Numerical calculation of the dislocation basis loop bias in hexagonal crystal
The diffusion fluxes of radiation point defects onto a circular base edge loop of zirconium in a toroidal reservoir are calculated numerically (by the finite difference method). Elastic interaction of point defects and elastic anisotropy of the hexagonal crystal were taken into account. The toroidal...
Gespeichert in:
Datum: | 2019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195205 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Numerical calculation of the dislocation basis loop bias in hexagonal crystal / A.V. Babich, P.N. Ostapchuk // Problems of atomic science and technology. — 2019. — № 5. — С. 11-17. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195205 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1952052023-12-03T17:24:53Z Numerical calculation of the dislocation basis loop bias in hexagonal crystal Babich, A.V. Ostapchuk, P.N. Physics of radiation damages and effects in solids The diffusion fluxes of radiation point defects onto a circular base edge loop of zirconium in a toroidal reservoir are calculated numerically (by the finite difference method). Elastic interaction of point defects and elastic anisotropy of the hexagonal crystal were taken into account. The toroidal geometry of the reservoir seems more acceptable for the loop than spherical or cylindrical since it allows calculations for the loop of any size and without any correction of the elastic field in its influence region. The dependences of the absorption efficiencies and the loop bias on the radius and its nature are obtained. The essential role of the boundary condition on the external surface of the reservoir in the symmetry breaking in the absorption of point defects by loops of different nature is shown. Чисельно (методом кінцевих різниць) пораховані дифузійні потоки радіаційних точкових дефектів на кругову базисну крайову петлю цирконію в тороїдальному резервуарі з урахуванням їх пружної взаємодії і пружної анізотропії гексагонального кристала. Тороїдальна геометрія резервуара є більш прийнятною для петлі, ніж сферична або циліндрична, оскільки дозволяє провести розрахунки для петлі будь-якого розміру і без будь-якої корекції пружного поля в її області впливу. Отримано залежності ефективностей захоплення і «bias»-фактора петлі від радіуса і її природи. Показана суттєва роль форми граничної умови на зовнішній поверхні резервуара в порушенні симетрії в поглинанні ТД петлями різної природи. Численно (методом конечных разностей) посчитаны диффузионные потоки радиационных точечных дефектов на круговую базисную краевую петлю циркония в тороидальном резервуаре с учетом их упругого взаимодействия и упругой анизотропии гексагонального кристалла. Тороидальная геометрия резервуара представляется более приемлемой для петли, чем сферическая или цилиндрическая, поскольку позволяет провести расчеты для петли любого размера и без какой-либо коррекции упругого поля в ее области влияния. Получены зависимости эффективностей захвата и «bias»-фактора петли от радиуса и ее природы. Показана существенная роль формы граничного условия на внешней поверхности резервуара в нарушении симметрии в поглощении ТД петлями разной природы. 2019 Article Numerical calculation of the dislocation basis loop bias in hexagonal crystal / A.V. Babich, P.N. Ostapchuk // Problems of atomic science and technology. — 2019. — № 5. — С. 11-17. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 62.20.Dc; 62.20.Fe http://dspace.nbuv.gov.ua/handle/123456789/195205 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids |
spellingShingle |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids Babich, A.V. Ostapchuk, P.N. Numerical calculation of the dislocation basis loop bias in hexagonal crystal Вопросы атомной науки и техники |
description |
The diffusion fluxes of radiation point defects onto a circular base edge loop of zirconium in a toroidal reservoir are calculated numerically (by the finite difference method). Elastic interaction of point defects and elastic anisotropy of the hexagonal crystal were taken into account. The toroidal geometry of the reservoir seems more acceptable for the loop than spherical or cylindrical since it allows calculations for the loop of any size and without any correction of the elastic field in its influence region. The dependences of the absorption efficiencies and the loop bias on the radius and its nature are obtained. The essential role of the boundary condition on the external surface of the reservoir in the symmetry breaking in the absorption of point defects by loops of different nature is shown. |
format |
Article |
author |
Babich, A.V. Ostapchuk, P.N. |
author_facet |
Babich, A.V. Ostapchuk, P.N. |
author_sort |
Babich, A.V. |
title |
Numerical calculation of the dislocation basis loop bias in hexagonal crystal |
title_short |
Numerical calculation of the dislocation basis loop bias in hexagonal crystal |
title_full |
Numerical calculation of the dislocation basis loop bias in hexagonal crystal |
title_fullStr |
Numerical calculation of the dislocation basis loop bias in hexagonal crystal |
title_full_unstemmed |
Numerical calculation of the dislocation basis loop bias in hexagonal crystal |
title_sort |
numerical calculation of the dislocation basis loop bias in hexagonal crystal |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Physics of radiation damages and effects in solids |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195205 |
citation_txt |
Numerical calculation of the dislocation basis loop bias in hexagonal crystal / A.V. Babich, P.N. Ostapchuk // Problems of atomic science and technology. — 2019. — № 5. — С. 11-17. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT babichav numericalcalculationofthedislocationbasisloopbiasinhexagonalcrystal AT ostapchukpn numericalcalculationofthedislocationbasisloopbiasinhexagonalcrystal |
first_indexed |
2025-07-16T23:03:53Z |
last_indexed |
2025-07-16T23:03:53Z |
_version_ |
1837846530850029568 |
fulltext |
ISSN 1562-6016. PASТ. 2019. №5(123), p. 11-17.
