Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide
The process of wake fields excitation by a relativistic electron bunch in polar semiconductors is studied. Cylindrical semiconductor waveguide, in which relativistic electron bunch moves along axis, is considered. It is shown that the excited wake field in the terahertz and infrared frequency ranges...
Збережено в:
Дата: | 2022 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2022
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/195396 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide / V.A. Balakirev, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 76-81. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195396 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1953962023-12-05T11:46:39Z Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide Balakirev, V.A. Onishchenko, I.N. Novel and non-standard acceleration technologies The process of wake fields excitation by a relativistic electron bunch in polar semiconductors is studied. Cylindrical semiconductor waveguide, in which relativistic electron bunch moves along axis, is considered. It is shown that the excited wake field in the terahertz and infrared frequency ranges consists of the field of longitudinal HF and LF hybrid plasmon-phonon oscillations and the field of the HF and LF transverse polaritons, which are a set of eigen electromagnetic waves of the polar semiconductor waveguide. The spatio-temporal structure of the total excited wake field is obtained, the intensity of the excited wake waves is determined. Досліджено процес збудження кільватерних полів релятивістським електронним згустком у полярних напiвпровідниках. Розглянуто циліндричний напiвпровiдниковий хвилевод, вздовж вісі якого рухається релятивістський електронний згусток. Показано, що збуджене кільватерне поле в терагерцовому та інфрачервоному дiапазонах частот містить у собі поле повздовжніх ВЧ- i НЧ-гiбридних плазмон-фононних коливань, а також поле ВЧ- та НЧ-поперечних полярiтонiв, яке є набором власних електромагнітних хвиль напiвпровiдникового хвилеводу. Отримана просторово-часова структура результуючого кільватерного поля, визначена iнтенсивнiсть збуджених кільватерних хвиль. Исследован процесс возбуждения кильватерных полей релятивистским электронным сгустком в полярных полупроводниках. Рассмотрен цилиндрический полупроводниковый волновод, по оси которого движется релятивистский электронный сгусток. Показано, что возбуждаемое кильватерное поле в терагерцовом и инфракрасном диапазонах частот состоит из поля продольных ВЧ- и НЧ-гибридных плазмон-фононных колебаний, а также поля ВЧ- и НЧ-поперечных поляритонов, которые представляют собой набор собственных электромагнитных волн полупроводникового волновода. Получена пространственно-временная структура результирующего кильватерного поля, определена интенсивность возбуждаемых кильватерных волн. 2022 Article Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide / V.A. Balakirev, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 76-81. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq http://dspace.nbuv.gov.ua/handle/123456789/195396 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Novel and non-standard acceleration technologies Novel and non-standard acceleration technologies |
spellingShingle |
Novel and non-standard acceleration technologies Novel and non-standard acceleration technologies Balakirev, V.A. Onishchenko, I.N. Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide Вопросы атомной науки и техники |
description |
The process of wake fields excitation by a relativistic electron bunch in polar semiconductors is studied. Cylindrical semiconductor waveguide, in which relativistic electron bunch moves along axis, is considered. It is shown that the excited wake field in the terahertz and infrared frequency ranges consists of the field of longitudinal HF and LF hybrid plasmon-phonon oscillations and the field of the HF and LF transverse polaritons, which are a set of eigen electromagnetic waves of the polar semiconductor waveguide. The spatio-temporal structure of the total excited wake field is obtained, the intensity of the excited wake waves is determined. |
format |
Article |
author |
Balakirev, V.A. Onishchenko, I.N. |
author_facet |
Balakirev, V.A. Onishchenko, I.N. |
author_sort |
Balakirev, V.A. |
title |
Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide |
title_short |
Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide |
title_full |
Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide |
title_fullStr |
Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide |
title_full_unstemmed |
Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide |
title_sort |
excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2022 |
topic_facet |
Novel and non-standard acceleration technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195396 |
citation_txt |
Excitation of wake fields by a relativistic electron bunch in a polar semiconductor waveguide / V.A. Balakirev, I.N. Onishchenko // Problems of Atomic Science and Technology. — 2022. — № 3. — С. 76-81. — Бібліогр.: 16 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT balakirevva excitationofwakefieldsbyarelativisticelectronbunchinapolarsemiconductorwaveguide AT onishchenkoin excitationofwakefieldsbyarelativisticelectronbunchinapolarsemiconductorwaveguide |
first_indexed |
2025-07-16T23:24:15Z |
last_indexed |
2025-07-16T23:24:15Z |
_version_ |
1837847812755161088 |
fulltext |
76 ISSN 1562-6016. ВАНТ. 2022. №3(139)
NOVEL AND NON-STANDARD ACCELERATION TECHNOLOGIES
https://doi.org/10.46813/2022-139-076
EXCITATION OF WAKE FIELDS BY A RELATIVISTIC ELECTRON
BUNCH IN A POLAR SEMICONDUCTOR WAVEGUIDE
V.A. Balakirev, I.N. Onishchenko
National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine
E-mail: onish@kipt.kharkov.ua
The process of wake fields excitation by a relativistic electron bunch in polar semiconductors is studied. Cylin-
drical semiconductor waveguide, in which relativistic electron bunch moves along axis, is considered. It is shown
that the excited wake field in the terahertz and infrared frequency ranges consists of the field of longitudinal HF and
LF hybrid plasmon-phonon oscillations and the field of the HF and LF transverse polaritons, which are a set of eigen
electromagnetic waves of the polar semiconductor waveguide. The spatio-temporal structure of the total excited
wake field is obtained, the intensity of the excited wake waves is determined.
PACS: 41.75.Lx, 41.85.Ja, 41.69.Bq
INTRODUCTION
Plasma phenomena in semiconductors and semimet-
als are an inherent property of these condensed media
[1 - 7]. The density of electron-hole plasma in semicon-
ductors with intrinsic conductivity (for example, silicon,
germanium and other) is relatively low, on the order of
10 13 310 ...10 cm , and is determined primarily by the
width of the energy gap between the valence band and
conduction band, and by the temperature of the material
too [1, 2]. In gapless semiconductors and semimetals
concentration of intrinsic carriers can be higher [8]. In
doped semiconductors, the concentration of carriers
(electrons in n-type semiconductors and holes in p-type
semiconductors) can be significantly increased (within
limits 13 18 310 ...10 cm ) and it depends mainly on the
dopant concentration [9].
All crystalline compounds have a mixed covalent-
ionic bond. For example, in gallium arsenide GaAs , the
contribution of the ionic bond to the total bond energy is
32%. The presence of ionic bond in semiconductor
compounds will influence on the polarization properties
of semiconductors and, accordingly, the frequency dis-
persion of the dielectric constant of semiconductors [10,
11]. The appearance of a phonon component in the die-
lectric constant, in turn, will lead to a significant change
spectra of longitudinal (potential) and transverse (vor-
tex) electromagnetic oscillations in semiconductors.
Since solid-state plasma is characterized by a high
concentration of carriers and by a degree of homogenei-
ty and stability, it seems very promising to use plasma
of semiconductors and semimetals to realization wake
methods of relativistic charged particles (primarily elec-
trons and positrons) acceleration [12]. In such scheme
an intense relativistic electron bunch passes through
vacuum channel of a semiconductor (semimetal) and
excites wake eigen oscillations (plasmons, optical elec-
tromagnetic waves in the infrared range), which are in
Cherenkov synchronism with a relativistic electron
bunch 0( )k c , is wave frequency, ( )k is
longitudinal wavenumber, 0 0 / 1v c , c is speed of
light in vacuum. Excited wake waves can be used to
accelerate charged particles [13, 14].
It is possible to talk about long-lived excitations in a
solid-state plasma, as in any other medium, only if their
eigen frequencies significantly exceed the frequencies
of collisions with phonons and impurity atoms. Further
we will assume that this condition is satisfied.
In the present work, the process of excitation of
wake electromagnetic fields in the polar semiconductor
waveguide by a relativistic electron bunch is investigat-
ed. The wake field includes the longitudinal hybrid
plasmon-phonon oscillations of a polar semiconductors,
аnd a set of eigen bulk electromagnetic waves (bulk
polaritons) of the polar semiconductor waveguide. Our
aim is to obtain wake wave intensity, the frequency
spectrum and a spatio-temporal structure of excited
wake fields.
