Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator
The longitudinal momentum diffusion of electrons moving in a spatially periodic magnetic field of an undulator is investigated, taking into account their initial energy spread. Expressions for the coefficient are obtained and the dependences of the diffusion coefficient are determined both on the di...
Gespeichert in:
Datum: | 2021 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195266 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator / V.V. Ognivenko // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 102-105. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195266 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1952662023-12-03T18:02:06Z Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator Ognivenko, V.V. Parametric radiation The longitudinal momentum diffusion of electrons moving in a spatially periodic magnetic field of an undulator is investigated, taking into account their initial energy spread. Expressions for the coefficient are obtained and the dependences of the diffusion coefficient are determined both on the distance traveled by the electrons in the undulator and on the value of the initial energy spread of the electrons. The possibility of decreasing the wavelength in X-ray free electron lasers is discussed. Досліджено дифузію за поздовжнього імпульсу електронів, що рухаються в просторово-періодичне магнітне поле ондулятора, з урахуванням їх початкового енергетичного розкиду. Отримано вираз для коефіцієнта дифузії й визначені залежності його як від відстані, вздовж ондулятора, так і від величини початкового енергетичного розкиду електронів. Обговорюється можливість зменшення довжини хвилі в рентгенівських лазерах на вільних електронах. Исследована диффузия по продольному импульсу электронов, движущихся в пространственнопериодическое магнитное поле ондулятора, с учетом их начального энергетического разброса. Получены выражения для коэффициента диффузии и определены зависимости его как от расстояния, пройденного электронами в ондуляторе, так и от величины начального энергетического разброса электронов. Обсуждается возможность уменьшения длины волны в рентгеновских лазерах на свободных электронах. 2021 Article Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator / V.V. Ognivenko // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 102-105. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 41.60.-m, 41.60.Cr, 52.25.Gj DOI: https://doi.org/10.46813/2021-134-102 http://dspace.nbuv.gov.ua/handle/123456789/195266 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Parametric radiation Parametric radiation |
spellingShingle |
Parametric radiation Parametric radiation Ognivenko, V.V. Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator Вопросы атомной науки и техники |
description |
The longitudinal momentum diffusion of electrons moving in a spatially periodic magnetic field of an undulator is investigated, taking into account their initial energy spread. Expressions for the coefficient are obtained and the dependences of the diffusion coefficient are determined both on the distance traveled by the electrons in the undulator and on the value of the initial energy spread of the electrons. The possibility of decreasing the wavelength in X-ray free electron lasers is discussed. |
format |
Article |
author |
Ognivenko, V.V. |
author_facet |
Ognivenko, V.V. |
author_sort |
Ognivenko, V.V. |
title |
Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator |
title_short |
Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator |
title_full |
Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator |
title_fullStr |
Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator |
title_full_unstemmed |
Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator |
title_sort |
diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Parametric radiation |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195266 |
citation_txt |
Diffusion in momentum of relativistic electrons with a thermal spread passing through an undulator / V.V. Ognivenko // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 102-105. — Бібліогр.: 16 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT ognivenkovv diffusioninmomentumofrelativisticelectronswithathermalspreadpassingthroughanundulator |
first_indexed |
2025-07-16T23:09:20Z |
last_indexed |
2025-07-16T23:09:20Z |
_version_ |
1837846873761644544 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 102
https://doi.org/10.46813/2021-134-102
DIFFUSION IN MOMENTUM OF RELATIVISTIC ELECTRONS
WITH A THERMAL SPREAD PASSING THROUGH AN UNDULATOR
V.V. Ognivenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: ognivenko@kipt.kharkov.ua
The longitudinal momentum diffusion of electrons moving in a spatially periodic magnetic field of an undulator
is investigated, taking into account their initial energy spread. Expressions for the coefficient are obtained and the
dependences of the diffusion coefficient are determined both on the distance traveled by the electrons in the undula-
tor and on the value of the initial energy spread of the electrons. The possibility of decreasing the wavelength in
X-ray free electron lasers is discussed.
