Cherenkov radiation of a laser pulse in ion dielectrics
The process of excitation of Cherenkov electromagnetic radiation by a laser pulse in ion dielectric waveguide is investigated. Nonlinear electric polarization in isotropic ion dielectric medium and, accordingly, polarization charges and currents induced by a ponderomotive force of a laser pulse are...
Gespeichert in:
Datum: | 2019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195164 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Cherenkov radiation of a laser pulse in ion dielectrics / V.A. Balakirev, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 4. — С. 39-47. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195164 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1951642023-12-03T16:36:07Z Cherenkov radiation of a laser pulse in ion dielectrics Balakirev, V.A. Onishchenko, I.N. Advanced methods of acceleration The process of excitation of Cherenkov electromagnetic radiation by a laser pulse in ion dielectric waveguide is investigated. Nonlinear electric polarization in isotropic ion dielectric medium and, accordingly, polarization charges and currents induced by a ponderomotive force of a laser pulse are determined. Frequency spectra of the excited wakefields in the infrared and microwave frequency ranges are obtained. The spatiotemporal structure of the wakefield in ion dielectric waveguide is obtained and studied. It is shown that the excited field consists of a potential polarization electric field, as well as a set of eigen electromagnetic waves of ion dielectric waveguide. Досліджено процес збудження черенковського електромагнітного випромінювання лазерним імпульсом в іонному діелектричному хвилеводі. Визначена нелiнiйна електрична поляризація в іонному діелектричному середовищі та, відповідно, поляризацiйнi заряди i струми, iндукованi пондеромоторною силою з боку лазерного імпульсу. Отримана та досліджена просторово-часова структура кільватерного поля в діелектричному хвилеводі. Показано, що збуджуване поле складається з потенціального поляризаційного електричного поля поздовжніх оптичних фононів та набору власних електромагнiтних хвиль іонного діелектричного хвилеводу. Исследован процесс возбуждения черенковского электромагнитного излучения лазерным импульсом в ионном диэлектрическом волноводе. Определена нелинейная электрическая поляризация в ионной диэлектрической среде и, соответственно, поляризационные заряды и токи, индуцированные пондеромоторной силой со стороны лазерного импульса. Получена и исследована пространственно-временная структура кильватерного поля в ионном диэлектрическом волноводе. Показано, что возбуждаемое поле состоит из потенциального поляризационного электрического поля продольных оптических фононов и набора собственных электромагнитных волн ионного диэлектрического волновода. 2019 Article Cherenkov radiation of a laser pulse in ion dielectrics / V.A. Balakirev, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 4. — С. 39-47. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq http://dspace.nbuv.gov.ua/handle/123456789/195164 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Advanced methods of acceleration Advanced methods of acceleration |
spellingShingle |
Advanced methods of acceleration Advanced methods of acceleration Balakirev, V.A. Onishchenko, I.N. Cherenkov radiation of a laser pulse in ion dielectrics Вопросы атомной науки и техники |
description |
The process of excitation of Cherenkov electromagnetic radiation by a laser pulse in ion dielectric waveguide is investigated. Nonlinear electric polarization in isotropic ion dielectric medium and, accordingly, polarization charges and currents induced by a ponderomotive force of a laser pulse are determined. Frequency spectra of the excited wakefields in the infrared and microwave frequency ranges are obtained. The spatiotemporal structure of the wakefield in ion dielectric waveguide is obtained and studied. It is shown that the excited field consists of a potential polarization electric field, as well as a set of eigen electromagnetic waves of ion dielectric waveguide. |
format |
Article |
author |
Balakirev, V.A. Onishchenko, I.N. |
author_facet |
Balakirev, V.A. Onishchenko, I.N. |
author_sort |
Balakirev, V.A. |
title |
Cherenkov radiation of a laser pulse in ion dielectrics |
title_short |
Cherenkov radiation of a laser pulse in ion dielectrics |
title_full |
Cherenkov radiation of a laser pulse in ion dielectrics |
title_fullStr |
Cherenkov radiation of a laser pulse in ion dielectrics |
title_full_unstemmed |
Cherenkov radiation of a laser pulse in ion dielectrics |
title_sort |
cherenkov radiation of a laser pulse in ion dielectrics |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Advanced methods of acceleration |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195164 |
citation_txt |
Cherenkov radiation of a laser pulse in ion dielectrics / V.A. Balakirev, I.N. Onishchenko // Problems of atomic science and technology. — 2019. — № 4. — С. 39-47. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT balakirevva cherenkovradiationofalaserpulseiniondielectrics AT onishchenkoin cherenkovradiationofalaserpulseiniondielectrics |
first_indexed |
2025-07-16T23:00:18Z |
last_indexed |
2025-07-16T23:00:18Z |
_version_ |
1837846311154483200 |
fulltext |
ISSN 1562-6016. ВАНТ. 2019. №4(122) 39
ADVANCED METHODS OF ACCELERATION
CHERENKOV RADIATION OF A LASER PULSE
IN ION DIELECTRICS
V.A. Balakirev, I.N. Onishchenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: onish@kipt.kharkov.ua
The process of excitation of Cherenkov electromagnetic radiation by a laser pulse in ion dielectric waveguide is
investigated. Nonlinear electric polarization in isotropic ion dielectric medium and, accordingly, polarization charg-
es and currents induced by a ponderomotive force of a laser pulse are determined. Frequency spectra of the excited
wakefields in the infrared and microwave frequency ranges are obtained. The spatiotemporal structure of the wake-
field in ion dielectric waveguide is obtained and studied. It is shown that the excited field consists of a potential po-
larization electric field, as well as a set of eigen electromagnetic waves of ion dielectric waveguide.
PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq
INTRODUCTION
An electric charge moving in a dielectric medium
with superluminal speed radiates electromagnetic waves
called Cherenkov radiation [1, 2]. The electric field of a
moving charge polarizes the atoms (ions) of the dielec-
tric medium, which in turn coherently re-radiate elec-
tromagnetic waves.
A similar effect takes place when a high-power laser
pulse propagates in a dielectric [3, 4]. A necessary con-
dition for the appearance of a Cherenkov radiation of a
laser pulse is that the group velocity of the laser pulse
must exceed the phase velocity of the radiated electro-
magnetic wave. The effect of Cherenkov radiation of a
laser pulse in a dielectric medium is as follows. When a
laser pulse propagates in a dielectric a pulsed pondero-
motive force quadratic in the laser field propagating in
the medium with the group velocity of the laser pulse
will act on the bonded electrons of the atoms (ions) of a
medium. This force, in turn, will lead to the polarization
of the atoms (ions) of the dielectric. Induced polariza-
tion charges and currents will coherently radiate elec-
tromagnetic waves (Cherenkov radiation). The effect of
the Cherenkov radiation of a laser pulse is quite similar
to the Cherenkov radiation of an electron bunch moving
in a dielectric medium, with the difference that the pon-
deromotive force of the laser pulse plays the role of the
pulse electric field of the electron bunch.