1. STATEMENT OF THE PROBLEM
Let's consider the homogeneous polar semiconduc-
tor cylinder of radius b, the side surface of which is
covered with a perfectly conductive metal film. Along
the axis of the polar semiconductor waveguide, an ax-
isymmetric relativistic electron bunch moves uniformly
and rectilinearly. Below we will only talk about iso-
tropic media. These are primarily crystals with a cubic
lattice.
For the polar semiconductors the permittivity have
the form [10, 11 ]
22 2
2 2 2
( )
pL
opt
T
, (1)
opt is optical permittivity, L and T are frequencies
of the longitudinal and transverse phonons,
/p Len opt is frequency of plasma oscillation,
24 e
Len
e
n e
m
is Langmuir frequency,
en is free car-
rier concentration,
em is effective mass of electrons, e
is electron charge. The first term in the expression for
the permittivity (1) is due to the contribution to the total
polarization of the ionic subsystem of the crystal, and
the second term takes into account the polarization of
free carriers (plasma).
mailto:onish@kipt.kharkov.ua
ISSN 1562-6016. ВАНТ. 2022. №3(139) 77
2. DISPERSION PROPERTIES
OF POLAR DIELECTRIC WAVEGUIDE
Let us now briefly discuss the question of the propa-
gation of electromagnetic waves in an ion dielectric
waveguide. Dispersion equations for potential longitu-
dinal oscillations and electromagnetic waves have the
forms
( ) 0 , (2)
22
2
2 2
( ) 0n
zk
c b
, (3)
zk is longitudinal wave number. The dielectric constant
is described by the formula (1). The solution of the
equation (2) is two frequencies
2
2 2 2 2
( )2 2 2
2 2
L p L p
lp T p
. (4)
As a result of the interaction of longitudinal optical
phonons and plasma oscillations, high-frequency (HF)
(sign +) and low-frequency (LF) (sign -) hybrid plas-
mon-phonon oscillations are formed. At that, in the case
L p the frequency of HF hybrid oscillations always
exceeds the frequency of longitudinal optical phonons
( )
lp L , and the frequency of LF hybrid oscillations
is always lower than the plasma frequency ( )
lp p .
At a low concentration of free carriers 2 2
L p , one of
them ( ( )
lp ) is close to the frequency of longitudinal
optical phonons
( )2 2 2 st opt
lp L p
st
,
and the other ( ( )
lp ) to the frequency
( ) opt
lp p
st
,
where
st is static permittivity ( st opt ).
If p L , then the frequencies
L and p change
places. The frequency ( )
lp is higher than the plasma
frequency, and the frequency ( )
lp is lower than the
frequency of longitudinal optical phonons. At high
plasma density
2 2
p L , the frequency
( )
lp
is close
to the plasma frequency
( )2 2 2
lp p L
st
, st opt ,
and the frequency
( )
lp
is approximately equal to the
frequency
( ) opt
lp L
st
.
Let us now consider the dispersion properties of
transverse (vortex) electromagnetic waves in polar sem-
iconductors (transverse polaritons), which are described
by equation (3). Taking into account the expression for
the dielectric constant (1), this equation can be reduced
to the following
2 2
2 2 2 2
2 2
L
np s
T
k v
, (5)
where /s optv c ,
2 2
2 2
2
n
np p
opt
c
b
.
Roots of the biquadratic equation (5)
2 2 2 2
( )2
2
L np s
ntp
k v
2
2 2 2 2
2 2 2 2( )
2
L np s
T np s
k v
k v
(6)
describe the dispersion of HF (sign +) and LF (sign -) of
transverse polaritons. The dispersion curve of HF
polaritons starts at the cutoff frequency
2
2 2 2 2
( )2 2 2
2 2
L np L np
nc T np
.
Further, with an increase in the longitudinal wave
number k , the frequency increases and at k , the
dispersion curve asymptotically approaches from above
to the straight line
skv . The dispersion curve of
low-frequency polaritons ( ) ( )ntp k also begins with cut-
off frequency
2
2 2 2 2
( )2 2 2
2 2
L np L np
nc T np
,
then enters on the section of a straight line
/ stkc and, at k asymptotically approaches
from below to the frequency of transverse optical pho-
nons.
