Spherical standing burning wave with external automatic reactivity control
Neutron kinetics of a nuclear burning wave in moving incompressible neutron-multiplying medium in the presence of nuclear reactions is developed. A spherical reactor is considered, where fuel moves with acceleration to the center of the reactor at a velocity V(r)=VR(R/r)², and the burning wave trave...
Gespeichert in:
Datum: | 2019 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2019
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195206 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Spherical standing burning wave with external automatic reactivity control / Yu.Y. Leleko, V.V. Gann, A.V. Gann // Problems of atomic science and technology. — 2019. — № 5. — С. 18-24. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195206 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1952062023-12-03T17:25:23Z Spherical standing burning wave with external automatic reactivity control Leleko, Yu.Y. Gann, V.V. Gann, A.V. Physics of radiation damages and effects in solids Neutron kinetics of a nuclear burning wave in moving incompressible neutron-multiplying medium in the presence of nuclear reactions is developed. A spherical reactor is considered, where fuel moves with acceleration to the center of the reactor at a velocity V(r)=VR(R/r)², and the burning wave travels radially from the center to periphery. The fuel that came to the origin was unloaded from the reactor, and U-238 was loaded to the peripheral area at the same rate. Comparison of theoretical results with computer simulation using MCNPX code was performed. Була розвинена нейтронна кінетика стоячої хвилі ядерного горіння в нейтронно-розмножуючім середовищі, котре не стискається та є рухомим, при наявності ядерних реакцій. Розглянуто сферичний реактор, в якому хвиля ядерного горіння рухається радіально від центра, а паливо – до центра реактора. Показано, що при підживленні такої системи ²³⁸U в ній може існувати сферична стояча хвиля ядерного горіння. Проведено порівняння теоретичних результатів з даними чисельного моделювання такого реактора з використанням коду MCNPX. Была развита нейтронная кинетика стоячей волны ядерного горения в нейтронно-размножающей среде, которая не сжимается и является подвижной, при наличии ядерных реакций. Рассмотрен сферический реактор, в котором волна ядерного горения движется радиально от центра, а топливо – в центр реактора. Показано, что при подпитке такой системы ²³⁸U в ней может существовать сферическая стоячая волна ядерного горения. Проведено сравнение теоретических результатов с данными численного моделирования такого реактора с использованием кода MCNPX. 2019 Article Spherical standing burning wave with external automatic reactivity control / Yu.Y. Leleko, V.V. Gann, A.V. Gann // Problems of atomic science and technology. — 2019. — № 5. — С. 18-24. — Бібліогр.: 8 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/195206 612.039.517 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids |
spellingShingle |
Physics of radiation damages and effects in solids Physics of radiation damages and effects in solids Leleko, Yu.Y. Gann, V.V. Gann, A.V. Spherical standing burning wave with external automatic reactivity control Вопросы атомной науки и техники |
description |
Neutron kinetics of a nuclear burning wave in moving incompressible neutron-multiplying medium in the presence of nuclear reactions is developed. A spherical reactor is considered, where fuel moves with acceleration to the center of the reactor at a velocity V(r)=VR(R/r)², and the burning wave travels radially from the center to periphery. The fuel that came to the origin was unloaded from the reactor, and U-238 was loaded to the peripheral area at the same rate. Comparison of theoretical results with computer simulation using MCNPX code was performed. |
format |
Article |
author |
Leleko, Yu.Y. Gann, V.V. Gann, A.V. |
author_facet |
Leleko, Yu.Y. Gann, V.V. Gann, A.V. |
author_sort |
Leleko, Yu.Y. |
title |
Spherical standing burning wave with external automatic reactivity control |
title_short |
Spherical standing burning wave with external automatic reactivity control |
title_full |
Spherical standing burning wave with external automatic reactivity control |
title_fullStr |
Spherical standing burning wave with external automatic reactivity control |
title_full_unstemmed |
Spherical standing burning wave with external automatic reactivity control |
title_sort |
spherical standing burning wave with external automatic reactivity control |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2019 |
topic_facet |
Physics of radiation damages and effects in solids |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195206 |
citation_txt |
Spherical standing burning wave with external automatic reactivity control / Yu.Y. Leleko, V.V. Gann, A.V. Gann // Problems of atomic science and technology. — 2019. — № 5. — С. 18-24. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT lelekoyuy sphericalstandingburningwavewithexternalautomaticreactivitycontrol AT gannvv sphericalstandingburningwavewithexternalautomaticreactivitycontrol AT gannav sphericalstandingburningwavewithexternalautomaticreactivitycontrol |
first_indexed |
2025-07-16T23:04:00Z |
last_indexed |
2025-07-16T23:04:00Z |
_version_ |
1837846538343153664 |
fulltext |
ISSN 1562-6016. PASТ. 2019. №5(123), p. 18-24.