The Cherenkov wakefield radiation in a dielectric
medium of a high-power ultrashort laser pulse can be
used to accelerate charged particles similarly to a laser-
plasma wakefield acceleration method [5].
In [6, 7], the effect of the Cherenkov radiation of a
laser pulse was studied using a simple model of a die-
lectric medium consisting of atoms of the same type. A
bright example of such a medium is diamond, whose
crystal lattice consists only of carbon atoms. The carbon
atoms in diamond are held by covalent forces, which are
of a quantum nature and arise as a result of the bonding
pairs of the valence electrons of neighboring atoms
(overlapping of the wave functions of the valence elec-
trons). Atoms retain their electrical neutrality. Only the
electron shells of atoms contribute to the electric polari-
zation of covalent dielectrics. Due to large mass the
nuclei of atoms do not participate in the polarization of
dielectrics. Namely, due to the electronic nature of po-
larization, for covalent dielectrics, the values of dielec-
tric constant in the optical frequency range and in the
static limit are close.
A much wider class of dielectrics is formed by ion-
bonded dielectrics. No pure element of the periodic ta-
ble is related to dielectrics of this class. All ion dielec-
trics are chemical compounds. Ion crystals are com-
posed of positive and negative ions. These ions form a
crystal lattice as a result of Coulomb attraction of oppo-
sitely charged ions.
The traditional example of ion dielectrics are crys-
tals of an alkali-halide group with the formula I VIIA B
(for example, NaCl and KCl). In crystals of this group,
it is energetically advantageous for an atom of alkali
metal to transfer its valence electron to an adjacent hal-
ide atom and fill its outer shell. As a result, an ion bond
arises between the atoms of different elements. This
bond is due to the interaction of oppositely charged
ions. Below we restrict consideration to the simplest
case of diatomic crystals. These dielectrics also include
ion crystals with the formulas II VIA B and III VA B . Note
also that in ion crystals a covalent bond share is always
present. For example, in ion crystals of the alkali halide
group, in the total binding energy, it is less than 5% [8-
10].
In determining the total electric polarization induced
by a laser pulse in an ion dielectric, it is necessary to
take into account both the total contribution of the po-
larizations of the electron shells of all the ions which
form the crystal and the total contribution of the positive
and negative ions of the crystal.
In this paper, a system of nonlinear equations of
macroscopic electrodynamics is formulated, which de-
scribes the process of excitation of Cherenkov radiation
by a laser pulse in an ion dielectric medium.
On the basis of these equations, the effect of the Che-
renkov radiation of a laser pulse in a dielectric wave-
guide (light guide) will be investigated. A complete
picture of the excitation of Cherenkov radiation by a
laser pulse propagating in an ion dielectric is presented.
The frequency spectrum of Cherenkow radiation is de-
termined. The spatiotemporal structure of the Cheren-
kov electromagnetic field has been obtained and stud-
ied.
ISSN 1562-6016. ВАНТ. 2019. №4(122) 40
1. PROBLEM STATEMENT.
BASIC EQUATIONS
A laser pulse (wave packet) with electromagnetic
field components propagates in a homogeneous dielec-
tric medium
0
1( , ) ( , ) . .
2
Li
LE r t E r t e c cψ= +
,
0
0
1( , ) ( , ) . .
2
Li
LH r t rot E r t e c c
ik
ψ = +
, (1)
L L Lk r tψ ω= −
. Lk
is wave vector, 0 /Lk cω= , Lω is
carrier frequency of a laser pulse, 0 ( , )E r t
is a laser
pulse envelope slowly varying in space and time.
Under the action of the ponderomotive force (RF-
pressure force) a polarization arises in the dielectric,
slow on the carrier frequency scale, which in turn is the
source of the electromagnetic field of the laser pulse
(Cherenkov radiation). Maxwell's system of equations
describing the electromagnetic field, which is excited by
a polarization induced by a laser pulse, has the form
1 ,HrotE
c t
∂
= −
∂
1 4 ,E ProtH
c t c t
π∂ ∂
= +
∂ ∂
4divE divPπ= −
, 0divH =
, (2)
P
is vector of electric polarization.
In ion dielectrics there are two mechanisms of elec-
tric polarization. This is primarily an electronic polari-
zation mechanism inherent in all types of dielectrics.
Electron polarization is due to the displacement of a
shell of bound electrons relative to their nuclei under the
action of an electric field. The second polarization
mechanism is ionic; it is caused by the relative dis-
placement of oppositely charged ions. It should be noted
that such a separation of the polarization mechanisms is
not quite rigorous. A more adequate is the polarization
model, in which the ions are not only displaced, but also
deformed (the model of deformable ions [9]). Under the
action of an electric field, the electron shell of each ion
will be deformed and displaced relative to the nucleus,
so that an internal dipole moment is forms in the ion,
which will weaken the applied electric field. According-
ly, the force causing the displacement of the ions will
decrease and, as a result, the ion polarization will de-
crease. Qualitatively, this weakening effect can be taken
into account by renormalizing the ion charge or by in-
troducing the effective Scigetty charge [9]. For most ion
dielectrics, the Scigetti charge is 0.7…0.9 of the ion
charge. However, to simplify the analysis of the Che-
renkov effect of a laser pulse, we restrict ourselves to
the model of hard (non-deformable) ions.
First of all, we formulate equations describing the
electron polarization of diatomic ionic crystals induced
by a laser pulse. Induced electron polarization can be
described in the framework of the following model [10].
An atom is represented as a point nucleus surrounded by
an electron cloud. When the electron cloud is displaced
as a whole relative to the nucleus, a dipole moment of
the atom p Zer= −
arises, where r is the radius-vector
of the electron cloud center, Ze is charge nucleus. Ac-
cordingly, a dipole returning force will act on the cloud
[11]
( )2
3
0
de
Ze
F r
R
= −
,
which leads to harmonic dipole oscillations of an atom
with its eigen frequency
2
3
0
de
Ze
mR
ω = , (3)
0R is the radius of the atom.
In a condensed medium, each atom is in a local (act-
ing) electric field locE
, which can differ substantially
from the macroscopic field E
included in Maxwell's
equations (2). The local electric field locE
includes both
the external field and the total electric field of the in-
duced dipoles surrounding a given atom (ion). In a crys-
tal medium with a cubic crystal lattice, the local electric
field is described by the Lorentz formula [8 - 12]
loc
4E E P
3
π
= +
, (4)
Taking into account the local field effect, the expres-
sion for the ponderomotive force acting on the electrons
of the crystal ion shell from the side of the laser pulse
has the form [6, 7]
2
( ) L
pon 2 2
de( ) L
2e 1F
4m 3
±
±
e +
= Π
ω −ω
, (5)
( ) ( )2 *L *
0 0 0 0 0E E E
1
E E
3
e −
∇ ∇ Π = ∇ + +
. (6)
The indexes ( ± ) correspond to positive and negative
ions, ( )deω ± are frequencies (3) of the dipole oscillations
of the electron shells of ions, Le is the dielectric con-
stant of the medium at the frequency of the laser pulse.