NUMERICAL CALCULATION OF THE DISLOCATION BASIS LOOP
BIAS IN HEXAGONAL CRYSTAL
A.V. Babich, P.N. Ostapchuk
Institute of Electrophysics & Radiation Technologies NAS of Ukraine,
Kharkiv, Ukraine
E-mail: ostapchuk@kipt.kharkov.ua
The diffusion fluxes of radiation point defects onto a circular base edge loop of zirconium in a toroidal reservoir
are calculated numerically (by the finite difference method). Elastic interaction of point defects and elastic
anisotropy of the hexagonal crystal were taken into account. The toroidal geometry of the reservoir seems more
acceptable for the loop than spherical or cylindrical since it allows calculations for the loop of any size and without
any correction of the elastic field in its influence region. The dependences of the absorption efficiencies and the loop
bias on the radius and its nature are obtained. The essential role of the boundary condition on the external surface of
the reservoir in the symmetry breaking in the absorption of point defects by loops of different nature is shown.
PACS: 62.20.Dc; 62.20.Fe
INTRODUCTION
Network dislocations and dislocation loops (DL) are
usually considered as main extended microstructure
defects in metals at the initial phases of irradiation.
Their nucleation, diffusion growth, or dissolution
directly reflects the processes of generation, migration,
and subsequent absorption by various sinks of point
defects (PD) caused by irradiation. Understanding the
mechanisms controlling the evolution of such objects as
dislocation loops is extremely important for describing
the phenomena of radiation swelling and growth of
structural reactors materials of the modern and future
generations [1-3]. Since their main function is that they
are sinks for radiation PDs, the problem of correct
calculations the diffusion fluxes of the PDs for a
specific loop appears. Generally accepted that
dislocation loops preferentially absorb their interstitial
atoms (ISA) than vacancies, because of their stronger
elastic interaction with the ISA. The quantitative
expression of this preference is the integral value, called
the absorption efficiency of the PD given by the sink, or
rather the relative difference between the absorption
efficiencies of its interstitial atoms and vacancies,
known as bias. As a result, loops absorb more ISA, and
vacancies remaining in excess diffuse into other (with a
smaller preference factor) sinks: grain boundaries and
pores. This is the possible explanation of the
phenomenon of vacancy swelling of stainless steel
under irradiation. There is a separation of the diffusion
fluxes of PD between various types of effluents (loops
and pores), which ultimately causes macrodeformation
of the material. In this case, interstitial loops should
grow, and vacancy loops should dissolve. For steel this
conclusion is confirmed by numerous experiments [4].
As for HCP metals, under irradiation, along with
interstitial ones, vacancy loops of sufficiently large
dimensions are also observed [5]. In particular, in
zirconium interstitial loops mainly grow on prismatic
planes and vacancy loops in the basal plane. Such
distribution of loops is usually considered as a reason
for radiation growth. Radiation growth is accompanied
by a change in the shape of the material without external
load and a noticeable change in volume. Thus,
zirconium in the process of growth expands in the <a>
direction and narrows along the <c> axe [6]. This means
that the diffusion fluxes of radiation PDs are separated,
but between the sinks of the same type, but of a
different nature: interstitial and vacancy loops. The
mechanism of this separation is not completely clear.