UDC 612.039.517
SPHERICAL STANDING BURNING WAVE WITH EXTERNAL
AUTOMATIC REACTIVITY CONTROL
Yu.Y. Leleko, V.V. Gann, A.V. Gann
National Science Center “Kharkov Institute of Physics and Technology”,
Scientific and Technical Complex “Nuclear Fuel Cycle”
Center for Reactor Core Design, Kharkiv, Ukraine
E-mail: makswell.com@gmail.com
Neutron kinetics of a nuclear burning wave in moving incompressible neutron-multiplying medium in the pres-
ence of nuclear reactions is developed. A spherical reactor is considered, where fuel moves with acceleration to the
center of the reactor at a velocity V(r)=VR(R/r)
2
, and the burning wave travels radially from the center to periphery.
The fuel that came to the origin was unloaded from the reactor, and U-238 was loaded to the peripheral area at the
same rate. Comparison of theoretical results with computer simulation using MCNPX code was performed.
INTRODUCTION
In this article, the theory of nuclear reactor on spher-
ical standing burning wave is developed. The neutron
kinetics of a nuclear burning wave in a moving neutron-
multiplying medium in the presence of nuclear reactions
was developed. Computer simulation of moving and
standing spherical burning waves in a nuclear reactor
was performed using MCNPX code [1].
The reactor core consists of four areas: the outer
zone made of U-238, the breading zone where produc-
tion of Pu-239 takes place according to the scheme
U-238 + n = U-239 → Np-239 → Pu-239, the inner
region in which Pu-239 is burning, and central area con-
sists of burnt fuel. The fuel moves with acceleration
from periphery to the center of the reactor. It is shown
that in such a system a spherical standing wave travels
radially from the center zone to periphery. The burning
wave consists of two regions: the external breading
zone and the internal burning area. Distributions of
the neutron flux, the U-238, Np-239, and Pu-239 iso-
tope concentrations and the specific power in the stand-
ing spherical burning wave are obtained in this paper.
The conditions for existence of spherical standing burn-
ing waves are investigated. It is shown that an operation
mode of the standing-wave reactor is characterized by
two combinations of nuclear cross sections and single
function defining the stability boundaries of the stem.
Stability region of spherical waves was found to be
broader then stability region of one-dimensional travel-
ing burning waves in an infinite medium. A state dia-
gram of such a reactor has been obtained.
Concept of the traveling wave nuclear reactor
(TWR) is one of the brilliant ideas of 20-th century. It
suggests using depleted uranium (or thorium) as fuel
and promises to supply inexhaustible source of energy
worldwide. This idea was proposed by S.M. Feinberg,
realized in theory by L.P. Feoktistov [2] and developed
in many publications (see bibliography in [3]), in which
several ways of its practical implementation were sug-
gested. One of the most promising designs of TWR is a
fast reactor, which is able to work in maneuverable
mode [3, 6]. Mathematical modeling of TWR using
MCNPX code was performed in [4, 7, 8].
Computer simulation of reactor on standing and
traveling spherical burning wave has been carried out in
present article. The computer model of the reactor using
the MCNPX code is a ball of 2 m radius filled with ura-
nium dioxide fuel. In the traveling spherical wave mode,
nuclear burning begins in the central zone of the core
enriched with uranium. When concentration of Pu-239
in U-238 becomes high enough due to breeding mecha-
nism according to the scheme U-238 + n = U-239 →
Np-239 → Pu-239, a spherical burning wave appears;
then it breaks away from the ignition region and contin-
uously moves to the edges of the core during
~ 150 years. In our model at a power of 240 MW, the
burning wave velocity was 0.5 cm/year. The mode of a
standing spherical burning wave (SWR) was achieved
by selecting the values of fuel speed and reactor power.