The first term in (6) describes the gradient force of HF-
pressure. The second term appears only in the case of a
crystal medium and is caused by the difference between
the local electric field in a crystal and the electric field
of a laser pulse in vacuum. In dielectric media where the
active field coincides with the external field, for exam-
ple, in the gas dielectric or plasma this term is absent.
Under the action of ponderomotive force in dielec-
tric electron polarization appears
( ) ( )
e e eP P P+ −= +
,
where ( )
eP ±
are the partial electron polarizations of posi-
tive and negative ions. Partial electron polarizations are
described by the following equations [6, 7]
2 ( )
2 ( ) 2 2
( ) ( ) ( )2
( )0
1 1
3 4
2
,
4 3
e
de e pe pe
L
L
P
P P E
t
eN
m
ω ω ω
π
e
α
±
±
± ± ±
±
∂
+ − = −
∂
+
− Π
(7)
where
( )
( )
2 2
( )
1
L
de L
eq
m
α
ω ω
±
±
±
=
−
are electron polarizabilities of individual positive and
negative ions at laser pulse frequencies,
( )
2 0
( )
4
pe
eq N
m
π
ω
±
± = is square of the effective plasma
frequency, ( )q ± is full charge of the electron shell of the
ISSN 1562-6016. ВАНТ. 2019. №4(122) 41
corresponding ion, 0N is concentration of ions of each
type.
The left-hand sides of equations (7) for electron po-
larizations include complete polarization of the ion die-
lectric.
( ) ( )
e e iP P P P+ −= + +
, (8)
which also includes ion polarization iP
. Ion polarization
occurs as a result of the relative displacement of posi-
tive and negative ions under the action of an electric
field. If the ions are not deformed, then the dipole mo-
ment of the unit cell of a crystal containing two ions of
opposite sign is
( ) ( ), ,i i i i i ip q R R R R+ −= = −
where ( )
iR ±
are the displacements of positive and nega-
tive ions from the equilibrium position, iq is ion charge.
If the crystal deformation is smooth over the microscop-
ic scale of the crystal (unit cell size), then the displace-
ments of positive and negative ions obey to the equa-
tions [6]
( )
2 ( )
( ) ( ) ( )
2
4 ,
3
i
i i i
d R
M K R R q E P
dt
π+
+ + − + − = +
( )
2 ( )
( ) ( ) ( )
2
4 ,
3
i
i i i
d R
M K R R q E P
dt
π−
− − + + − = − +
which are reduced to one equation for the relative dis-
placement of ions
2
2
2
4
3
i i
di i
d R q
R E P
Mdt
πω + = +
, (9)
( )M ± are ion masses, K is force parameter, is reduced
mass, /di K Mω = is the eigen frequency of ion di-
pole oscillations. Note that since the ponderomotive
force acting on ions is inversely proportional to the
mass of the ion, then it is small and we neglected it in
equation (9). The equation for motion (9) implies the
following equation for ion polarization
2
2 2 2
2
1 1 ,
3 4
i
di i pi pi
P
P P E
t
ω ω ω
π
∂
+ − =
∂
where
2
2 04 i
pi
q N
M
π
ω = is the square of the ion plasma
frequency.
Thus, partial polarizations are described by a sys-
tem of coupled linear oscillators.
( )
2 ( )
2 ( ) 2 ( ) ( )
2
2 ( )0
1
3
21 ,
4 4 3
e
de e pe e e i
L
pe L
P
P P P P
t
eN
E
m
ω ω
e
ω α
π
+
+ + −
+ +
+
+
∂
+ − + + =
∂
+
= − Π
( )
2 ( )
2 ( ) 2 ( ) ( )
2
2 ( )0
1
3
21 ,
4 4 3
e
de e pe e e i
L
pe L
P
P P P P
t
eN
E
m
ω ω
e
ω α
π
−
− + −
− −
−
−
∂
+ − + + =
∂
+
= − Π
(10)
( )
2
2 2 ( ) ( ) 2
2
1 1 .
3 4
i
di i pi e e i pi
P
P P P P E
t
ω ω ω
π
+ −∂
+ − + + =
∂
The external force exciting these oscillators is the
ponderomotive force from the side of the laser pulse.
The Maxwell equations (2), together with the equa-
tions for partial polarizations (10) and the relation (8)
for the full polarization, are closed and describe the
Cherenkov excitation of electromagnetic radiation of a
laser pulse in an ion dielectric.
We will solve this system of equations by the meth-
od of Fourier transform
( , ) ( ) , ( , ) ( )i t i tE r t E r e d P r t P r e dω ω
ω ωω ω
∞ ∞
− −
−∞ −∞
= =∫ ∫
,
where ( )E rω
, ( )P rω
are Fourier-components of the cor-
responding quantities. For example
1( ) ( , ) .
2
i tE r E r t e dtω
ω π
∞
−∞
= ∫
From the system of coupled equations for partial po-
larizations (10) we find the expression for the Fourier
components of the full polarization vector
( ) 1 ,
4
P Eω ω ω
e ω µ
π
−
= − Π
(11)
where
21 ( )
3( ) ,
11 ( )
3
ω
e ω
ω
+ Λ
=
− Λ
(12)
2 2 2
2 2 2 2 2 2( ) ,pi pe pe
di de de
ω ω ω
ω
ω ω ω ω ω ω
− +
− +
Λ = + +
− − −
( ) ( )
2 2 2 2( ) .L L
de de
α α
ω
ω ω ω ω
+ −
+ −
Γ = +
− −
ωΠ
is Fourier-component of the quadratic depend-
ence of the ponderomotive force (6) on the intensity of
the electric field of a laser pulse. The value ( )e ω is the
dielectric constant of a diatomic dielectric with an ion
bond. Note that the expression for the dielectric constant
(12) follows the Loretz-Lorentz relation [12]
( )( ) ( )
0
( ) 1 4 ,
( ) 2 3 e e iNe ω π α α α
e ω
− +−
= + +
+
(13)
where
( )
( )
2 2
0
1( )e
eq
m
α ω
ω ω
±
± =
−
are electron polarizabilities of ions,
2
2 2
1( ) i
i
di
q
M
α ω
ω ω
=
−
is ion polarizability of a pair of oppositely charged ions
in the unit cell. The relation (13) establishes a relation-
ship between the dielectric constant and the sum of the
polarizations of all particles forming the crystal.