The presence of free carriers in a polar semiconduc-
tor raises the cutoff frequencies, and in general, the
qualitative picture of the dispersion of transverse
polaritons in polar semiconductor waveguides is the
same as in ionic dielectric waveguides [15].
2.1. DETERMINATION OF THE GREEN
FUNCTION
We will solve the problem of wake field excitation
by an axisymmetric relativistic electron bunch in the
polar semiconductor waveguide with permittivity (1) as
follows [12, 16]. We will find wake field GE (Green
function) of elementary charge, having the form of a
thin ring with charge dQ . Elementary charge density of
an infinitely thin ring has the form
0 0 0
0
0 0
( , ) ( )
( )
2
b
o
dQ r t r r z
d t t
v r v
, (7)
0 0 0 0 0 0( , )2dQ j t r r dr dt ,
0 0 0 0 0( , ) / /b b
eff eff
Q
j r t R r r T t t
s t
, (8)
where Q is full charge of bunch, 0t is time of entry of
elementary charge, 0r is radius ring, 0v is bunch veloci-
ty, ,b bt r are characteristic duration and transverse bunch
size, 0 / bR r r is function described transversal profile
78 ISSN 1562-6016. ВАНТ. 2022. №3(139)
of bunch density,
effs is characteristic square of bunch
transverse section,
/
2
0 0 0
0
ˆ ˆ, 2 ( ) .
bb r
eff bs r R d
The function 0 / bT t t describes longitudinal pro-
file,
efft is effective bunch duration,
0 0
0
ˆ ˆ, 2 ( ) .eff bt t T d
Let us represent the electromagnetic field excited by
an elementary ring charge (7) as
0 0 0 0( , , , ) ( , , , )GE r r z t t dQ r r z t t .
Then the full electromagnetic field, excited by an
electron bunch of finite dimensions, is found by sum-
ming (integrating) the fields of elementary ring bunches
0 0 0 0 0 0 0
0
( , , ) 2 ( , ) ( , , , )
b t
E r z t r dr dt j r t r r z t t
.
Taking into account relation (8), this expression can
be written as follows
0
0 0
0
2
( , , )
b
eff eff b
rQ
E r z t R r dr
s t r
0
0 0 0( , , , )
t
b
t
T r r z t t dt
t
.
The Green's function for the considered dielectric
waveguide with a permittivity ( ) was obtained in
[12, 16] in the form of a series in Bessel functions
0
0 0
2 2
1 1
2
( , ) ( )
( )
n n
Gz n
n n
r r
J J
i b b
E r t dQ S t
b J
, (9)
where
2 ( )
( )
( ) ( )
i t
n
n
kd
S t e
D
, (10)
2
2 2
0 2
( ) ( ) n
n lD k k
b
, (11)
0 0/ , /lk v k c ,
n are the roots of the Bessel
function
0 ( )J x ,
0 0/t t t z v .
The zeros of the dielectric constant ( ) 0 are the
poles of the integrand (10). Calculating the residues at
the poles
( ) 0,lp i
( ) 0lp i , we find the
potential part of the Green's function
( ) ( )2 ( ) ( ) ( ) ( )
0( , ) 2 ( ) ( , )cosl
Gz lp lp lp lp lp
opt
dQ
E r t t k L G k r k r t
( )2 ( ) ( ) ( ) ( )
0( , )coslp lp lp lp lpk L G k r k r t , (12)
( )2 2
( )
( )2 ( )2
lp T
lp
lp lp
L
,
2 ( )2
( )
( )2 ( )2
T lp
lp
lp lp
L
,
1, 0,
( )
0, 0,
t
t
t
( ) ( )
0/lp lpk v ,
0 0
0 0
0
0
0
0 0 0
0
( )
( , ), ,
( )
( , )
( )
( , ), ,
( )
I kr
kr kb r r
I kb
G kr kr
I kr
kr kb r r
I kb
(13)
0 0 0 0 0( , ) ( ) ( ) ( ) ( )kr kb I kb K kr I kr K kb .