Radial distributions of neutron flux, power density and
the concentrations of Pu-239 and U-238 in the spherical
standing burning wave were obtained using MCNPX
code. A comparison of theoretical results with the data
of numerical simulation has been carried out. Possibility
of using depleted uranium as a nuclear fuel in reactors
on spherical burning wave is confirmed.
1. NEUTRON KINETICS EQUATION
IN MOVING NEUTRON-MULTIPLYING
MEDIUM
Let us consider nuclear burning wave in incompress-
ible uranium-based medium, which moves to the center
of the reactor at velocity V(r) = VR(R/r)
2
, where VR is
speed of fuel at periphery of the reactor at r = R.
The simplest description of neutron kinetics and
burning of nuclear fuel can be obtained using the coor-
dinate system x ', y ', z ', in which the fuel is stationary:
1 ˆ ( )
v
f aD S
t
; (1)
8
8 8a
n
n
t
,
9 9
89 8
89
n n
n
t
,
9 9
9 9
89
a
n n
n
t
, 9 92c
f
n
n
t
, (2)
where ( ', )r t is neutron flow; v is speed of neutrons;
n8 ( ', )r t is concentration of
238
U; 9 ( ', )n r t is concen-
tration of
239
Np;
9 ( ', )n r t is concentration of
239
Pu;
( ', )cn r t is concentration of fission products; D̂ neu-
tron transport operator;
99 nff macroscopic
cross-section of fission and
ccaaa nnn 9988
macroscopic neutron absorption cross section. S
term describing the reactor operating controls; 89
transmutation cross-section of
238
U to
239
Pu; 89 time
of the decay in chain
239
U
239
Np
239
Pu; 9f
fission cross-section of
239
Pu; the number of fission
neutrons; 8a and 9a neutron absorption cross-
sections for nuclei
238
U and
239
Pu; c is neutron ab-
sorption cross-section for fission products. To simplify
we put 8a = 9a = a .
Boundary conditions have to be added to Eqs. (1)
and (2):
Ψ(∞, t) = 0, Ψ'(0, t) = 0, n9(∞, t) = 0,
9
~n (∞, t) = 0, nc(∞, t) = 0, n8(∞, t) = n8(0). (3)
We need to find a time-independent solution of
equations (1) in the form of a spherical standing wave
Ψ(r), n8 (r), n9(r). Consider the movement of fuel mate-
rials rather slow: 89 V<<L, where L is the characteristic
size of the burning region, then Eqs. (1), (2) can be in-
terpreted as quasi-stationary (v=∞). The operator D̂ we
choose in diffusion approximation.
The boundary conditions (3) look as follows:
Ψ(∞) = 0, Ψ'(0) = 0, n9(∞) = 0,
nc(∞) = 0, n8(∞) =n0. (4)
2. THEORY OF SPHERICAL NUCLEAR
BURNING WAVE
Equation for fluence
Now, instead of the r coordinate we will introduce a
new variable
2
2
( ')
( ) ' ( ') ' '
( ')
a
a
Rr r
r
r dr r r dr
V r V R
,
which is proportional to fluence F(x) and ranges from 0
to a maximum value of 0 maxaF . Let us choose
the function S(x) describing the automatic control on
excess reactivity ρ as: fS . After these
changes Eqs. (1) and (2) become:
2 2
4
2 4
(1 ) 0
2
a
f a
R
D
r
V R
, (5)
8
8 n
d
dn
, (6)
9898
9 / nn
d
dn
a
, (7)
af
c n
d
dn
/2 9
, (8)
dQRVP faR /4 2
, (9)
9nff , (10)
ccaa nnn )( 98 , (11)
where Q is nuclei
239
Pu fission energy release.
The boundary conditions (4) for the functions Ψ(φ),
n8(φ), 9
~n (φ), n9(φ) look as follows:
0 9 8 0(0) 0; '( ) 0; (0) 0; (0) 0; (0) ,cn n n n
(12)
where
0 (0) is the maximum neutron fluence.
