig.8. σ(pp → A)×BR(A → bb) in the mass range 500...2200 GeV (left) and 1800...3450 GeV (right) (a) and σ(pp → A)×BR(A → tt) in the mass range 500...2200 GeV (left) and 1800...3450 GeV (right) (b) From Fig.8 we can see the predominance of the ggh process of A boson formation over the bbh one except for the (b) case of A → tt process in the mass range of 500...2200 GeV with interesting intersection points between bbh and ggh processes. It is also necessary to stress the largest value of σ × Br for the smallest masses, mA, what is easily explained in connection with the lower mass of the Higgs boson A. 3) charged Higgs bosons, H±. As is known [18], the production of charged Higgs boson depends on its mass and for mH+ > mt, H + production mode is associated with a top quark, as illustrated in Fig.9. Fig.9. Leading-order Feynman diagram for the production of H+ in association with a top quark in five flavor scheme In Fig.10 are shown the expected and observed limits for the production of H+ → tb in association with a top quark, bands for 68% (in green) and 95% (in yellow) confidence intervals and the signal prediction in the mmod− h benchmark scenario of the MSSM [19]. Fig.10. Expected and observed limits for the production o f H+ → tb in association with a top quark, from [18] As model points with 0.5 ≤tanβ ≤ 0.6, tanβ ≈ 0.5, tanβ=0.7 and tanβ=0.9 are excluded in the H+ mass range of 200...600 GeV obtained also in other 7 scenarios of MSSM, it would be interesting to do the calculations of σ × Br for tanβ=2. For the study- ing of properties of charged Higgs bosons, H±, we have used the set of parameters of MSSM model to calculate the cross-sections of tH+ production with the help of the software program PROSPINO [20] with data implemented from the latest computer pro- gram SOFTSUSY4.0. The corresponding results for σ(pp → tH+)BR(H+ → tb), obtained for the param- eter set of tanβ=2 and for the energy of 14 TeV in the mass range of mH+=500...1200 GeV are presented in Fig.11. Fig.11. σ(pp → tH+)BR(H+ → tb) for 14 TeV at the LHC in the mass range of mH+=500...1200 GeV Another most visible decay channel of a charged Higgs boson is H+ → τν. Its searches in associa- tion with a single top quark were performed by AT- LAS Collaboration at the LHC with proton–proton collision at √ s=13 TeV corresponding to an inte- grated luminosity of 3.2 fb−1. The analysis of ex- perimental data leads to 95% CL upper limits on the σ(pp → [b]tH±)BR(H± → τν), between 1.9 pb and 15 fb, for mH+=200...2000 GeV, that is presented in Fig.12. Fig.12. Observed and expected 95% CL exclusion limits for heavy charged Higgs boson production as a function of mH+ , from [21] From these experimental data tanβ = 42...60 for mH+=200 GeV and tanβ=60 for the H+ mass range from 200 to 340 GeV were excluded. So we have con- sidered two cases of tanβ=2 and 30 for comparison of the value of σ(pp → [b]tH±)BR(H± → τν) for these two cases, presented in Fig.13. Fig.13. σ(pp → [b]tH±)BR(H± → τν) for (a) tanβ=30 in the mass range m+ H=1200...2650 GeV and (b) tanβ=2 in the mass range m+ H=2200...4600 GeV with the planned 14 TeV at the LHC From Fig.13 the predominance in the value of σ(pp → [b]tH±)BR(H± → τν) for the variant (a) is obvious but we can see the larger values of σ(pp → [b]tH±)BR(H± → τν) for tanβ=30 in the range of the mass intersection of charged Higgs bo- son, m+ H=2200...2650 