In the limiting case 1kb , the expression for the
function
0( , )G kr kr is simplified
0 0 0 0
0
0 0 0 0
( ) ( ), ,
( , )
( ) ( ), .
I kr K kr r r
G kr kr
I kr K kr r r
The potential wake field, excited by an ring bunch,
contains two waves: HF and LF plasmon-phonon
waves, the frequencies of which are determined by ex-
pression (4).
The integrand in (10) also has poles that are the
roots of the equation
2
2 2
0 2
( ) ( ) 0n
n lD k k
b
. (14)
Equation (14) determines the frequency spectrum of
the radial harmonic with the number n of electromag-
netic waves excited by the relativistic electron bunch in
ion dielectric waveguide. With respect to the square of
the frequency 2 , the spectrum equation (14) reduces
to determining the roots of the quadratic equation. The
frequencies ( )
ntp , corresponding to the roots of this
equation, lie in the microwave and infrared ranges. The
spectrum equation (19) can be written as follows
2 22 2
2 2 2
2 2 2 2
0
1
,nL
opt n Len
T
c
b
where 0 0 /v c . The roots of this equation are of the
form
( ) 2 21
2
ntp T st n
opt
d
d
2
2 2 2 24T st n n T std d
. (15)
Here
2 2
0 0,opt opt st std d .
For the frequency ( )
ntp it is always ( )
ntp L , and
for the frequency ( )
ntp we have ( )
ntp T . In the limit-
ing case
2 2
T st nd
expression for frequencies (15) are simplified
2
2 2 2 2
( ) 20
2 2
0 1
n n
ntp Len
st st
c
d b
, (16)
2( ) 2 2st
ntp T n
opt opt st
d
d d d
. (17)
In the limiting case
2 2 2 st
n L T
opt
expressions for the frequencies of the eigen waves of
the semiconductor waveguide follow from (15) and
have the form
ISSN 1562-6016. ВАНТ. 2022. №3(139) 79
2( ) 2 ,ntp T
2
2 2 2
( ) 0
2
0 1
n n
ntp
opt optd
.
Frequency ( )
ntp (16) is known in the theory of wake
fields excitation by relativistic electron bunch in semi-
conductor waveguides [12] and is in the microwave
(terahertz) range. The frequency ( )
ntp (17) lies in the
infrared range and the process of wake fields excitation
at this frequency, as it seems to us, has not been previ-
ously studied.
For further analysis, the Fourier integral (10) is con-
veniently represented as
2 2
2 22
2 2 ( ) 2 ( )
0
( )1
( )
( )
i t
T
n
opt ntp ntp
ek
S t d
d k
.
By calculating the residues in the poles
( ) 0,ntp i ( ) 0,ntp i we find the electro-
magnetic part of the Green's function
( ) ( ) ( )
0 0 0( , , ) ( , , ) ( , , )t
Gz tz tzE r r t dE r r t dE r r t , (18)
( ) ( ) ( )
0 0
1
( , , ) ( , ) ( )cosw
tz n n ntp
nopt
dE
dE r r t r r t t
d
, (19)
2
2 2 2
( ) 22
( )
2 ( ) 2 ( ) ( )
ntp Tn
n
n ntp ntp ntpk b
,
2
2 2 2
2 ( )2
( )
2 ( ) 2 ( ) ( )
T ntpn
n
n ntp ntp ntpk b
, ( ) ( )
0/ntp ntpk v ,
0 0 0
0 2
1
( / ) ( / )
( , )
( )
n n
n
n
J r b J r b
r r
J
,
2
4
w
dQ
dE
b
.
Expressions (18), (19) describe bulk wake electro-
magnetic field excited by the infinitely thin electron ring
bunch in polar semiconductor waveguide.
Thus, we obtained the Green function, which con-
tains the longitudinal (potential) and electromagnetic
(vortex) parts. The potential part is a field of longitudi-
nal bulk plasmon-phonon oscillations. As for the elec-
tromagnetic part of the Green function, it contains a set
of radial electromagnetic waves of polar semiconductor
waveguide.