Equation for neutron flux density
Equations (6) - (8) can be solved:
enn 08 )( ,
enn a 0899 /)( ,
2
89 0( ) 2 / [1 (1 ) ]c f an n e , (13)
where
0n is concentration of U-238 in the initial mate-
rial, and equation (5) becomes:
4 2
2 4
0
8989
2
( )
2 (1 2 )
2
2 (1 ) ,
a
R
f
a a
D d r d
e
n V d R d
e e
(14)
where
3
89 /c f a
is a parameter, which
determines the speed of breeding in the system.
System excess reactivity calculation
Integrating equation (14) over φ taking into account
the boundary condition Ψ(0) = 0, we obtain:
4 2
2 4
0
( )
( )
2
a
R
D r d
f
n V R d
, (15)
where ( ) 2 (1 2 )( 1)f e
8989
2
2 (1 ) [1 (1 ) ]
f
a a
e
.
Substituting φ = φ0 in (15) and using the boundary
conditions (12), we obtain the equation for the system
excess reactivity ρ:
0( ) 0f . (16)
Solving Eq. (16) we obtain expression for excess re-
activity, which is necessary for the existence of a sta-
tionary solution:
2
0
89
a
f
c q
(17)
where
0
0
0
0
0
2 (1 2 )( 1)
1 (1 )
e
q
e
, and
891 2
f
a a
c
. (18)
Eq. (17) and (18) relate excess reactivity ρ to the
maximum fluence in unloaded fuel φ0. This value lies in
the range 0 ≤ φ0 ≤ χ, where χ is the maximum fluence in
the flat burning wave [4] (Eq. (19) and Fig. 1):
22
22
)1(2]1)1[(
)1(
ee
ee . (19)
0 2 4 6 8 10 12 14
0
1
2
3
Fig. 1. Dependence χ(β)
Neutron field calculation
Substituting (17) to (15) we obtain:
4 2
1 02 4
0
( )
( , ),
2
a
R
D r d
f q
n V R d
(20)
where
1 0 0 0( , ) 2 (1 2 )( 1)f q q e q e .
The function 1 0( , )f q has the following analytical
properties [7, 8]: 1 0(0, ) 0f q ,
1 0 0( , ) 0f q ; it be-
comes zero at the ends of the range
00 .
Substituting expression
2
R
a
V R d
r dr
in
equation (20) and introducing new dimensionless varia-
bles
2
0 0R a
D D
n V R n R
;
0( ) /an D r ,
we get the system of equations:
2
1( ) /
d
f
d
, (21)
2d
d
(22)
with boundary conditions
0( ) 0, (0) , ( ) . (23)
Set 0 in the interval 0< 0 < χ and solve equations
(21), (22) with boundary conditions (23) by the shooting
method: choose a value 0 and start from 0 with
initial conditions
0(0) and (0) ; we ob-
tain solutions ( ) and ( ) diverging at .
We select 0 so that the region of divergence was as
far as possible.
Returning to the variables r, φ(r), and Ψ(r), we find
the radial dependences of the neutron fluence φ(r), and
flux )(r , as well as the concentration profiles of plu-
tonium
)(
0899 )(/)( r
a ernrn , (24)
uranium
)(
08 )( renrn and fission products
2 ( )
89 0( ) 2 / [1 1 ( ) ]r
c f an r n r e . (25)
We also get the expression for power:
fP Q dV
02 2
0 89 04 / [1 (1 ) ]R f aQV R n e
. (26)
The speed of fuel movement is proportional to the
power of the reactor. The burning wave profile remains
unchanged.
The main result of theory is that spherical standing-
burning wave can be described with tree parameters:
two combinations of nuclear cross sections c, β and neu-
tron fluence φ0 in unloaded fuel.
Fig. 2 shows an example for radial profiles of the
neutron flux in standing burning waves for material pa-
rameter β = 1 (when χ = 2 – the maximal value of φ0)
and different values of the parameter φ0.