Maxwell's system of equations for Fourier-
component of the electromagnetic field, taking into ac-
count the relation for the full polarization (11) can be
represented as
0 0
4( ) ,polrotH ik E j rotE ik H
cω ω ω ω ω
πe ω= − + =
,
( ) 4 , 0poldivE divHω ω ωe ω πρ= =
, (14)
0 /k cω= . The Fourier-components of the polarization
currents and charges induced in the dielectric by the
ISSN 1562-6016. ВАНТ. 2019. №4(122) 42
ponderomotive force of a laser pulse are described by
the expressions
,pol polj i divω ω ω ωωµ ρ µ= Π = Π
. (15)
The resulting working system of equations makes it
possible to investigate Cherenkov radiation in a wide
variety of physical situations: the model of an infinite
dielectric medium, dielectric waveguides and cavities.
2. CHERENKOV RADIATION OF A LASER
PULSE IN A DIELECTRIC WAVEGUIDE
We consider the dielectric waveguide, made in the
form of a homogeneous dielectric cylinder, the lateral
surface of which is covered with a perfectly conductive
metal film. A circularly polarized laser pulse with elec-
tric field components propagates along the axis of the
waveguide
( )0
0x
I
E r,
2
= ψ τ , 0y 0xE iE= , (16)
( ) ( ) 1 2
R r Tψ = τ .
The function ( )R r describes the radial profile of the
laser pulse intensity
2
0 0I E=
, ( )R 0 1,=
( )R r b 0= = , b is the waveguide radius, the function
( )T τ describes the longitudinal profile,
/ ,gt z vτ = − gv is the group velocity, ( ) 1,maxT τ = 0I
is the maximum intensity.
From the system of Maxwell equations (14) the
wave equation for the longitudinal Fourier component
of the Cherenkov electric field follows
pol2 0
z 0 z zpol
k1E k ( )E 4 i j
( ) z c
ω
ω ω ω
∂ρ
∆ + e ω = π − e ω ∂
. (17)
Fourier-components of polarization charges and cur-
rents polωρ , zpolj ω are defined by expressions (15). For a
circularly polarized laser pulse (16), these expressions
take the form
( ) ( ) gik z2 L
pol g
1
( k )I r I r e ,
6ω ⊥ ω ⊥ ω
e − ρ = µ ∆ − + ∆
(18)
( ) gik z
zpol gj k I r eω ω= −ω µ , (19)
where /g gk vω= , ⊥∆ is the transverse part of Laplaci-
an, I ( )rω is Fourier component of the intensity of the
laser pulse field. We introduce a function
( )z z gD ( )E 4 ik I r .ω ω= e ω − π µ (20)
For this function, instead of equation (17), taking in-
to account relations (18), (19), we obtain the equation
( )gik z2 L
z 0 z g
1
D k ( )D 4 ik e I r .
6ω ω ⊥ ω
e −
∆ + e ω = π µ ∆ (21)
The function zDω has a simple physical meaning
and is a longitudinal Fourier-component of the longitu-
dinal electric induction z z zD E 4 P= + π , taking into
account the polarization (11) caused by the action of the
ponderomotive force of the laser pulse.
The longitudinal component of electrical induction
should be sought as a series of Bessel functions.
( )gik z
z n 0 n
n 0
rD e C J
b
∞
ω
=
= ω λ
∑ , (22)
where nλ are the roots of the Bessel function ( )0J x .
Using the orthogonality of the Bessel functions
( )0 nJ r / bλ , from the equation (21) we find the expan-
sion coefficients
0
1
( ) 4 ( ) .
6 ( )
nL
n g
n
C ik I T
δe
ω π µ ω
ω
−
== −
∆
(23)
Here
( )
2 2
2
1 02
0
, ( ), ,
2
b
n n
n n n n n
n
b rN J R r J rdr
N bb
λ ρ
δ λ ρ λ = = =
∫
1( ) ( )
2
iT T e dωτω τ τ
π
∞
−∞
= ∫ ,
2
2 2 n
n 0 g 2( ) k ( ) k
b
λ
∆ ω = e ω − − . (24)
Taking into account relations (22) - (24), we obtain
the following expression of Fourier component of the
longitudinal electric field
0( ) ( ) ( , ) .gik z
zE r A T G r eω ω ω= (25)
Here
2
0
02
1
( ) 2( , ) ( ) ( )
3 ( )
( 1)[ ( ) 2]
( ) ,
18 ( )
L
n n
n n n
G r i r
ki rJ
bk
ω
e ωω ω ω
e ω
ω e e ω
ω δ λ
ω
∞
=
+
= Γ Φ −
− + Γ ∆
∑
(26)
02
1
1
( ) ( )
6
nL
n
n n
rr R r J
bkω
δe
λ
∞
=
− Φ = +
∑ , 2 2 2 2/n g nk k bλ= + .
Accordingly, the longitudinal component of the ex-
cited electric field can be represented as a convolution
0 0 0 0
1( , ) ( ) ( , )
2zE r A T G r dτ τ τ τ τ
π
∞
−∞
= −∫ , (27)
where
0( )
0
1( , ) ( , )
2
iG r G r e dω τ ττ τ ω ω
π
∞
− −
−∞
− = ∫ (28)
is Green function. For further analysis, we will present
the Green function in the form
0 0 0( , ) ( , ) ( , ),l trG r G r G rτ τ τ τ τ τ− = − + − (29)
0( )
0
( ) 2 ( )( , ) ( ) ,
3 ( )
i
lG r i r e dω τ τ
ω
e ω ωτ τ ω ω
e ω
∞
− −
−∞
+ Γ
− = Φ∫
0 0 0
1
1
( , ) ( )
6
L
tr n n n
n
rG r i J S
b
e
τ τ δ λ τ τ
∞
=
− − = − −
∑ ,
0
2
( )0
0 2
( )( ) 2( )
3 ( )
i
n
n n
k
S i e d
k
ω τ τωe ωτ τ ω ω
ω
∞
− −
−∞
Γ+
− =
∆∫ .
The Green function actually describes the structure
of the wakefield in a dielectric medium excited by a
laser pulse with a δ − shaped longitudinal intensity pro-
file. Moreover, the term 0( , )lG r τ τ− takes into account
the excitation of potential longitudinal oscillations of
the ionic dielectric, and the term 0( , )trG r τ τ− describes
the excitation of transverse electromagnetic waves.