PACS: 41.60.-m, 41.60.Cr, 52.25.Gj
INTRODUCTION
The change in the mean square value of the momen-
tum in the flow of electrons interacting by means of the
electromagnetic fields they produce at the stage of spon-
taneous emission was studied in [1]. In this work, the
radiative relaxation of the electrons at the pre-Brownian
stage of the evolution of the system [2], when the elec-
trons have the same initial energy, is considered.
Since electrons move with different velocities in real
flows, it is necessary to establish a quantitative criterion
that determines the possibility of neglecting the differ-
ence in the initial velocities of electrons when describ-
ing the radiation relaxation of the beam. In addition, one
should take into account that the difference in the ve-
locities of electrons makes it possible to study the diffu-
sion of electrons in momentum space at the kinetic stage
of the evolution of the system [3], when the motion of
the electrons in the process of radiation relaxation be-
comes completely random. The description of electron
momentum diffusion in such flows is also of consider-
able interest in connection with the development of X-
ray free electron lasers (FEL) based on self-
amplification of spontaneous emission by a monoener-
getic ultrarelativistic electron beam moving in an undu-
lator [4 - 10].
1. DIFFUSION COEFFICIENT
The expression for the diffusion coefficient obtained
on the basis of the dynamics of individual particles mo-
tion can be written in the form [1, 2]
,v)(,
,
2
00001
01
2
0
sszss
s
z
s
s
z
t
t
zz
dqtqfqtXF
qtXFdtp
dt
dD
q
(1)
where zzz ppp , p is the momentum of the elec-
tron, s
s
z xtx ;,F is the pair interaction force,
sss qtxttxqtX 0
00
0 ,;,, , pr,x , p=mv, m
is the mass of the electron, 2122 )v1( c , с is the
velocity of light, 000 , sssx pr are the equilibrium
trajectory and momentum of sth electron in an undula-
tor, sssss tyq 00000 ,,,x p are the initial coordinates
and momentum of the sth electron at the time st0 when
it intersects the z=0 plane, sssss dtdydddq 00000 xp ;
sqf 0 is the single particle momentum distribution of
electrons, q is the region of integration over the initial
coordinates and momenta of emitting electrons.
We will assume that the relativistic electrons beam
moves in the positive direction of the z axis in a static
periodic magnetic field of the undulator
)sin()cos(0 zkzkH uyuxu eeH ,
where uuk 2 , 0H and u are the amplitude and
period of the magnetic field, zyx eee ,, are the unit vec-
tors of the Cartesian coordinate system x, y, z.
In the approximation of a small value of the undula-
tor parameter, the expression for the diffusion coeffi-
cient has the form [11]
)(K
0
2
001
222
0
szssz
t
t
u
z pwdpdtkeD
, (2)
where
q
ssszsb
ss
ss dtdydxn
qtRqtR
qtGqtG
000
011*0*
0110 v
;,;,
;,;,
rr
rr , (3)
*0*
0
22
*
2
0
2
*
2
0*
0
0
cos
sin
2
;,
RkR
R
R
R
RkR
R
qtG
s
z
zs
zs
zs
s
zsz
zss
r
*0
2 RRk zszuzs , uzszss kk 2
0 .
To obtain the explicit expressions for the diffusion
coefficient, we use simplifying assumptions. Let us con-
sider the spread in momenta of the electrons moving
near the beam axis x0=y0=0. We will take into account
the electromagnetic field of the emitting electrons mov-
ing only behind the considered (test) electron. We as-
sume that the distance between the considered electrons
is much greater than the thermal dispersal of these elec-
trons during the process under consideration, i.e. r
>>. Nevertheless, in this case, thermal dispersal of the
electrons at a distance greater than the wavelength of
undulator radiation 2
0
2 21 su K is possible.