0 5 10 15
0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0
=0.3
0
=0.5
0
=1
0
=1.3
0
=1.5
0
=1.7
Fig. 2. Radial dependences of the neutron flux
ψ(ζ) in standing waves, χ = 2
The maximum of neutron flux in the burning wave
(see Fig. 2) moves away from the center of the core
when φ0 increases and goes to infinity at φ0 = χ.
Fig. 3 shows dependence the power of the standing
burning wave on the fluence φ0 at χ = 1. The fundamen-
tal difference between a spherical standing-wave reactor
and a one-dimension traveling-wave reactor is that its
power can be physically limited by choosing a suffi-
ciently small parameter φ0 and small dimensions of the
core. Spherical standing-wave differs from a traveling
burning wave Feoktistov’s type, in which the power and
neutron fluxes are much more than modern structural
materials can allow.
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
P
Fig. 3. Dependence of power of the standing burning
wave on the fluence φ0 with χ = 1
0 1 2 3
0.0
0.1
0.2
Pu-239
Fissium
C
o
n
c
e
n
tr
a
ti
o
n
,
P
u
-2
3
9
,
fi
s
s
iu
m
Fig. 4. Dependences of Pu-239 concentrations and fis-
sion products on the radius
0 1 2 3
0.7
0.8
0.9
1.0
1.1
C
o
n
c
e
n
tr
a
ti
o
n
,
U
-2
3
8
Fig. 5. Dependence of U-238 concentration on the radi-
us in the standing burning wave
Figs. 4,5 show the dependences of the concentra-
tions of Pu-239, U-238 and fission products on the radi-
us in the standing burning wave of a spherical shape.
From Fig. 5 one can see that in the standing burning
wave with the specified parameters, the uranium isotope
U-238 burns out by 18%, and in the spent fuel there are
still ~ 6% Pu-239.
3. ANALYSIS OF STABILITY THE
SPHERICAL BURNING WAVE
In Fig. 6 the family of phase trajectories ψ(φ) for
different values of φ0 is shown.
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.00
0.05
0
=0.1
0
=0.3
0
=0.5
0
=1
0
=1.3
0
=1.5
0
=1.7
0
=1.8
Fig. 6. Dependence ψ(φ) for a some values of φ0 at
χ = 2
A necessary condition for stability of a standing
burning wave is the positivity of the values of φ and ψ
along the trajectory of the solution ( ) and ( ) .
Thus, the entire trajectory of the dependence φ(ψ)
should lie in the first quadrant. As can be seen in Fig. 6
this condition is valid.
Calculation of the minimum value of the parame-
ter with the scope of the solution
The condition ρ ≥ 0 for the existence of a standing
spherical wave gives a relation:
c ≥ q0(β, φ0). (27)
Relation (27) determines сmin(φ0) the minimum
value of с, for which a stationary solution still exists for
a given value of φ0. The dependence сmin(φ0) has the
form:
0
0
0
min 0
0
2 (1 2 )( 1)
( , ) .
1 (1 )
e
c
e
(28)
The dependence сmin(φ0, β) calculated using (28) for
the value β = 1 is shown in Fig. 7. The wave exists in
the open region of the graph. The dependence сmin(φ0, β)
has a minimum, indicated in the graph as cmm(β), which
is located below the line q(β) corresponding to a plane
burning wave. One can see from Fig. 7 that a standing
spherical burning wave is more stable than a plane burn-
ing wave, and two times lower fluency φ0 is required for
existence of a standing wave.
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0
2
4
6
8
10
q
0
(
)
c
mm
()
c
q()
Fig. 7. Dependence of сmin(φ0, β) on φ0 with β=1,(χ= 2)
State diagram of a reactor on the standing spheri-
cal burning wave
The dependence of cmm(β) is shown in Fig. 8 with
dotted line. It represents the lower limit of parameter c
for standing burning wave stability in a spherical reac-
tor. For comparison, the lower limit of c for a plane
burning wave stability in an infinite medium q(β) [4] is
shown in the same graph.