GeV for (a) and (b) variants. In addition, it is known that for mH+ > mt the dominant decay of H+ is H+ → tb, but for large values of tanβ is observed a substantial contribution from H+ → τν [21]. For comparison we calculated σ(pp → tH+)BR(H+ → tb) for tanβ=30 for 14 TeV at the LHC, presented in Fig.14. From the Fig.14 and 13 it can be con- cluded about the largest values of σ(pp → tH+)BR(H+ → tb) in contrast with σ(pp → [b]tH±)BR(H± → τν) for the same tanβ=30, but 8 the increase of the value σ(pp → [b]tH±)BR(H± → τν) for the larger tanβ was stressed above. Fig.14. σ(pp → tH+)BR(H+ → tb) for 14 TeV at the LHC in the mass range of m+ H=1200...2650 GeV 4. CONCLUSIONS Using the restricted parameter set of the hMSSM model, presented in [5] and [12] for the extended sector of Higgs bosons as well as the latest experi- mental data on the observed and expected CL ex- clusion limits for Higgs boson production, performed by ATLAS Collaboration [13], [14], [18], [21] with the help of software programs SOFTSUSY4.0, SusHi and PROSPINO we have calculated σ × Br for CP-even Higgs boson, H, CP-odd Higgs boson, A and charged Higgs bosons, H±. From our calculations we can con- clude about the large values of the σ × Br at small tanβ=2 for chosen decay channels of Higgs bosons for the energy at the LHC of 14 TeV. But for the charged Higgs boson are obtained another results, that are connected with larger values of tanβ. References 1. Yuri Shirman. TASI 2008 Lectures: Introduc- tion to Supersymmetry and Supersymmetry Breaking // arXiv:0907.0039v1 [hep-ph] 1 Jul 2009. 2. CMS Collaboration. Search for supersymme- try in multijet events with missing transverse momentum in proton-proton collisions at 13 TeV // CMS-SUS-16-033, CERN-EP-2017-072, arXiv:1704.07781 [hep-ex]. 3. CMS Collaboration. SUSY searches in the elec- troweak sector// CERN Courier. 2017, v.57, N5, p.12. 4. Stephen P.Martin. A Supersymmetry Primer// arXiv: hep-ph/9709356. 5. LHC Higgs Cross Section Working Group/ D. deFlorian, C.Grojean, F.Maltoni, C.Mariotti, A.Nikitenko, M.Pieri, P. Savard, M. Schumacher, R.Tanaka (Eds.). Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector // CERN Yellow Reports: Monographs. CERN, Geneva, 2017, v.2, 869p., CERN-2017-002-M. 6. A.Djouadi and J.Quevillon. The MSSM Higgs sector at a high MSUSY: reopening the low tanβ regime and heavy Higgs searches // JHEP. 2013, v.10, p.028, arXiv:1304.1787 [hep-ph]. 7. E. Bagnaschi et al. Benchmark scenarios for low tanβ in the MSSM // LHCHXSWG-2015-002, 2015. 8. The ATLAS collaboration. Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at s = 8 TeV with the ATLAS detector // JHEP 2014, v.11, p.056; arXiv:1409.6064 [hep-ex]. 9. The CMS collaboration. Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions // JHEP 2014, v.10, p.160, arXiv:1408.3316 [hep-ex]. 10. M.Carena, S.Heinemeyer, C.Wagner and G.Weiglein. Suggestions for Benchmark Scenar- ios for MSSM Higgs Boson Searches at Hadron Colliders // Eur. Phys. J. 2003, v.C26, p.601- 607. 11. A.Djouadi, J.Kalinowski and M. Spira. HDE- CAY: a Program for Higgs Boson Decays in the Standard Model and its Supersymmetric Exten- sion // Comput. Phys. Commun. 1998, v.108, p.56-74; A.Djouadi, M.Muhlleitner and M. Spira. Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-Hdecay- InTerface) // Acta. Phys. Polon. 2007, v.B38, p.635-644. 