2.2. EXCITATION OF WAKEFIELDS
BY AN ELECTRON BUNCH OF FINITE SIZE
The resulting electromagnetic field ( , )E r of the
electron bunch can be determined by summing the fields
GE of elementary electron ring charges. We first con-
sider the excitation of wake plasmon-phonon oscilla-
tions by the relativistic electron bunch of finite dimen-
sions.
For the wake field of plasmon-phonon oscillations
we obtain the following expression
( ) ( )2 ( ) ( ) ( )2
( , ) ( ) ( )l
z lp lp lp lp
opt
Q
E r k L k r Z
( )2 ( ) ( ) ( )( ) ( )lp lp lp lpk L k r Z , (20)
where 0/t z v ,
0 0 0
1
( ) / cos ( )b
eff
Z T t d
t
, (21)
0 0 0 0
0
2
( ) / ( , )
b
b
eff
kr R r r G kr kr r dr
s
. (22)
The function ( )Z describes the distribution of
the wake field at a frequency in the longitudinal di-
rection at each moment of time and function ( )kr de-
scribes the distribution of the wake field by cross sec-
tion of the waveguide. We will consider an electron
bunch with a symmetric longitudinal profile
0 0( ) ( )T T .
Behind a bunch , the wake field (20) of plas-
ma oscillations has the form of a monochromatic wave
( ) ( )2 ( ) ( ) ( ) ( )2 ˆ( , ) ( ) ( ) ( )cosl
z lp lp lp lp lp
opt
Q
E r k L T k r
( )2 ( ) ( ) ( ) ( )ˆ( ) ( )coslp lp lp lp lpk L T k r
, (23)
where
0
2ˆ( ) cos( )
eff b
t
T T t dt
t t
(24)
is the Fourier component of a function / bT t t on fre-
quency . We present the expressions for the Fourier
component ( )T for Gaussian longitudinal profile of
the electron bunch
2 2 2
0 / ( ) /4
0
ˆ( / ) , ( )b bt t
bT t e T e
.
Wake HF and LF plasmon-phonon waves is most ef-
ficiently radiated when the coherence condition is ful-
filled
( ) 2( ) 1lp bt . If the inequality
( ) 2( ) 1lp bt
holds, then the electron bunch radiates incoherently and
the amplitude of the wake plasma wave is exponentially
small.
Let’s consider an electron bunch with a Gaussian
transverse profile
2 2/
( ) br r
R r e
. (25)
When the condition 1Lk b is satisfied on the axis
0r the function ( )kr takes on the value
2 2
1
(0) ,
2 4
b b
b b
k r
e Ei
, (26)
z te
Ei z dt
t
is integral exponential function. For thin 1b and
wide 1b bunches the asymptotic representations
for function (26) are
1 1
ln , 1,
2
(0)
1
, 1.
b
b
b
b
Thus, with the full coherence of the Cherenkov exci-
tation of wake plasma wave
( ) 1lp bt ,
( ) 1lp bk r the
wake field on the axis of the waveguide takes the max-
imum value
80 ISSN 1562-6016. ВАНТ. 2022. №3(139)
( ) ( )2 ( ) ( )
( )
2 2
( , ) ( ) ln cosl
z lp lp lp
opt lp b
Q
E r k L
k r
( )2 ( ) ( )
( )
2
ln coslp lp lp
lp b
k L
k r
. (27)
Let us now consider the excitation of wake electro-
magnetic waves by an electron bunch in the dielectric
waveguide. Using the electromagnetic Green function
(23), we obtain the wake electromagnetic field as a su-
perposition of radial modes
0
( ) ( ) ( )
2 2
1 1
4
( , ) ( )
( )
n
t
z n n ntp
n n
r
J
Q b
E r Z
b J
( ) ( )( )n ntpZ , (28)
0 0
0 0 0
0
2
b
n n
eff b
r r
R J r dr
s r b
.
For a symmetric electron bunch in the “wave zone”
( ) 1ntp , the wake field (28) is a superposition of
radial monochromatic modes of the semiconductor
waveguide
0
( ) ( ) ( ) ( )
2 2
1 1
4 ˆ( , ) cos
( )
n
t
z n n n ntp
n n
r
J
Q b
E r T
b J
( ) ( ) ( )ˆ cosn n ntpT
, (29)
where ( ) ( )ˆ ˆ( )n ntpT T is Fourier component (22).