The fact is that if a crystal, as usual, is modeled
elastically with an isotropic medium, it turns out that the
loop bias does not depend on its nature, it is determined
by its radius and the sinks concentration [8]. This makes
impossible for the existence of macroscopic vacancy
loops. Therefore, another option was proposed which is
associated with the anisotropy of the diffusion
coefficients of the PD [8]. However, the conclusions of
the authors are based on solving the simplest diffusion-
anisotropic problem for a straight-line dislocation and
the degree of adequacy of generalization to loops is not
clear. The dependence on the radius, the nature of the
loop and any of its quantitative characteristics are also
unclear. Since there are no works including the elastic
anisotropy of HCP metals in the diffusion problem, this
option is considered as the best way for a qualitative
explanation of the phenomenon of radiation growth. In
this paper, the specified gap is eliminated. Diffusion
flows of PDs onto a circular basic edge loop of
zirconium were calculated numerically (by the finite-
difference method) taking into account their elastic
interaction and the elastic anisotropy of the crystal. The
dependences of the efficiency of capturing PD and the
bias on the radius and nature of the loop are obtained.
The role of the boundary conditions in the formulation
of the corresponding diffusion problem is analyzed.
1. BIAS OF STRAIGHT LOOP
This classic example, analytically precisely solved
problem is given here for two reasons. Firstly, to show
how the form of the boundary conditions affects the
result. And secondly, for formal testing of the numerical
solution of the diffusion equation by the finite
difference method [9]. So, in the case of diffusion
ik ikD D and elastic isotropy of the medium, the
flow of point defects per unit length of a straight edge
dislocation is found by solving the following diffusion
problem in the quasistationary approximation:
mailto:ostapchuk@kipt.kharkov.ua
0strdiv j r ;
( )
( )str
DC
r
j r r ; 1/ Bk T , (1)
int
( )
ln exp ( )str
e
C
E
C
r
r r ; int ( ) sinstr L
E
r
r ,
1
1 3
V G
L b
.
Here int
strE – energy (measured in
Bk T ) of the elastic
interaction of the dislocation with the PD in the model
of the dilatation center; V – dilatation volume of PD;
G – shear modulus; – volume per atom of the
crystal; – the angle between the radius vector of the
defect location point r and the Burgers vector b in a
plane perpendicular to the dislocation line (the axis "z"
is directed along the dislocation line, and the Burgers
vector is along the "z" axis, so xb b , 0y zb b );
– Poisson's ratio; ( )C r – PD concentration.
Equation (1) should be supplemented with boundary
conditions, which are proposed to be formulated in the
form:
intexp () |)(
c
st
r
er
r CC E r r ;
intexp ( )( ) |
ext
str
r RC E C r r , (2)
Here
eC – thermally equilibrium concentration of PD
in a crystal in the absence of a stress field;
cr –
dislocation core radius; extR – the external radius of the
diffusion problem (the radius of its influence region).
The first condition on the core is standard and
corresponds to the value of the chemical potential of the
PD for a free flat surface ( ) 0cr . The second is
less obvious. Usually [7] it is formulated as
( ) |
extr RC C r , where C – average concentration of
PD in an effective medium simulating the influence of
the entire ensemble of effluents. In this paper, the point
of view is different. The boundary condition is
formulated for the chemical potential at the external
boundary, namely: ( ) ln( / )e
extR C C . This is the
standard type of chemical potential of TD in an
effective environment where the influence of a specific
sink is leveled by the entire ensemble. For the desired
flow in a cylindrical coordinate system, we have:
2
0
( ) ( ( , ))str c c str cJ r r r d
n j , (3)
Here is the unit vector of the external normal to the
boundary of the dislocation core (coincides with the unit
radius vector of the cylindrical coordinate system). The
technical details of the solution of the system (1-3) are
described in detail in [10, 11]. The result is as follows:
( ) ( )e
str c str
D
J r C C Z
;
0
1
( , ) ( , ) 2 ( , )str c ext c ext k c ext
k
Z z z Z z z Z z z
; (4)
2 ( ) ( )
( , )
( ) ( ) ( ) ( )
n c n ext
n c ext
n c n ext n ext n c
I z I z
Z z z
I z K z I z K z
; 0;1; ....n / 2c cz L r ;
/ 2ext extz L R .