ISSN 1562-6016. ВАНТ. 2019. №4(122) 43
2.1. FREQUENCY DISPERSION OF DIELECTRIC
PERMEABILITY
The Green's function (28) and, accordingly, the
wakefield (27) are largely determined by the value and
frequency dispersion of the dielectric constant ( )e ω
determined by the formula (12). For the qualitative
analysis of this dependence, the expression for the die-
lectric constant can be conveniently represented as
2 2 2 2 2 2
2 2 2 2 2 2
( )( )( )
( ) ,
( )( )( )
Li Le Le
Ti Te Le
ω ω ω ω ω ω
e ω
ω ω ω ω ω ω
−
− +
− − −
=
− − −
(30)
where ( ),Li Leω ω ± are the roots of the cubic equation
with respect to the square of the frequency
3( )
2
ωΛ = − . (31)
It is easy to show that all three roots are positive, i.e.
the frequencies are real. At these frequencies, the dielec-
tric permeability is zero. The frequency Liω is the fre-
quency of longitudinal optical phonons and belongs to
the infrared frequency range. Frequencies ( )Leω ± are the
frequencies of longitudinal polarization electron oscilla-
tions and are in the optical or even ultraviolet frequency
ranges. The specified frequencies are in the intervals
, ,de Li di de Le de de Leω ω ω ω ω ω ω ω− + − − − +> > > > < .
For definiteness, we assumed that .de deω ω+ −> Since
the frequencies of the longitudinal ion and electron os-
cillations are very different, the roots of the cubic equa-
tion (30) can be found approximately
2 2 222 ,
9
opt
Li di pi
opt
e
ω ω ω
e
+
= + (32)
( )22 2 2 2 2 2 2
( )
1 16
2 9Le ge ge ge ge pe peω ω ω ω ω ω ω± + − + − + −
= + ± + +
.
Here
2 2 2
( ) ( ) ( )
2 ,
3ge de peω ω ω± ± ±= +
2 2
2 2
21
3 , ,
11
3
opt
pe pe
opt opt
de de
opt
ω ω
e
ω ω
+ −
+ +
+ Λ
= Λ = +
− Λ
opte is dielectric permeability of an ion crystal in the
optical frequency range
2 2 2 2max( , )de pi diω ω ω ω+ >> >> .
The poles of the dielectric constant (30) are the roots
of the cubic equation with respect to the square of the
frequency
( ) 3ωΛ = . (33)
This cubic equation has three positive roots too.
These roots correspond to the frequencies ( ),Ti Teω ω ± .
These frequencies are the absorption lines of the elec-
tromagnetic waves of an ion crystal. In the vicinity of
these frequencies, the imaginary part of the dielectric
constant and, accordingly, the energy losses of electro-
magnetic waves increase greatly. The frequency of ab-
sorption by the ion subsystem is the frequency of trans-
verse optical phonons. Note that the optical longitudinal
and transverse ion oscillation branches are characterized
by the fact that in the unit cell of the crystal oppositely
charged ions are displaced towards each other. At the
same time, the center of gravity of the unit cell remains
motionless. As in the case of longitudinal optical pho-
nons, the frequencies of transverse optical phonons lie
in the infrared range. Electron resonance absorption
frequencies are in the optical ranges. For the indicated
frequencies from the cubic equation (33) we find the
following approximate expressions
2 2 2 23
,
3 2
optst
Ti di di
opt st
e
ω ω ω
e
+−Λ
= ≡
−Λ +
(34)
2
2 ,pi
st opt
di
ω
ω
Λ = + Λ
21
3
11
3
st
st
st
e
+ Λ
=
− Λ
,
( )22 2 2 2 2 2 2
( )
1 4
2 9Te he he he he pe peω ω ω ω ω ω ω± + − + − + −
= + ± + +
,
where
2 2 2
( ) ( ) ( )
1 .
3he de peω ω ω± ± ±= −
From the obvious requirement 1ste > from equality
(35) it follows that for ion crystal dielectrics the condi-
tion on the parameter value 3 1st> Λ > is always satis-
fied. Note also that the expression for the frequency of
transverse optical phonons (34) implies that when it
tends to zero 3stΛ → , and the static dielectric constant
increases indefinitely ste → ∞ (the phenomenon of
"polarization catastrophe" [12]).
In the frequency range
Liω ω<< (35)
the dielectric permeability of the ion crystal frequency
independent and has constant value ste e= , where
2 2 2
2 2 2
Li Le Le
st
Ti Te T
ω ω ω
e
ω ω ω
− +
−
= (36)
is the static dielectric constant. On the other hand in the
optical frequency range
2 2 2
Te Liω ω ω− >> >> (37)
dielectric permeability is also constant opte e=
2 2
2 2
Le Le
opt
Te T
ω ω
e
ω ω
− +
−
= . (38)
And for all ion dielectrics always st opte e> . We note
that from the expressions (36) and (38) imply the well-
known Liddane-Sachs-Teller relation [12]
2
2
Li st
optTi
ω e
eω
= ,
relating the ratio of the frequency of longitudinal and
transverse optical phonons with the values of the static
and optical dielectric constants. From inequality
st opte e> important conclusion follows. Since Cheren-
kov radiation appears for a laser pulse when the condi-
tion
2
2 1g
st
v
c
e >
is satisfied and the group velocity of the laser pulse in
the optical range is equal 1/g optv e= , then in the ion
ISSN 1562-6016. ВАНТ. 2019. №4(122) 44
crystal the condition for the appearance of Cherenkov
radiation in the microwave and terahertz ranges is al-
ways fulfilled.
The expression for the dielectric constant of the ion
dielectric (12) can be given the usual and comfortable
look
2 2 2
2 2 2 2 2 2( ) 1 pi pe pe
Ti Te Te
e ω
ω ω ω ω ω ω
+ −
− +
Ω Ω Ω
− − − −
− − −
.
Here, the plasma frequencies are defined as follows
2 2( 2)
9
opt
pi pi
e
ω
+
Ω = ,
2
2 2 2 2
2 2 ( 1)Te
pe Te opt Le Te
Te Te
ω
ω e ω ω
ω ω
+
+ −
+ −
Ω = − − + −
,
2
2 2 2 2
2 2 ( 1)Te
pe Te opt Le Te
Te Te
ω
ω e ω ω
ω ω
−
− +
+ −
Ω = − − + −
,
2 2 2 2 2 2,Le Le Le Te Te Teω ω ω ω ω ω+ − + −= + = + .
Fig. 1 shows the qualitative dependence of the die-
lectric constant on frequency, described by formula
(30).
Fig. 1. Dependence of the dielectric constant
on frequency
2.2. DISPERSION PROPERTIES OF ION
DIELECTRIC WAVEGUIDE
Let us now briefly discuss the question of the propa-
gation of electromagnetic waves in an ion dielectric
waveguide. Dispersion equations for potential longitu-
dinal oscillations and electromagnetic waves have the
form
( ) 0e ω = , (39)
22
2
2 2( ) 0n
zk
c b
λω e ω − − = , (40)
zk is longitudinal wave number. The dielectric constant
is described by the formula (30).