We also present an expression for the power of the
wake electromagnetic radiation, which we define as the
component of the total Poiting vector along the dielec-
tric waveguide axis
( ) ( )
0
2
4
b
t t
r
c
P E H rdr
.
Angle brackets mean averaging over high-frequency
wake field oscillations. As a result, for the radiated
power we obtain the following expression
( ) ( )2
2 ( ) ( )2 ( )2
2 2
1 1
ˆ2 ( )
( )
ntp ntbn
ntp n n
n n n
k
P Q c T
cJ
( ) ( )
( ) ( )2 ( )2ˆ( )
ntp ntb
ntp n n
k
T
c
. (30)
For an electron bunch with a Gaussian longitudinal
and transverse profiles the coefficients n and ˆ
nT ,
which are determined by the specific form of the trans-
verse and longitudinal density profiles of the bunch,
have the form
( )2 2
( )ˆ exp
4
ntp b
n
t
T
, (31)
2
0
1/
0 0 0 0
0
2 ( ) ,
b
b
n n b b
r
J e d
b
.
When the condition 1b is satisfied, the expres-
sion for the coefficient n is simplified
2 21
exp
4
n n b
. (32)
Accordingly, expression (29) for a Gaussian bunch,
taking into account relations (31), (32), takes the form
( ) 22 2
0
( ) ( ) ( )4 4
2 2
1 1
4
( , ) cos
( )
ntp bn b
tn
t
z n ntp
n n
r
J
Q b
E r e e
b J
( ) 2
( ) ( )4 cos
ntp bt
n ntpe
. (33)
For the radiated power (30), we have
2 2
( )2 2
( ) ( )
2
2 ( ) ( )2 2
2 2
1 1
2 ( )
( )
n b
ntp bt
ntp ntb
ntp n
n n n
ke
P Q c e
cJ
( )2 2
( ) ( )
( ) ( )2 2( )
ntp bt
ntp ntb
ntp n
k
e
c
.
From expression (33) it follows that an electron
bunch excites finite number of radial modes of electro-
magnetic radiation, for which the coherence condition
( )2 2 2 2 21, / 1ntp b n bt r b for excitation by an electron
bunch is satisfied.
CONCLUSIONS
Polar semiconductors are the plasma-like media, in
which wake electromagnetic fields can be excited by the
relativistic electron bunches. In the semiconductors
crystals of this type, there are two groups of oscillation
branches of in the infrared and terahertz frequency
ranges. These are, first of all, longitudinal HF and LF
plasma-phonon oscillations of a polar semiconductor.
And also in the infrared range there are the two branch-
es corresponding to HF and LF transverse bulk
polaritons of the media, which is a set of electromagnet-
ic eigen waves of a polar semiconductor waveguide. For
all of these branches, analytical expressions for the
wake fields excited by a relativistic electron bunch are
obtained and investigated.
REFERENCES
1. V.L. Bonch-Bruevich, S.G. Kalashnikov. Semicon-
ductor physics. M.: “Nauka”, 1977, 672 p.
2. I.A. Anselm. Introduction to the theory of semicon-
ductors. M.: “Nauka”, 1968, 616 p.
3. F. Platzman, P. Wolf. Waves and interactions in
solid plasma. M.: “Mir”, 1975, 427 p.
4. N.B. Brandt, V.A. Kulbchinsky. Quasiparticles in
condensed matter physics. M.: “Fizmatlit”, 2005,
632 p.
5. Yu.K. Pozhela. Plasma and current instability in
semiconductors. M.: “Fizmatlit”, 1977, 378 p.
6. N.N. Beletsky, A.A. Bulgakov, S.I. Khankina,
V.M. Yakovenko. Plasma instabilities and nonline-
ar phenomena in semiconductors. Kyiv: “Naukova
Dumka”, 1984, 191 p.
7. Z.S. Brasis. Active and nonlinear interactions upon
excitation of plasma-type polaritons in semiconduc-
tors // Lithuanian Physical Journal. 1981, v. 21,
№ 4, p. 73-117.
