Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions
The pilot studies have been conducted to determine the biocidal effects of ozone and plasma chemical treatment for 1, 2, and 3 h on the strain “Moldavian” of infectious rhinotracheitis virus, reference strain of Escherichia coli ATCC 25922, atypical mycobacteria of the species Mycobacusleum phlei an...
Gespeichert in:
Datum: | 2021 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2021
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/195427 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions / G.V. Taran, D.V. Kudin, O.O. Zamuriev, P.О. Opalev, М.О. Yaroshenko, О.М. Korneikov, V.L. Arefiev, M.V. Kalashnik // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 177-182. — Бібліогр.: 22 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-195427 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1954272023-12-05T12:12:06Z Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions Taran, G.V. Kudin, D.V. Zamuriev, O.O. Opalev, P.О. Yaroshenko, М.О. Korneikov, О.М. Arefiev, V.L. Kalashnik, M.V. Gas discharge, plasma-beam discharge, and their applications The pilot studies have been conducted to determine the biocidal effects of ozone and plasma chemical treatment for 1, 2, and 3 h on the strain “Moldavian” of infectious rhinotracheitis virus, reference strain of Escherichia coli ATCC 25922, atypical mycobacteria of the species Mycobacusleum phlei and archival strain of Aspergillus flavus artificially introduced into aqueous solution. It is shown that both treatments of aqueous solution contaminated with infectious rhinotracheitis virus have virucidal properties at the level of 95…100%. It was found that bactericidal (bacteriostatic) effect of ozone treatment for Escherichia coli fluid was 100% for all the time parameters. For plasma chemical treatment, the bacteriostatic effect (23%) was shown after the treatment within 3 h. The bactericidal (bacteriostatic) effect of ozone treatment for water samples contaminated with mycobacteria of the species M. phlei was only 65% at the treatment for 3 h. There was no bacteriostatic effect for plasma chemical treatment at any exposure. When studying the fungicidal (fungistatic) properties of ozone treatment for aqueous solution contaminated with a test culture of Aspergillus flavus, fungicidal properties were established (growth retardation by 95…98%). No fungicidal or fungistatic properties were shown for plasma chemical treatment. Проведено пілотні дослідження щодо визначення біоцидного впливу озону та плазмохімічного розряду впродовж 1, 2, та 3 год на вірус інфекційного ринотрахеїту штаму «Молдавський», референтний штам кишкової палички Escherichia coli ATCC №25922, атипові мікобактерії виду Mycobacterium phlei та музейний штам Aspergillus flavus, які штучно внесені до води. Показано, що обидві обробки водного розчину, контамінованого вірусом інфекційного ринотрахеїту, виявили віруліцидні властивості на 95…100%. Встановлено, що бактерицидна (бактеріостатична) ефективність озонування рідини з кишковою паличкою становила 100% для всіх часових параметрів, а для плазмохімічного розряду бактеріостатична дія (на 23%) проявилося при обробки впродовж 3 год. При цьому бактерицидна (бактеріостатична) ефективність озонування проб води, контамінованих мікобактеріями виду M. рhlei, складала 65% тільки за експозиції 3 год. Обробка плазмохімічним розрядом не виявила бактеріостатичного ефекту за жодної експозиції. При вивченні фунгіцидних (фунгістатичних) властивостей озонової обробки водного розчину, контамінованого тест-культурою Aspergillus flavus, встановили фунгіцидні властивості – виявили затримку росту на 95…98%. Плазмохімічний розряд не виявив ні фунгіцидних, ані фунгістатичних властивостей. Проведены пилотные исследования по определению биоцидного воздействия озона и плазмохимического разряда в течение 1, 2 и 3 ч на вирус инфекционного ринотрахеита штамма «Молдавский», референтный штамм кишечной палочки Escherichia coli ATCC №25922, атипичные микобактерии вида Mycobacterium phlei и музейный штамм Aspergillus flavus, искусственно внесенные в воду. Показано, что обе обработки водного раствора, контаминированного вирусом инфекционного ринотрахеита, обнаружили вирулецидные свойства на 95…100%. Установлено, что бактерицидная (бактериостатическая) эффективность озонирования воды с кишечной палочкой составляла 100% для всех временных параметров, а для плазмохимического разряда бактериостатическое действие (на 23%) проявилось при обработке в течение 3 ч. При этом бактерицидная (бактериостатическая) эффективность озонирования проб воды, контаминированных микобактериями вида M. рhlei, составляла 65% только для экспозиции 3 ч. Обработка плазмохимическим разрядом не выявила бактериостатического эффекта при экспозиции. При изучении фунгицидных (фунгистатических) свойств озоновой обработки водного раствора, контаминированного тест-культурой Aspergillus flavus, установили фунгицидные свойства – обнаружили задержку роста на 95…98%. Плазмохимическая обработка не проявила ни фунгицидных, ни фунгистатических свойств. 2021 Article Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions / G.V. Taran, D.V. Kudin, O.O. Zamuriev, P.О. Opalev, М.О. Yaroshenko, О.М. Korneikov, V.L. Arefiev, M.V. Kalashnik // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 177-182. — Бібліогр.: 22 назв. — англ. 1562-6016 PACS: 52.80. Hc, 52.90.+z,52.75.−d DOI: https://doi.org/10.46813/2021-134-177 http://dspace.nbuv.gov.ua/handle/123456789/195427 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Gas discharge, plasma-beam discharge, and their applications Gas discharge, plasma-beam discharge, and their applications |