Fig. 2 shows the qualitative dependences of the fre-
quency on the longitudinal wave number zk . In total,
there are three branches of longitudinal oscillations
( ),Li Leω ω ω ±=
and four branches (1) - (4) of electromagnetic waves.
The low-frequency branch corresponds to the longitudi-
nal optical phonons, and the other two branches are po-
larization electron oscillations. As for the electromag-
netic branches, the lowest frequency (ion) branch1 is in
the infrared and microwave ranges.
1( ) ,Ti z cikω ω ω −> >
/ci n stc bω λ e− = is low frequency ion cutoff frequen-
cy.
In the frequency range Ti ciω ω ω −>> >> , the disper-
sion curve has a linear plot /z stk cω e= .
Fig. 2. Dispersion curves of ion dielectric
for longitudinal oscillations and electromagnetic waves
on the plane ( , zkω )
The frequencies of the electromagnetic branch 2 are
within 2 ( )Te z сi Likω ω ω ω− +> > ≈ , сiω + is high frequen-
cy ion cutoff frequency The low-frequency section of
this branch corresponds to the infrared frequency range
and the high-frequency region corresponds to the optical
one. This branch also has a linear dispersion region
/z орtk cω e= . The tilt angle of this line exceeds the
tilt angle of the straight section of branch 1. And finally,
branches 3 and 4 are purely electron branches and locate
in the optical and ultraviolet frequency ranges. The
phase velocity of electromagnetic waves belonging to
the fourth branch exceeds the speed of light and in the
limiting case approaches it.
2.3. CALCULATION OF GREEN'S FUNCTION
The Green function (29) contains two terms that de-
scribe the excitation of longitudinal potential oscilla-
tions and electromagnetic waves. The potential Green's
function 0( , )lG r τ τ− has only simple poles, which are
the zeros of the dielectric constant ( ) 0e ω = . The fre-
quency spectrum of longitudinal oscillations contains
the frequency of longitudinal optical phonons Liω and
the frequencies ( )Leω
of electron polarization oscilla-
tions. Below we restrict ourselves to the study of wake
fields in the infrared and lower frequency ranges. This is
due to the fact that for effective wake field excitation by
a laser pulse necessary to achieve coherency of excita-
tion. For this, it is necessary that the longitudinal and
transverse dimensions of the laser pulse be smaller (sub-
stantially less) than the length of the radiated wave. For
the optical and especially the ultraviolet frequency
ranges, this requirement is very problematic. And if this
requirement is not satisfied, the amplitude of the wake
waves will be negligible.
ISSN 1562-6016. ВАНТ. 2019. №4(122) 45
Calculating the residues in the integral 0( , )lG r τ τ−
at the poles 0Li iω ω= ± − , we find the following ex-
pression for the potential Green function
2
0 0 0
4 ( ) ( ) cos ( ),
3
st opt
l Li i Li
st opt
G r
e eπ ω ϑ τ τ ω τ τ
e e
−
= Γ Φ − − (41)
where 0( )ϑ τ τ− is the Heaviside function,
2
0 0 0 0
0
1
( ) ( ) ( , ) ( ) ,
6
b
L
i i rr R r k G r r R r r dre −
Φ = + ∫
0 0 0 0
0
0 0 0 00
( ) ( ), ,1( , )
( ) ( ), ,( )
i i
r
i ii
I k r k r r r
G r r
I k r k r r rI k b
∆ <
= ∆ >
0 0 0 0 0( ) ( ) ( ) ( ) ( )i i i i ik r I k r K k b I k b K k r∆ = − ,
/ ,i Li gk vω=
( ) ( )
0 2 2 .L L
de de
α α
ω ω
+ −
+ −
Γ = +
Term in the total Green's function (29) 0( , )trG r τ τ−
describes the Cherenkov excitation of the eigen elec-
tromagnetic waves of the dielectric waveguide. Inte-
grands of Fourier integrals 0( )nS τ τ− contain only sim-
ple poles, which are the roots of the equation
( ) 0n ω∆ = . (42)
As we are interested in the infrared (microwave)
frequency range equation (42) three pairs of roots. Two
of them are located on the real axis
2
10,
1
n g
in in
g st
v
i
b
λ
ω ω ω
b e
= ± − =
−
, (43)
1/4
2
2 20, n
en en Te Te
opt Te Le
i
ω
ω ω ω ω ω
e ω ω+ −
= ± − = −
, (44)
n
n
c
b
λ
ω = ,
and one pair eniω ω= ± on the imaginary axis. Calculat-
ing the residues in these poles we find the expression for
the Green function
[
0
2
0 0 0
1
2
0 0 0
1
0
( ) cos ( )
9
( ) cos ( )
18
1 ( ) , (45)
2
en
tr st st in n n in
n
opt st en n n en
n
rG e J
b
re J
b
sign e ω τ τ
π ϑ τ τ ω s λ ω τ τ
π ω s λ ϑ τ τ ω τ τ
τ τ
∞
=
∞
=
− −
= − Γ − − −
− Γ − − −
− −
∑
∑
where
,n
n
nN
ρ
s =
( 1)( 2)L st
st
st
e
e e
e
− +
= ,
( 1)( 2)L opt
opt
opt
e
e e
e
− +
= .
The first term in the expression for the electromag-
netic Green's function (45) describes the electric field in
the microwave (terahertz) frequency range 2 2
Li inω ω>>
(ion branch 1) and is a set of eigen electromagnetic
waves with frequencies inω . The second term in expres-
sion (45) describes a purely electron electromagnetic
field and belongs to branch 2 in the infrared frequency
range 2 2 2
Te en Liω ω ω− >> >> . The longitudinal structure of
this field is more complicated. Each radial harmonic
contains a wake monochromatic wave, as well as a bi-
polar antisymmetric solitary pulse. Moreover, the height
of this pulse is exactly two times smaller than the ampli-
tude of the wake wave. The characteristic width of the
polarization pulse is equal to the reverse frequency of
the wake wave 1/ enτ ω∆ = . We also note an important
point. Since the amplitudes of the waves entering the
Green function are proportional to the square of their
frequencies, the electron electromagnetic waves will
have a larger amplitude compared to the ion waves.
2.4. THE EXCITATION OF WAKE FIELD
BY LASER PULSE
The wakefield excited by a laser pulse is described
by convolution (27), in which the Green function is the
key element. We first consider the excitation of longitu-
dinal optical phonons. Using the potential polarization
part of the Green function (41), we obtain the following
expression for the wake field of longitudinal optical
phonons
( , ) ( ) ( )iz Li i LiE r E r Zτ ω τ= Φ , (46)
where
0
0 0
1( ) cos ( )
L L
Z T d
t t
τ τ
ωτ ω τ τ τ
−∞
= −
∫ ,
2
2
02
( 2)( )2 ,
9
opt st opt g lLi
Li L
st opt clg
v te
E a
rv
e e e ωπ κ
e e
+ −
=
Lt is characteristic duration of a laser pulse.