Here ( )nI z and ( )nK z – modified Bessel functions.
The flow is proportional to the difference ( )eC C ,
and strZ is the absorption efficiency of PD by
dislocation. It is invariant under the transformation
L L , so in (4) one can formally consider
/ 2z L r . Thus, the absorption efficiency is sensitive
only to the absolute value of L, and not to the sign of the
relaxation volume of the PD or the sign of the projection
of the Burgers vector onto the “x” axis. In the week
interaction limit ( 0cz ; 0extz )
ln(/ )2 /str c extZ z z , In the strong interaction limit
( 1cz ; 0extz ) l2 / n 1/str extZ z . It is
significant that, in both cases, the sum in (4) makes a
small (to the extent of smallness zext) contribution to the
absorption efficiency of the TD by the dislocation,
which is mainly determined by the first term.
Another approach is related to the formulation of the
second boundary condition in (2) in the form
( ) |
extr RC C r . Then, for the desired PD flow per unit
dislocation length, we have:
( ) a e e
str strstr c
D
C Z Cr ZJ
;
0
1
( , ) ( , ) 2 ( 1) ( , ).a k
str c ext c ext k c ext
k
Z z z Z z z Z z z
(5)
Two efficiencies of PD appear in this approach.
Absorption efficiency
a
strZ and emission efficiency
e
strZ
[10].
e
strZ exactly coincide with strZ in (4). Sum in (5)
is negative value, therefore
a e
str strZ Z , that is, a
dislocation should emit PDs more easily than absorb. In
our approach, the absorption and emission processes
have the same efficiency. From (4), (5) one can see, that
the desired absorption efficiency depends on the size of
the influence area of the sink extR , which is determined
by the total power of the drains in the system
2
totk ,
2cm
[7] by the equation:
2
2
( )
( ) str tot
ext tot
tot
Z k
R k
k
. (6)
Substitution of (6) to (4) gives the transcendental
equation for
2( )str totZ k . Solving it numerically one can
obtain bias
2
, ,( ) 1 /str tot str v str iB k Z Z , here indexes
“ i ” and “ v ” correspond to CIA vacancy respectively.
Dependence of straight dislocation bias on sinks density
is shown on Fig. 1. There are three lines. Solid one
corresponds to exact solution, dotted one to
Margvelashvili-Saralidze approximation, [12],
0strZ Z , (
0 ( ) 1extI z ), and dashed one corresponds
to strong interaction approximation
l2 / n 1/str extZ z . One can see that exact solution is
between two approximations.
Fig. 1. Dependence of the bias factor of rectilinear
dislocation on the density of drains.
Solid line - exact solution (4),
dotted - approximation [12],
dashed – strong interaction approximation.
The calculations are done for zirconium at 573T K ,
material parameters are: 33G GPa ; 0.33v ;
103.23 10b m ; 1.2iV ; 0.6vV ;
29 32.36 10 m ; 3cr b
2. BIAS PF BASE DISLOCATION LOOP
IN HCP-METALS
Let us consider a basic (plane Z=0 of a cylindrical
coordinate system) vacancy loop of radius R , located
in a toroidal reservoir which is coaxial to dislocation
loop [7]. External radius of reservoir is extR , inner is
cr . The Burgers vector of the loop is perpendicular to
its plane and has only a Z-component ( 0 , 0 ,
Db ).The
normal vector to the loop plane coincides with the
positive axis direction « z », which is also the axis of
the crystal symmetry. The problem is formulated in
terms of a variable ( ),r z
int( , ) ,exp ( ) / ( )D e eC r z E r z C C C . The
quasistationary diffusion equation in dimensionless
cylindrical coordinates has the form:
2 2
int int
2 2
1
0
D DE E
r z r r r z z
, (7)
the interaction energy of the loop with the PD in the
HCP crystal is given by [13]:
1 12 1 1 1 2 2
int 0 0
1 2 1 21 1 2 2
1 11
( , ) , ,
3 1 2
D
D
B
k k k kG V b r z r z
E r z I I
k T R k k R k k RR R
, (8)
1
0
, ( )expn n
m m
r z r z
I t J t J t t dt
R R R R
,
33 44
13 4411 44
13 44
k
C C
C CC C
C C
.