0 1 2 3 4
0
2
4
6
8
10
12
14
c
mm
()
c
q()
Fig. 8. State diagram of the reactor on a standing
spherical burning wave
The state diagram of a reactor on a standing spheri-
cal burning wave is shown in Fig. 8. In the pink shaded
region there are no standing waves, in the region shaded
in yellow the spherical standing waves exist only for
some values of φ0. In the open region of the Fig. 8 the
waves exist for any values of φ0.
4. COMPUTER SIMULATION
OF SPHERICAL TRAVELLING BURNING
WAVE
Computer model of STBW is a sphere with radius
R =2 m, filled with uranium dioxide based fuel, which is
divided into spherical layers with thickness of 5 cm. In
order to reach criticality an igniter containing enriched
uranium was located in the central part of the reactor
core. Due to transmutation under fast neutron irradia-
tion the
238
U isotope converts to
239
Pu according to the
chain:
238
U + n =
239
U
239
Np
239
Pu. When concen-
tration of
239
Pu in the fuel reaches high level, spherical
burning wave appears; it breaks away from the central
area and moves to the edges of the active zone during
30 years. In this model the speed of the burning wave is
~0.5 cm/year at 240 MW power (see Figs. 9 and 10 in
which radial distributions of neutron flux and power are
shown).
0 10 20 30 40 50 60 70 80 90 100 110 120 130
0.0
2.0x10
14
4.0x10
14
6.0x10
14
8.0x10
14
1.0x10
15
1.2x10
15
1.4x10
15
0 years
5 years
10 years
20 years
30 years
F
lu
x
,
n
/c
m
2
/s
r, cm
Fig. 9. Radial dependences of the neutron flux density in
a traveling spherical burning wave for period
of 30 years
0 20 40 60 80 100 120 140
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Spherical travelling nuclear burning wave
0 years
5 years
10 years
15 years
20 years
25 years
30 years
P
o
w
e
r
fr
a
c
ti
o
n
,
r
=
5
c
m
r, cm
SWRSh8, 30 years, Power 240 MW
Fig. 10. Radial distribution of power fraction of the
layers in the traveling spherical burning wave during
30 years at 240 MW power
5. COMPUTER SIMULATION OF
SPHERICAL STANDING BURNING WAVE
In SWR model fuel is moving towards the burning
wave at the same speed, that ensures the stationarity of
breading and burning processes in the reactor. The re-
sults of computer simulation of a standing nuclear burn-
ing wave during 20 years are shown in Fig. 11. It shows
that parameters of the model ensure stationary of the
spherical nuclear burning wave when reactor is fed with
depleted uranium. Figs. 11–13 show dependences of
power density and concentrations of Pu-239 and U-238
on the radius, which were obtained using MCNPX
computer simulation of the spherical standing burning
wave. They are in qualitative agreement with the theo-
retical results (see Figs. 3–5).
0 10 20 30 40 50 60 70 80 90 100 110 120
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0 years
5 years
10 years
15 years
20 years
P
o
w
e
r
fr
a
c
ti
o
n
,
r
=
5
c
m
r, cm
SWRS, 20 years, Power 240 MW
Spherical standing nuclear burning wave
Fig. 11. Radial distribution of power fraction of the
layers in a standing spherical burning wave over a
period of 20 years
0 10 20 30 40 50 60 70 80 90 100 110 120
0
1
2
3
4
5
6
7
8
9
10
Pu-239
C
o
n
c
e
n
tr
a
ti
o
n
,
%
r, cm
SWRS, 20 years, Power 240 MW
Spherical standing nuclear burning wave
Fig. 12. Dependence of Pu-239 concentration on the
radius in the standing burning wave
0 10 20 30 40 50 60 70 80 90 100 110 120
0
10
20
30
40
50
60
70
80
90
100
110
U-238
Pu-239
C
o
n
c
e
n
tr
a
ti
o
n
,
%
r, cm
SWRS, 20 years, Power 240 MW
Spherical standing nuclear burning wave
Fig. 13. Dependence of the concentrations of U-238 and
Pu-239 on the radius in the standing burning wave
CONCLUSION
• Standing nuclear burning wave can exist not only
in one-dimensional geometry, but in systems with cy-
lindrical and spherical symmetries as well.
• Phenomenological theory of standing spherical nu-
clear burning wave was developed
• Existence of a standing spherical nuclear burning
wave was proved for a reactor with fuel continuously
moving toward the center.