Assuming also that the beam radius is greater than
the wavelength of undulator radiation in the transverse
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 103
direction: 2br , where zszsu , using
Eq. (2), we find
,,cossin
)(
v4
K
2
0
1max
24
0
4
00
0
12
244
zrkd
pwdpdz
nke
D
uzs
szssz
z
z
bu
z
(4)
where cos1 zs .
Suppose that the function w (pz0s) is a Maxwellian
2
2
0
0
2
exp
2
1
th
zmsz
th
sz
p
pp
p
pw . (5)
We will assume that the initial thermal spread in the
beam, as well as an increase in the energy spread of the
electrons, due to the radiation interaction, satisfy the
conditions pth pzm m. Substituting (5) into (4)
and integrating over the longitudinal momentum using
the value of the integral [12], we obtain the following
expression for the diffusion coefficient [11]
2
0
11max
4
0
12
4244
,sin
v4
K
zzzrd
dz
nke
pD
z
z
bmu
zz
(6)
where x
z
xx
c
cosexp 2
2
,
z
zm
u p
p
k 1 ,
uth
z
c kp
pz 2
,
sin
,
cos
min
2
1
max
zs
b
zszs
rz
r .
Pre-Brownian stage. In the case czz from ex-
pression (6), taking into account (1), we obtain
rrr
r
z
bum
z zzzzBz
zzz
znkep
dz
d
,2
,1615
v
K
22
2244
2 , (7)
where
x
x
x
arctgx
x
xB
32
15
2
1ln2
416
3511
3
5 2
.
Kinetic stage. In the case czz , the asymptotic
expression for the diffusion coefficient (6) at rzz
takes the form
,
25
8
v
K
16
5,
223
2
2
2
22225
2
2
th
zmzcrp
pp
r
cru
z
bm
zz
p
pp
z
zze
z
zB
zzknezpD
th
zmz
(8)
where
x
arctgxxB
5
6
15
22
2
12
2 ,
x
tx dtexex
0
22
21 .
For very large deviations of the momentum from the
equilibrium value (x is large) and very small deviations
of the momentum (x is small), we have
1...
15
4
3
2121
1....
4
15
2
31
2
1
42
2
422
xxxx
x
xxx
x (9)
Fig. 1 shows the graph of the function x .
Fig. 1. Function entering the formula
for the diffusion coefficient
Expression (8) at rzz takes the form
2
2
22
2
24425
v16
K5
th
zmz
p
pp
cru
z
bm
z ezzkneD
. (10)
Thus, at large distances, the diffusion coefficient is
independent of z. Such a dependence of the diffusion
coefficient on the coordinate or on time corresponds to
the kinetic stage of the evolution of a system consisting
of a large number of particles (see, for example, [3, 13-
15]).
2. MONOENERGETIC BEAM
For self amplification of spontaneous ultrashort wave-
length electromagnetic radiation, the spread in the mo-
mentum of relativistic electrons should be sufficiently
small uuzmth Lpp (see, for example, [5, 16]). This
inequality can be rewritten as cu zL 2 , where
DuuL 1 is the distance at which the intensity of
electromagnetic radiation reaches its maximum value,
1
0
3132
1 4 AbbuD IIrK , bbzb nreI 2
0v ,
emcI A
3 =17 kА. Therefore, at the stage of sponta-
neous emission (z<Lu), the initial energy spread of elec-
trons can be neglected, assuming that the electrons are
monoenergetic: 0zzszs pppw . In this case, us-
ing equations (2) and (3), the expression for the mean
square spread of the longitudinal momentum can be
written in the form
V
kc
nep
u
b
z 2
44
2 K
, (11)
yx
z xdxgydydV
,
0
23
0
1
00
11
1max
, (12)
where
x
xx
x
xg cos2sin21 2
;
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 104
yx mmax at 1*0 yy ; 1max x at
11* yy ;
2
0
0
1 y
yy
z
zr
m
;
22
1
22
1
1* ,0max
r
ry ;
zku , 11 zku , bubzzr rkr 200 .