Here 11C and so on – crystal elastic moduli; ( )mJ t – Bessel function, ( 1,2 ) – roots of the quadratic
equation 2 2
44 33 3311 13 44 13 11 442 0C C CC C C C C C . The boundary conditions for (7) are set on
the inner and outer toroidal surfaces.
( , ) 0r z on
2
2 2 2 2 2 24cr z R r R r , c cR r r R r , (9)
( , ) 1r z on
2
2 2 2 2 2 24extr z R R R r ,
ext extR R r R R for extR R , 0 extr R R for extR R .
They correspond to similar conditions for a straight dislocation (2). The desired absorption efficiency of the
dislocation loop has the form:
int
1
, , ( , ) ( , )
2
exp
2
D
D
c ex
e
t
S
J
Z r R R E r z n r z d
D R
R C C
, (10)
Here
DJ – full PD flow per loop; the integral is taken over an arbitrary surface containing a loop, n – its external
normal.
The diffusion problem (7)–(10) was solved
numerically by the finite difference method [7, 9]. Fig. 2
shows a cross section of a toroidal reservoir containing
a loop, taking into account the reflection symmetry in
the plane z=0 and the symmetry about rotation around
the axis “oz“.
a b
Fig. 2. The coordinate system for the toroidal reservoir: а – extR R ; b – extR R
For extR R the diffusion field was calculated in
the region bounded by the surfaces DA, AB, BC, CD,
for
extR R – by the surfaces OA, AB, BC, CD, DO.
Above indicated symmetry imposes additional boundary
conditions: / 0z on DA, BC, OA, corresponding
to zero flow through the plane 0z , and / 0r
on DO (axis of symmetry) 0. Then the absorption
efficiency of the PD was calculated using equation (10)
-type. Arbitrary inner surfase S in (10) was selected
in the form of a rectangle of rotation in order to simplify
calcculations. On Fig.2 it is line L . The calculations
were performed for zirconium, the material parameters
of which are given in the previous section.
3. RESULTS AND ITS DISCUSSION
Fig. 3 shows the dependence of the absorption
efficiency of the TD dislocation loop -type
, extZ R R ( ,v i ; v – vacancy, i – СIA) from it
radius in units b (+ – vacancy loop петля, o –
interstitial loop; 3cr b ). To simplify the calculations,
the radius of the cross section of the outer torus extR
was set the same for vacancies and SIA, which
corresponds to the approximation
2 21/ extk R . If
dislocations are the dominant sink in the system, then
the value 55extR b corresponds to the density of
dislocations
11 210 сm Fig. 3,а,b), and 125extR b
– to the density of dislocations
10 22 10 cm
Fig. 3,c,d). The numerical estimation of the bias factor
of a straight dislocation is also simplified, since it is not
necessary to solve the transcendental equation (4).
Absorption efficiency , ( , )str c extZ r R might be found
just by substitution of extR to (4).
Loop radius, b
Loop radius, b
Loop radius, b
Loop radius, b
Fig. 3. Vacancy and interstitial absorption efficiency Z (а), (b) and iZ (c), (d) as lopp radius functions,
calculated for 55extR b (а), (b) and 125extR b (c), (d) ('+' – vacancy loop, 'o' – interstitial loop)
a a a
c
b
d
By definition bias looks like 1 /v iB Z Z . The
result of the corresponding calculations is shown in Fig.
4. The dashed line corresponds to the bias factor of the
straight dislocation at a given value
extR .