12. A.Djouadi et al. Fully covering the MSSM Higgs sector at the LHC // arXiv:1502.05653v2 [hep- ph] 22 Jun 2015. 13. The ATLAS Collaboration. Search for high- mass resonances decaying into a Z boson pair in the llνν final state in pp collisions at s=13 TeV with the ATLAS detector // ATLAS-CONF- 2016-012. 14. The ATLAS Collaboration. Search for a high- mass Higgs boson decaying to a pair of W bosons in pp collisions at s=13 TeV with the ATLAS detector// ATLAS-CONF-2016-021. 15. SusHi can be downloaded from: http: // sushi.hepforge.org/. 16. B.C.Allanach, T.Cridge. The Calculation of Sparticle and Higgs Decays in the Minimal and Next-to-Minimal Supersymmetric Standard 9 Models: SOFTSUSY4.0 // arXiv:1703.09717 [hep-ph]. 17. T.V.Obikhod, E.A. Petrenko. The study of the extended Higgs boson sector within 2HDM model // arXiv:1703.09776 [hep-ph]. 18. ATLAS Collaboration. Search for charged Higgs bosons in the H± → tb decay channel in pp col- lisions at s=8 TeV using the ATLAS detector // JHEP. 2016, v.03, p.127. 19. M.Carena, S.Heinemeyer, O. Stal, C.E.M.Wagner and G.Weiglein. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle // Eur. Phys. J. 2013, v.C 73, 2552, arXiv:1302.7033. 20. W.Beenakker, R.Hoepker, M. Spira. PROSPINO: A Program for the Production of Supersymmetric Particles in Next-to-leading Order QCD // arXiv:hep-ph/9611232v1. 21. The ATLAS Collaboration. Search for charged Higgs bosons produced in association with a top quark and decaying via H→ τν using pp colli- sion data recorded at s = 13 TeV by the ATLAS detector // CERN-PH-2016-056. ÈÇÓ×ÅÍÈÅ ÑÂÎÉÑÒ ÐÀÑØÈÐÅÍÍÎÃÎ ÑÅÊÒÎÐÀ ÁÎÇÎÍÀ ÕÈÃÃÑÀ  ÐÀÌÊÀÕ hMSSM-ÌÎÄÅËÈ Ò.Â.Îáèõîä, Å.À.Ïåòðåíêî Èñïîëüçóÿ ïîñëåäíèå ýêñïåðèìåíòàëüíûå äàííûå, ïîëó÷åííûå ATLAS êîëëàáîðàöèåé, â ðàìêàõ Ìèíè- ìàëüíîé ñóïåðñèììåòðè÷íîé ñòàíäàðòíîé ìîäåëè, ìû ïðåäñòàâèëè ðàñ÷åòû ïî ñå÷åíèÿì óìíîæåííûì íà øèðèíû ðàñïàäîâ, σ×Br, êàê ôóíêöèè ìàññû ÑÐ-÷åòíîãî Í áîçîíà Õèããñà, ÑÐ-íå÷åòíîãî À áîçîíà Õèããñà è çàðÿæåííîãî, H± áîçîíà Õèããñà. Èñïîëüçîâàíèå îãðàíè÷åííîãî íàáîðà ïàðàìåòðîâ, ïîëó÷åí- íûõ èç hMSSM + HDECAY è "low-tb-high"ñöåíàðèåâ, ñ ïîìîùüþ êîìïüþòåðíûõ ïðîãðàìì SOFTSUSY, Prospino è SusHi, äàëî âîçìîæíîñòü ïîëó÷èòü áîëüøèå çíà÷åíèÿ σ×Br äëÿ À è Í áîçîíîâ ïðè tanβ = 2 äëÿ çàïëàíèðîâàííûõ 14 Òý íà LHC è áîëüøîå çíà÷åíèå σ×Br ïðè tanβ = 30 äëÿ çàðÿæåííîãî áîçîíà Õèããñà. Ïîëó÷åííûå ðåçóëüòàòû ïðåäñòàâëÿþò ñîáîé èíòåðåñ äëÿ ýêñïåðèìåíòà, ïîñêîëüêó îíè ñâÿçàíû ñ ýêñïåðèìåíòàëüíûìè ïîèñêàìè íîâîé ôèçèêè çà ïðåäåëàìè Ñòàíäàðòíîé ìîäåëè íà LHC. ÂÈÂ×ÅÍÍß ÂËÀÑÒÈÂÎÑÒÅÉ ÐÎÇØÈÐÅÍÎÃÎ ÑÅÊÒÎÐÀ ÁÎÇÎÍÀ ÕIÃÃÑÀ  ÐÀÌÊÀÕ hMSSM-ÌÎÄÅËI Ò.Â.Îáiõîä, �.Î.Ïåòðåíêî Âèêîðèñòîâóþ÷è îñòàííi åêñïåðèìåíòàëüíi äàíi, îòðèìàíi ATLAS êîëàáîðàöi¹þ, ó ðàìêàõ Ìiíiìàëüíî¨ ñóïåðñèìåòðè÷íî¨ ñòàíäàðòíî¨ ìîäåëi, ìè ïðåäñòàâèëè ðîçðàõóíêè ïî ïåðåðiçàì óòâîðåííÿ ïîìíîæåíèì íà øèðèíè ðîçïàäiâ, σ×Br, ÿê ôóíêöi¨ ìàñè ÑÐ-ïàðíîãî Í áîçîíà Õiããñà, ÑÐ-íåïàðíîãî À áîçîíà Õiããñà i çàðÿäæåíîãîH± áîçîíà Õiããñà. Âèêîðèñòàííÿ îáìåæåíîãî íàáîðó ïàðàìåòðiâ, îòðèìàíîãî ç hMSSM + HDECAY i "low-tb-high"ñöåíàði¨â, çà äîïîìîãîþ êîìï'þòåðíèõ ïðîãðàì SOFTSUSY, Prospino i SusHi, äàëî ìîæëèâiñòü îòðèìàòè âåëèêi çíà÷åííÿ σ×Br çàäëÿ À i Í áîçîíiâ ïðè tanβ = 2 äëÿ çàïëàíîâà- íèõ 14 Òå íà LHC i âåëèêå çíà÷åííÿ σ×Br ïðè tanβ = 30 äëÿ çàðÿäæåíîãî áîçîíà Õiããñà. Îòðèìàíi ðåçóëüòàòè ¹ âàæëèâèìè äëÿ åêñïåðèìåíòà, îñêiëüêè âîíè ïîâ'ÿçàíi iç åêñïåðèìåíòàëüíèìè ïîøóêàìè íîâî¨ ôiçèêè çà ìåæàìè Ñòàíäàðòíî¨ ìîäåëi íà LHC. 10