8. I.M. Tsidilkovsky. Gapless semiconductors. M.:
“Nauka”, 1986, 240 p.
ISSN 1562-6016. ВАНТ. 2022. №3(139) 81
9. V.I. Fistul. Heavily doped semiconductors. M.:
“Nauka”, 1967.
10. N.L. Dmitruk, V.L. Litovchenko, V.G. Strizhevsky.
Surface polaritons in semiconductors and dielec-
trics. Kyiv: “Naukova Dumka”, 1989, 376 p.
11. V.V. Briskin, D.N. Mirlin, Yu.A. Firsov. Surface
optic phonon in ionic cristall // UFN. 1974, v. 113,
№ 1, p. 29-67.
12. V.A. Balakirev, I.N. Onishchenko. Excitation of
bulk and surface wake fields by relativistic electron
beam in plasma of semiconductors and semimetals.
arXiv:2012.08949 [physics.acc-ph].
13. V.A. Balakirev, N.I. Karbushev, A.O. Ostrovsky,
Yu.V. Tkach. Theory of Cherenkov amplifiers and
generators based on relativistic beams. Kyiv:
“Naukova Dumka”, 1993, 207 p.
14. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko,
G.V. Sotnikov. Chardge particle accelerated by
wakefields in a dielectric resonator with exciting
electron bunch channel // Technical Physics Letters.
2003, v. 29, № 7, p. 589-591.
15. V.A. Balakirev, I.N. Onishchenko. Wakefield exci-
tation by a short laser pulse in ion dielectrics.
arXiv:2002.09335 [physics.acc-ph].
16. V.A. Balakirev, I.N. Onishchenko. Wake excitation
of volume and surface waves by a relativistic elec-
tron bunch in ion dielectric // Problems of Atomic
Science and Technology. Series “Plasma Electron-
ics and New Methods of Acceleration”. 2020, № 1,
p. 270-275.
Article received 19.10.2021
ЗБУДЖЕННЯ КІЛЬВАТЕРНИХ ПОЛІВ РЕЛЯТИВІСТСЬКИМ ЕЛЕКТРОННИМ ЗГУСТКОМ
У ПОЛЯРНОМУ НАПIВПРОВIДНИКОВОМУ ХВИЛЕВОДІ
В.A. Балакiрєв, I.М. Онiщенко
Досліджено процес збудження кільватерних полів релятивістським електронним згустком у полярних
напiвпровідниках. Розглянуто циліндричний напiвпровiдниковий хвилевод, вздовж вісі якого рухається
релятивістський електронний згусток. Показано, що збуджене кільватерне поле в терагерцовому та
інфрачервоному дiапазонах частот містить у собі поле повздовжніх ВЧ- i НЧ-гiбридних плазмон-фононних
коливань, а також поле ВЧ- та НЧ-поперечних полярiтонiв, яке є набором власних електромагнітних хвиль
напiвпровiдникового хвилеводу. Отримана просторово-часова структура результуючого кільватерного поля,
визначена iнтенсивнiсть збуджених кільватерних хвиль.
ВОЗБУЖДЕНИЕ КИЛЬВАТЕРНЫХ ПОЛЕЙ РЕЛЯТИВИСТСКИМ ЭЛЕКТРОННЫМ СГУСТКОМ
В ПОЛЯРНОМ ПОЛУПРОВОДНИКОВОМ ВОЛНОВОДЕ
В.A. Балакирев, И.Н. Онищенко
Исследован процесс возбуждения кильватерных полей релятивистским электронным сгустком в поляр-
ных полупроводниках. Рассмотрен цилиндрический полупроводниковый волновод, по оси которого движет-
ся релятивистский электронный сгусток. Показано, что возбуждаемое кильватерное поле в терагерцовом и
инфракрасном диапазонах частот состоит из поля продольных ВЧ- и НЧ-гибридных плазмон-фононных ко-
лебаний, а также поля ВЧ- и НЧ-поперечных поляритонов, которые представляют собой набор собственных
электромагнитных волн полупроводникового волновода. Получена пространственно-временная структура
результирующего кильватерного поля, определена интенсивность возбуждаемых кильватерных волн.
|