Loop radius, b
Loop radius, b
Fig. 4. Biases of vacancy and interstitial loops as functions of loops radiuses for 55extR b (а)
and 125extR b (b). ('+' – interstitial loop, 'o'– interstitial loop)
In [7], the main results of studies were formulated,
in which a similar problem was solved numerically, but
in spherical or cylindrical reservoirs, as well as in the
approximation of the elastic medium isotropy. Compare
them with ours. First, it is noted that dislocation loops
are biased sinks that more effectively absorb SIA than
vacancies. This conclusion is also confirmed by our
calculations, since B>0 (see Fig. 4). Secondly, the
absorption efficiency and the bias depend on the radius
of the loop and the density of the sinks but do not
depend on the nature of the loop (vacancy or
interstitial). In [7], this conclusion remains valid for a
toroidal reservoir. In our case, the dependence on the
radius and density of the sinks remains, however, the
nature of the loops becomes significant. From Figs.3, 4
one can see that radial dependencies of absorption
efficiency of sort PD , extZ R R
and bias
, extB R R for interstitial loop with fixed external torus
radius extR have minimum and asymptotics which
correspond to straight dislocations. Last feature is
typical only for toroid reservoir. Similar dependences
for the vacancy loop show the presence of a maximum,
it means that symmetry of PD absorption by loops of
different nature is broken. This is the main result of the
paper. Minimum and maximum positions are shifted in
region of large loop radius while sink density increases
and extR decreases correspondingly, their absolute
values decrease as loop area of influence extR decrease.
Numerical analysis of equations (7), (9), (10) has shown
that taking into account of the elastic anisotropy of the
crystal (8) for basic edge loops does not play an
essential role. Another thing is more important, namely
the boundary condition on the external toroidal surface.
In our approach on the boundary between the sink
influence region and the effective medium, the equality
of PD chemical potentials is assumed. As a result we
have one absorption efficiency and one flow per loop
which are proportional to the difference (
eC C ), and
boundary condition (9) ( 1 ), which does not depend
on the loop type. In [7], as in some other works, the
equality of PD concentrations is assumed
( ( ) |
extr RC r C ).Then, as in the case of a straight
dislocation, two efficiencies appear: absorption and
emission, respectively, two flows, and the boundary
condition for calculating the absorption flow takes the
form exp( ( ))extC E R depending on the loop
type. As a result presence of symmetry between PD
absorption by loops of different types. It is still
impossible to give unequivocal answer to the question
which approach is correct. It is encouraging that, in our
version, the basic interstitial loops with the smallest
biases might be considered as the main sinks for
vacancies. Therefore, they have no chance of survival,
which is observed experimentally. As for vacancy
loops, their fate is ambiguous. Large loops cannot
survive because of their larger biases compared to
straight dislocations, but they are observed in
experiments during crystal growth. Their “accumulation
point” can be considered the size where However, if the
average bias of the system as a whole is larger than of
the straight dislocation, then the “accumulation point”
can grow, which means that the size of surviving
vacancy loops can increase.
It is shown that the form of the boundary condition
on the outer surface of the toroidal reservoir, used in the
paper, violates the “traditional” symmetry in the
absorption of PD by loops of different nature and leaves
no chance for the survival of interstitial base loops in
zirconium. But it does not explain the existence of large
basic vacancy loops. A source of vacancies in the basal
plane is needed. Such may be the interstitial loops
nucleating on prismatic planes during the radiation
growth of zirconium. But this is a different task.
The authors are grateful to A.A. Turkin for
productive consultations on the method of numerical
calculations and V.I. Dubinko for participating in the
discussion of the results.
a b
REFERENCES
1. В.Н. Воеводин, И.М. Неклюдов. Эволюция
структурно-фазового состояния и радиационная
стойкость конструкционных материалов. Киев:
«Наукова думка», 2006, 376 с.
2. В.А. Белоус, В.Н. Воеводин В.И. Змий,
Г.Н. Картмазов, С.Д. Лавриненко, И.М. Неклюдов,
Н.Н. Пилипенко, Б.А. Шиляев, Б.М. Широков.
Современный статус конструкционных материалов
ядерных реакторов: Препринт ХФТИ 2013-1.
Харьков: ННЦ ХФТИ, 2013, 76 с.
3. V.I. Dubinko, S.A. Kotrechko, V.F. Klepikov.
Irradiation hardening of reactor pressure vessel steels
due to the dislocation loop evolution // Radiation Effects
and Defects in Solids. 2009, v. 164, p. 647.
4. F.A. Garner, M.B. Toloczko, B.H. Sencer.
Comparison of swelling and irradiation creep behavior
of fcc-austenitic and bcc-ferritic/martensitic alloys at
high neutron exposure // J. Nucl. Mater. 2000, v. 276,
p. 123.