2
0L st LNκ ω= Γ , 2 2/ ,clr e mc=
2
2
0 0
L
ea I
mcω
=
.
The function ( )Z ωτ describes the distribution of the
wakefield on frequencyω in the longitudinal direction
at each moment of time. We will consider a laser pulse
with a symmetric longitudinal profile 0 0( ) ( )T Tτ τ= − .
The wake function ( )Z ωτ is conveniently represented
as
( ) ( ) ( ) cos ( ),Z T Xωτ ϑ τ ωτ τ= Ω −
(47)
where , /L Lt tω τ τΩ = =
0
( ) 2 ( ) cos( ) .T T s s ds
∞
Ω = Ω∫
The first term in (47) describes the wake wave prop-
agating behind the laser pulse. The amplitude of the
wake wave is equal to the Fourier amplitude function
( )0 / LT tτ , which describes the longitudinal profile of
the laser pulse. The second term in (47) describes a bi-
polar antisymmetric pulse of a polarization field local-
ized in the region of a laser pulse. The field of this pulse
decreases and tends to zero with increasing distance
from the laser pulse.
Behind a laser pulse, the wakefield (46) of longitudi-
nal optical phonons has the form of a monochromatic
wave
( , ) ( ) ( ) cos ,iz Li i Li LiE r E r Tτ ω τ= Φ Ω
Li Li LtωΩ = .
Let us give expressions for the Fourier amplitude
( )LiT Ω
for two model longitudinal profiles of a laser
pulse: a Gaussian and a power ones
2 2 2
0 / / 4
0
ˆ( / ) , ( ) ,Lt
LT t e T eττ π− −Ω= Ω = (48)
ISSN 1562-6016. ВАНТ. 2019. №4(122) 46
0 2 2
0
1 ˆ( / ) , ( )
1 /L
L
T t T e
t
τ π
τ
−Ω= Ω =
+
.
Longitudinal optical phonons are most efficiently ra-
diated when the coherence condition 1Li Ltω ≤ is satis-
fied. If the condition 1Li Ltω >> is satisfied, then the lon-
gitudinal optical phonons are radiated incoherently and
the amplitude of the wake wave is exponentially small.
Let us now consider the excitation of electromagnet-
ic waves by a laser pulse. Taking advantage of the elec-
tromagnetic Green's function, we obtain the wake elec-
tromagnetic field as a superposition of radial harmonics
2
02
1 0
2
02
1 0
( , ) ( )
1( ) ( ) ,
2
in
tz ti n n in
n
en
te n n in in
n
rE r E J Z
b
rE J Z Y
b
ω
τ s λ ω τ
ω
ω
s λ ω τ ω τ
ω
∞
=
∞
=
= − −
− −
∑
∑
where
( ) 0
0 0 0( ) / ( ) en
en LY T t sign e dω τ τω τ τ τ τ τ
∞
− −
−∞
= −∫ ,
2
20
02
2
18 3
opt g L
ti st L
cl g
v t e
E e a
r v
e ωπ κ
+
= , 0 /c bω = ,
2
20
02
2
36 3
opt g L
ti opt L
cl g
v t e
E e a
r v
e ωπ κ
+
= .
Behind the laser pulse / 1,Ltτ >> , 1ni eω τ >> , the
pulse fields are negligible and only the set of eigen
waves of the dielectric waveguide remains
2
02
1 0
2
02
1 0
ˆ( , ) ( ) cos( )
ˆ( ) cos( ).
in
tz ti n n in in
n
en
te n n en en
n
rE r E J T
b
rE J T
b
ω
τ s λ ω τ
ω
ω
s λ ω τ
ω
∞
=
∞
=
= − Ω
− Ω
∑
∑
(49)
Let us consider, for example, a laser pulse that has a
Gaussian profile both in the longitudinal direction (48)
and in the transverse one
2 2
0 0( / ) exp( / )L LR r r r r= −
moreover, the radius of the laser pulse is small com-
pared with the radius of the dielectric waveguide
Lr b<< . In this case, for the expansion coefficients in
the series (49) we have
2 2
2
2
4
2 2
1
1
( )
n Lr
L b
n
n
r e
b J
λ
s
λ
−
= .
Accordingly, for the wake electromagnetic field in-
stead of (49) we obtain
2 2
2 2
2
4
0 2
1 0
2
4
2
0
( , ) cos( )
cos( ) . (50)
in L
en L
t
in
tz n n ti in
n
t
en
te en
rE r J E e
b
E e
ω
ω
ω
τ π s λ ω τ
ω
ω
ω τ
ω
∞ −
=
−
= − +
+
∑
Amplitudes of wake electromagnetic waves are pro-
portional to the square of their frequencies. Therefore, a
short laser pulse will predominantly excite electron
electromagnetic waves, since their frequencies greatly
exceed the frequencies of ion electromagnetic waves
en inω ω>> . But the number of these waves is limited by
inequality 1en Ltω ≤ . If the laser pulse is long at the
scale of the minimum period of electron electromagnet-
ic waves 1 1e Ltω > , but short compared with the periods
of ion electromagnetic waves 1in Ltω << , then low-
frequency ion electromagnetic waves will be most ef-
fectively excited. Under these conditions, only low-
frequency waves are emitted coherently by a laser pulse.
CONCLUSIONS
In this work, the process of excitation of wake Ce-
renkov radiation by a laser pulse in an ion dielectric
waveguide is investigated. For definiteness, a diatomic
ion crystal medium is considered. The nonlinear electric
polarization of the ion dielectric medium, induced by
the ponderomotive force with the side of the laser pulse,
is determined. The total electric polarization in the ion
dielectric includes the electron polarization of the elec-
tron shells of ions of opposite charges, as well as the ion
polarization proper, due to the displacement of ions in
the electric field. A system of three strongly coupled
linear oscillator equations is obtained, which describes
the excitation of partial electric polarizations of an ion
dielectric by a ponderomotive force from the side of a
laser pulse. The solution of these equations is obtained
and the complete polarization in a diatomic ion dielec-
tric medium is determined. Accordingly, expressions are
obtained for polarization charges and currents, which, in
turn, are the source of Cerenkov wake waves. The fre-
quency spectrum and the space-time structure of the
Cherenkov wake field, excited by a laser pulse in an ion
dielectric waveguide, is determined. It is shown that in
the infrared (microwave) frequency range, the excited
wake electric field consists of a potential field of longi-
tudinal optical phonons and a set of eigen wake elec-
tromagnetic waves of a dielectric waveguide. The die-
lectric constant in the infrared (microwave) frequency
range in ion dielectrics always exceeds the dielectric
constant in the optical range. Therefore, the condition of
the Cherenkov radiation of a laser pulse in ion dielec-
trics is always satisfied.