• State diagram of such a reactor was proposed and
the boundaries of the standing wave existence were de-
fined.
• Mathematical modeling of reactor on spherical
standing burning wave was carried out using MCNPX
code, and obtained numerical results are in agreement
with results of the phenomenological theory.
REFERENCES
1. MCNPX User’s Manual Version 2.5.0, April.
2005 LA-CP-05-0369
2. L.P. Feoktistov. Neutron-fission wave // Rep.
Academy Sciences of the USSR. 1989, v. 309, p. 864-
867.
3. T. Ellis, R. Petroski. Traveling-Wave Reactors:
A Truly Sustainable and Full-Scale Resource for Global
Energy Needs // Proceedings of ICAPP ’10, San Diego,
CA, USA, June 13-17, 2010, 10189 p.
4. V.V. Gann, A.V. Gann. Benchmark on traveling
wave fast reactor with negative reactivity feedback ob-
tained with MCNPX code // 4 International Conference
“Current Problems in Nuclear Physics and Atomic En-
ergy” (NPAE-Kyiv 2012), September 37, 2012, Kyiv,
Ukraine. Proceedings Part II, p. 421-425.
5. Yu.Y. Leleko, V.V. Gann, A.V. Gann. Computer
Simulation of Stationary Burning Wave Reactor // 4th
International Conference “Computer modelling in high-
tech” (CMHT-Kharkov 2016), May 2631, 2016, Khar-
kov, Ukraine, p. 206
6. TERRAPOWER, LLC Traveling Wave Reactor
Develop Program Overview //
http://dx.doi.org/10.5516/NET.02.2013.520
7. Yu.Y. Leleko, V.V. Gann, A.V. Gann. Nuclear
reactor on cylindrical standing burning wave with an
external negative reactivity feedback // Problems of
Atomic Science and Technology. 2017, № 2(108), p.
138-143.
8. V.V.Gann, Yu.Y.Leleko, A.V.Gann Computer
simulation of nuclear reactor on cylindrical standing
burning wave // Proceedings of NUCLEAR 2017 the
10th International Conference on Sustainable Develop-
ment through Nuclear Research and Education, Pitesti,
2017, May 2426, p. 161-168.
Article received 07.11.2018
http://dx.doi.org/10.5516/NET.02.2013.520
СФЕРИЧЕСКАЯ СТОЯЧАЯ ВОЛНА ЯДЕРНОГО ГОРЕНИЯ С ВНЕШНИМ
АВТОМАТИЧЕСКИМ КОНТРОЛЕМ РЕАКТИВНОСТИ
Ю.Я. Лелеко, В.В. Ганн, А.В. Ганн
Была развита нейтронная кинетика стоячей волны ядерного горения в нейтронно-размножающей среде,
которая не сжимается и является подвижной, при наличии ядерных реакций. Рассмотрен сферический реак-
тор, в котором волна ядерного горения движется радиально от центра, а топливо – в центр реактора. Пока-
зано, что при подпитке такой системы
238
U в ней может существовать сферическая стоячая волна ядерного
горения. Проведено сравнение теоретических результатов с данными численного моделирования такого ре-
актора с использованием кода MCNPX.
СФЕРИЧНА СТОЯЧА ХВИЛЯ ЯДЕРНОГО ГОРІННЯ З ЗОВНІШНІМ АВТОМАТИЧНИМ
КОНТРОЛЕМ РЕАКТИВНОСТІ
Ю.Я. Лелеко, В.В. Ганн, А.В. Ганн
Була розвинена нейтронна кінетика стоячої хвилі ядерного горіння в нейтронно-розмножуючім середо-
вищі, котре не стискається та є рухомим, при наявності ядерних реакцій. Розглянуто сферичний реактор, в
якому хвиля ядерного горіння рухається радіально від центра, а паливо – до центра реактора. Показано, що
при підживленні такої системи
238
U в ній може існувати сферична стояча хвиля ядерного горіння. Проведено
порівняння теоретичних результатів з даними чисельного моделювання такого реактора з використанням
коду MCNPX.
|