Formula (12) can be transformed into a simpler form
422
8
0
1,2,
8
15
2
2
x
xxudxxudxV
r
, (13)
where xgxxu 22, , r ,min2 .
Fig. 2 plots the normalized momentum spread
2222 cmp z as a function of coordinate
z, calculated by formulas (11), (13) for the values
Н0=1.4 kG, u=4 cm, rb=50 μm, Ib=1 kA (a), 4 kA (b),
(nb=2.6 1015 cm-3, 1.32·1016 cm-3, respectively). The
curves correspond to the radiation wavelength and
the energy of electrons 0
2 mcEb : 2 (5.76) (black),
1.5 (6.65) (red), 1.0 (8.15) (green), 0.5 Å (11.53 GeV)
(blue).
Fig. 2. Dependence of the normalized longitudinal
momentum spread 2 on the z coordinate
in meters; Ib=1 kA (a), 4 kA (b). The numbers
on the curves represent the radiation wavelength
in angstroms
The dependences on the z coordinate were calcu-
lated up to the values of Lu. The white circles on the
curves indicate the values relz of the momentum spread
in coordinates in which the displacement of the elec-
trons relative to the equilibrium trajectory, due to the
radiation spread in the momentum, reaches half the
wavelength of the radiation:
0
2
0
2122 zzzzzrel ppz
rel
. The black circles on the
curves correspond to the displacement of the electrons
by the wavelength of the radiation.
It can be seen from the Fig. 2 that the spread in mo-
menta increases with an increase in the electron energy.
The distance zrel also increases with an increase in the
electron energy in proportional to 21
0 at z>zr. Since the
characteristic length of the undulator Lu is proportional
to the energy of the electrons, the relative distance
urel Lz decreases with increasing the energy of the
electrons.
CONCLUSIONS
The analysis shows that at the initial stage of the
beam motion, when the distance traveled by it in the
undulator is small compared to the distance zc, the rms
spread <(Δpz)2>1/2 linearly depends on the coordinate z,
for z>zr. The evolution of electrons in momentum space
at z<<zc corresponds to the pre-Brownian motion of
electrons.
The distance zc is equal in order of magnitude to the
distance, during which time τc (τc=zс/vz) the thermal
dispersal of two electrons relative to each other reaches
half the wavelength of the radiation:
22v cth . The time τc does not depend on
either the beam density or the force of the pair interac-
tion of electrons and is the duration of the "synchro-
nous" interaction of two electrons. During this time, the
phase of the force acting on the test electron changes
to .
At distances much larger than zc, the force of pair in-
teraction changes rapidly. As a result, at large distances
(z>>zr) the diffusion coefficient does not depend on the
coordinate, and the rms spread in the longitudinal mo-
mentum is proportional to z1/2. In this case, the kinetic
stage of electron diffusion in momentum space is real-
ized, and their motion becomes completely random.
As follows from the above calculations, the radiative
interaction of electrons can lead to an increase in the
energy spread in the beams, which are used to obtain
coherent electromagnetic radiation of the nanometer and
a shorter wavelength range.
For example, for an electron beam and an undulator
with the parameters given above (see Fig. 2), an in-
crease in the energy spread as a result of radiation re-
laxation can prevent the production of coherent radia-
tion with a wavelength less than 1.5 Å at Ib =1 kA and
1.0 Å at Ib = 4 kA, respectively.
REFERENCES
1. V.V. Ognivenko. Momentum spread in a relativistic
electron beam in an undulator // J. Exp. Theor. Phys.
2012, v. 115, № 5, p. 938-946; Zh. Eksp. Teor. Phys.
2012, v. 142, № 5, p. 1067-1076.