REFERENCES
1. V.P. Zrelov. Vavilov-Cherenkov radiation and its
application in high-energy physics. M.: “Atomiz-
dat”, 1968, 302 p.
2. J.V. Jelly. Cherenkov radiation // UFN. 1956, v. 58,
№ 2, p. 231-283.
3. S.A. Akhmanov, V.A. Fold. Optics of femtosecond
laser pulses. M.: “Nauka”, 1988, 388 p.
4. V.L. Ginzburg, V.I. Tsytovich. Transition radiation
and transition scattering. M.: “Science”. 1964,
360 p.
5. T. Tajima, J.M. Dawson. Laser electron acceleration
// Phys. Rev. Letter, 1979, v. 43, № 4, p. 267-270.
6. V.A. Balakirev, I.N. Onishchenko. Cherenkov radia-
tion of a laser pulse in a dielectric waveguide //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2018, № 6, p. 147-151.
7. V.A. Balakirev, I.N. Onishchenko. Wakefield exci-
tation by a laser pulse in a dielectric medium //
Problems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of Accelera-
tion”. 2018, № 4, p. 76-82.
ISSN 1562-6016. ВАНТ. 2019. №4(122) 47
8. M. Born, H. Kun. Dynamic theory of cristal lattice.
M.: “Foreign literature”, 1958, 488 p.
9. J. Sleter. Dielectrics, semiconductors, metals.
M.: “Mir”, 1969, 647 p. (in Russian).
10. N. Ashkfort, N. Merlin. Fizika tverdogo tela.
M.: “Mir”, 1978, v. 2, 392 p. (in Russian).
11. C. Worth, R. Thomson. Solid State Physics.
M.: “Mir”, 1969, 558 p.
12. I. Kittel. Introduction to Solid State Physics.
M.: “Science”, 1978, 791 p.
Article received 29.06.2019
ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ ЛАЗЕРНОГО ИМПУЛЬСА В ИОННОМ ДИЭЛЕКТРИКЕ
В.А. Балакирев, И.Н. Онищенко
Исследован процесс возбуждения черенковского электромагнитного излучения лазерным импульсом в
ионном диэлектрическом волноводе. Определена нелинейная электрическая поляризация в ионной диэлек-
трической среде и, соответственно, поляризационные заряды и токи, индуцированные пондеромоторной
силой со стороны лазерного импульса. Получена и исследована пространственно-временная структура киль-
ватерного поля в ионном диэлектрическом волноводе. Показано, что возбуждаемое поле состоит из потен-
циального поляризационного электрического поля продольных оптических фононов и набора собственных
электромагнитных волн ионного диэлектрического волновода.
ЧЕРЕНКОВСЬКЕ ВИПРОМІНЮВАННЯ ЛАЗЕРНОГО ІМПУЛЬСУ В ІОННОМУ ДІЕЛЕКТРИКУ
В.А. Балакiрєв, I.М. Онiщенко
Досліджено процес збудження черенковського електромагнітного випромінювання лазерним імпульсом
в іонному діелектричному хвилеводі. Визначена нелiнiйна електрична поляризація в іонному діелектрично-
му середовищі та, відповідно, поляризацiйнi заряди i струми, iндукованi пондеромоторною силою з боку
лазерного імпульсу. Отримана та досліджена просторово-часова структура кільватерного поля в діелектрич-
ному хвилеводі. Показано, що збуджуване поле складається з потенціального поляризаційного електричного
поля поздовжніх оптичних фононів та набору власних електромагнiтних хвиль іонного діелектричного хви-
леводу.
Advanced methods of acceleration
CHERENKOV RADIATION OF A LASER PULSE IN ION DIELECTRICS
V.A. Balakirev, I.N. Onishchenko
E-mail: onish@kipt.kharkov.ua
The wakefield excited by a laser pulse is described by convolution (27), in which the Green function is the key element. We first consider the excitation of longitudinal optical phonons. Using the potential polarization part of the Green function (41)...
, (46)
where
,
is characteristic duration of a laser pulse.
, .
The function describes the distribution of the wakefield on frequency in the longitudinal direction at each moment of time. We will consider a laser pulse with a symmetric longitudinal profile . The wake function is conveniently represented as
(47)
where
The first term in (47) describes the wake wave propagating behind the laser pulse. The amplitude of the wake wave is equal to the Fourier amplitude function , which describes the longitudinal profile of the laser pulse. The second term in (47) describ...
Behind a laser pulse, the wakefield (46) of longitudinal optical phonons has the form of a monochromatic wave
.
Let us give expressions for the Fourier amplitude for two model longitudinal profiles of a laser pulse: a Gaussian and a power ones
(48)
.
Longitudinal optical phonons are most efficiently radiated when the coherence condition is satisfied. If the condition is satisfied, then the longitudinal optical phonons are radiated incoherently and the amplitude of the wake wave is exponentially ...
Let us now consider the excitation of electromagnetic waves by a laser pulse. Taking advantage of the electromagnetic Green's function, we obtain the wake electromagnetic field as a superposition of radial harmonics
where
,
, ,
.
Behind the laser pulse , the pulse fields are negligible and only the set of eigen waves of the dielectric waveguide remains
(49)
Let us consider, for example, a laser pulse that has a Gaussian profile both in the longitudinal direction (48) and in the transverse one
moreover, the radius of the laser pulse is small compared with the radius of the dielectric waveguide . In this case, for the expansion coefficients in the series (49) we have
.
Accordingly, for the wake electromagnetic field instead of (49) we obtain
Amplitudes of wake electromagnetic waves are proportional to the square of their frequencies. Therefore, a short laser pulse will predominantly excite electron electromagnetic waves, since their frequencies greatly exceed the frequencies of ion electr...
In this work, the process of excitation of wake Cerenkov radiation by a laser pulse in an ion dielectric waveguide is investigated. For definiteness, a diatomic ion crystal medium is considered. The nonlinear electric polarization of the ion dielectri...
ЧЕРЕНКОВСКОЕ ИЗЛУЧЕНИЕ ЛАЗЕРНОГО ИМПУЛЬСА В ИОННОМ ДИЭЛЕКТРИКЕ
В.А. Балакирев, И.Н. Онищенко
ЧЕРЕНКОВСЬКЕ ВИПРОМІНЮВАННЯ ЛАЗЕРНОГО ІМПУЛЬСУ В ІОННОМУ ДІЕЛЕКТРИКУ
В.А. Балакiрєв, I.М. Онiщенко
|