5. C.H. Woo. Defect accumulation behaviour in
hcp metals and alloys // J. Nucl. Mater. 2000, v. 276,
p. 90.
6. Sang Il Choi, Ji Hyun. Radiation-Induced
Dislocation and Growth Behavior of Zirconium and
Zirconium Alloys – A Review // Nuclear Engineering
and Technology. 2013, v. 45, N 3, p. 385-392.
7. V.I. Dubinko, A.S. Abyzov, A.A. Turkin.
Numerical Evaluation of the Dislocation Loop Bias // J.
Nucl. Mater. 2005, v. 336, p. 11-21.
8. C.H. Woo, U. Gosele. Dislocation Bias in an
Anisotropic Diffusive Medium and Irradiation Growth //
J. Nucl. Mater. 1983, v. 119, p. 279-228.
9. C.H. Woo, W.S. Liu, M.S. Wuschke. AECL-
6441, 1979.
10. H. Rauh, D. Simon. On the diffusion process of
point defects in the stress field of edge dislocations //
Phys. Stat. Sol. (a). 1978, v. 46, p. 499-510.
11. О.Г. Троценко, П.Н. Остапчук. Вопросы
атомной науки и техники. Серия «Физика
радиационных повреждений и радиационное
материаловедение». 2013, № 5(87), с. 48-52.
12. И.Г. Маргвелашвили, З.К. Саралидзе.
Влияние упругого поля дислокации на
стационарные диффузионные потоки точечных
дефектов // ФТТ. 1973, т. 15, с. 2665-2668.
О.Г. Троценко, П.Н. Остапчук. Вопросы атомной
науки и техники. Серия «Физика радиационных
повреждений и радиационное материаловедение».
2017, №2(108), c. 83-90.
Article received 06.08.2019
ЧИСЛЕННЫЙ РАСЧЕТ ФАКТОРА ПРЕДПОЧТЕНИЯ БАЗИСНОЙ ДИСЛОКАЦИОННОЙ
ПЕТЛИ В ГЕКСАГОНАЛЬНОМ КРИСТАЛЛЕ
А.В. Бабич, П.Н. Остапчук
Численно (методом конечных разностей) посчитаны диффузионные потоки радиационных точечных
дефектов на круговую базисную краевую петлю циркония в тороидальном резервуаре с учетом их упругого
взаимодействия и упругой анизотропии гексагонального кристалла. Тороидальная геометрия резервуара
представляется более приемлемой для петли, чем сферическая или цилиндрическая, поскольку позволяет
провести расчеты для петли любого размера и без какой-либо коррекции упругого поля в ее области
влияния. Получены зависимости эффективностей захвата и «bias»-фактора петли от радиуса и ее природы.
Показана существенная роль формы граничного условия на внешней поверхности резервуара в нарушении
симметрии в поглощении ТД петлями разной природы.
ЧИСЕЛЬНИЙ РОЗРАХУНОК ФАКТОРА ПЕРЕВАГИ БАЗИСНОЇ ДИСЛОКАЦІЙНОЇ
ПЕТЛІ В ГЕКСАГОНАЛЬНОМУ КРИСТАЛІ
А.В. Бабіч, П.М. Остапчук
Чисельно (методом кінцевих різниць) пораховані дифузійні потоки радіаційних точкових дефектів на
кругову базисну крайову петлю цирконію в тороїдальному резервуарі з урахуванням їх пружної взаємодії і
пружної анізотропії гексагонального кристала. Тороїдальна геометрія резервуара є більш прийнятною для
петлі, ніж сферична або циліндрична, оскільки дозволяє провести розрахунки для петлі будь-якого розміру і
без будь-якої корекції пружного поля в її області впливу. Отримано залежності ефективностей захоплення і
«bias»-фактора петлі від радіуса і її природи. Показана суттєва роль форми граничної умови на зовнішній
поверхні резервуара в порушенні симетрії в поглинанні ТД петлями різної природи.
https://www.researchgate.net/journal/1042-0150_Radiation_Effects_and_Defects_in_Solids
https://www.researchgate.net/journal/1042-0150_Radiation_Effects_and_Defects_in_Solids
|