2. V.V. Ognivenko. Dynamical derivation of momen-
tum diffusion coefficients at collisions of relativistic
charged particles // J. Exp. Theor. Phys. 2016,
v. 122, № 1, p. 203-208; Zh. Eksp. Teor. Phys. 2016,
v. 149, № 1, p. 230-236.
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 105
3. N.N. Bogolyubov. Problems of Dynamical Theory in
Statictical Physics. Moscow: “Gostekhteorizdat”,
1946; Interscience, New York, 1962.
4. K.-J. Kim. Nucl. Instr. and Meth. 1986, v. A 250,
p. 396.
5. С. Pellegrini. Particle accelerators. 1990, v. 33,
p. 159.
6. P. Emma, R. Akre, J. Arthur, et al. First Lasing and
Operation of an Ångstrom-Wavelength Free-
Electron Laser // Nature Photonics. 2010, v. 4,
p. 641-647.
7. H. Tanaka, M. Yabashi, et al. A compact X-ray free-
electron laser emitting in the sub-ångström region //
Nature Photonics. 2012, v. 6, p. 540-544.
8. H. Weise, W. Decking. Commissioning and first
lasing of the European XFEL // Proc. 38th Free-
Electron Laser Conf. Santa Fe, NM, USA. 2017,
p. 9-13.
9. L. Giannessi, E. Allaria, L. Badano, et al. // Proc.
39th Free-Electron Laser Conf. Germany, Hamburg.
2019, p. 742.
10. R. Ganter, G. Aeppli, J. Alex, et al. // Proc. 39th
Free-Electron Laser Conf. Germany, Hamburg.
2019, p. 753.
11. V.V. Ognivenko // J. Exp. Theor. Phys. 2021 v. 132,
N 5, p. 766-775.
12. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev.
Integrals and Series. Elementary Functions. Mos-
cow: “Nauka”, 1981.
13. G. Uhlenbeck and G. Ford. Lectures in Statistical
Mechanics. Am. Math. Soc. Philadelphia, 1963.
14. V.P. Silin. Introduction to Kinetic Theory of Gases.
Moscow: “Nauka”, 1971.
15. A.I. Akhiezer and S.V. Peletminskii. Methods of
Statistical Physics. Moscow: “Nauka”, 1977; Per-
gamon, Oxford, 1981.
16. P. Sprangle, R.A. Smith // Phys. Rev. 1980, A21,
p. 293.
Article received 03.06.2021
ДИФФУЗИЯ ПО ИМПУЛЬСУ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ С ТЕПЛОВЫМ РАЗБРОСОМ,
ПРОХОДЯЩИХ В ОНДУЛЯТОРЕ
В.В. Огнивенко
Исследована диффузия по продольному импульсу электронов, движущихся в пространственно-
периодическое магнитное поле ондулятора, с учетом их начального энергетического разброса. Получены
выражения для коэффициента диффузии и определены зависимости его как от расстояния, пройденного
электронами в ондуляторе, так и от величины начального энергетического разброса электронов. Обсуждает-
ся возможность уменьшения длины волны в рентгеновских лазерах на свободных электронах.
ДИФУЗІЯ ПО ІМПУЛЬСУ РЕЛЯТИВІСТСЬКИХ ЕЛЕКТРОНІВ З ТЕПЛОВИМ РОЗКИДОМ,
ЩО ПРОХОДЯТЬ В ОНДУЛЯТОРІ
В.В. Огнівенко
Досліджено дифузію за поздовжнього імпульсу електронів, що рухаються в просторово-періодичне маг-
нітне поле ондулятора, з урахуванням їх початкового енергетичного розкиду. Отримано вираз для коефіціє-
нта дифузії й визначені залежності його як від відстані, вздовж ондулятора, так і від величини початкового
енергетичного розкиду електронів. Обговорюється можливість зменшення довжини хвилі в рентгенівських
лазерах на вільних електронах.
|