spellingShingle |
Gas discharge, plasma-beam discharge, and their applications Gas discharge, plasma-beam discharge, and their applications Taran, G.V. Kudin, D.V. Zamuriev, O.O. Opalev, P.О. Yaroshenko, М.О. Korneikov, О.М. Arefiev, V.L. Kalashnik, M.V. Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions Вопросы атомной науки и техники |
description |
The pilot studies have been conducted to determine the biocidal effects of ozone and plasma chemical treatment for 1, 2, and 3 h on the strain “Moldavian” of infectious rhinotracheitis virus, reference strain of Escherichia coli ATCC 25922, atypical mycobacteria of the species Mycobacusleum phlei and archival strain of Aspergillus flavus artificially introduced into aqueous solution. It is shown that both treatments of aqueous solution contaminated with infectious rhinotracheitis virus have virucidal properties at the level of 95…100%. It was found that bactericidal (bacteriostatic) effect of ozone treatment for Escherichia coli fluid was 100% for all the time parameters. For plasma chemical treatment, the bacteriostatic effect (23%) was shown after the treatment within 3 h. The bactericidal (bacteriostatic) effect of ozone treatment for water samples contaminated with mycobacteria of the species M. phlei was only 65% at the treatment for 3 h. There was no bacteriostatic effect for plasma chemical treatment at any exposure. When studying the fungicidal (fungistatic) properties of ozone treatment for aqueous solution contaminated with a test culture of Aspergillus flavus, fungicidal properties were established (growth retardation by 95…98%). No fungicidal or fungistatic properties were shown for plasma chemical treatment. |
format |
Article |
author |
Taran, G.V. Kudin, D.V. Zamuriev, O.O. Opalev, P.О. Yaroshenko, М.О. Korneikov, О.М. Arefiev, V.L. Kalashnik, M.V. |
author_facet |
Taran, G.V. Kudin, D.V. Zamuriev, O.O. Opalev, P.О. Yaroshenko, М.О. Korneikov, О.М. Arefiev, V.L. Kalashnik, M.V. |
author_sort |
Taran, G.V. |
title |
Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions |
title_short |
Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions |
title_full |
Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions |
title_fullStr |
Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions |
title_full_unstemmed |
Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions |
title_sort |
studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2021 |
topic_facet |
Gas discharge, plasma-beam discharge, and their applications |
url |
http://dspace.nbuv.gov.ua/handle/123456789/195427 |
citation_txt |
Studying the influence of plasma chemical and ozone treatment on artificially implemented microflora in model aqueous solutions / G.V. Taran, D.V. Kudin, O.O. Zamuriev, P.О. Opalev, М.О. Yaroshenko, О.М. Korneikov, V.L. Arefiev, M.V. Kalashnik // Problems of Atomic Science and Technology. — 2021. — № 4. — С. 177-182. — Бібліогр.: 22 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT tarangv studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions AT kudindv studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions AT zamurievoo studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions AT opalevpo studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions AT yaroshenkomo studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions AT korneikovom studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions AT arefievvl studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions AT kalashnikmv studyingtheinfluenceofplasmachemicalandozonetreatmentonartificiallyimplementedmicroflorainmodelaqueoussolutions |
first_indexed |
2025-07-16T23:25:34Z |
last_indexed |
2025-07-16T23:25:34Z |
_version_ |
1837847895283335168 |
fulltext |
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 177
https://doi.org/10.46813/2021-134-177
STUDYING THE INFLUENCE OF PLASMA-CHEMICAL AND OZONE
TREATMENT ON ARTIFICIALLY IMPLEMENTED MICROFLORA
IN MODEL AQUEOUS SOLUTIONS
G.V. Taran1, D.V. Kudin1, O.O. Zamuriev1, P.О. Opalev1, М.О. Yaroshenko2,
О.М. Korneikov2, V.L. Arefiev2, M.V. Kalashnik2
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkiv, Ukraine;
2National Science Center “Institute of Experimental and Clinical Veterinary Medicine”,
Kharkiv, Ukraine
E-mail: kudin@kipt.kharkov.ua
The pilot studies have been conducted to determine the biocidal effects of ozone and plasma chemical treatment
for 1, 2, and 3 h on the strain “Moldavian” of infectious rhinotracheitis virus, reference strain of Escherichia coli
ATCC 25922, atypical mycobacteria of the species Mycobacusleum phlei and archival strain of Aspergillus flavus
artificially introduced into aqueous solution. It is shown that both treatments of aqueous solution contaminated with
infectious rhinotracheitis virus have virucidal properties at the level of 95…100%. It was found that bactericidal
(bacteriostatic) effect of ozone treatment for Escherichia coli fluid was 100% for all the time parameters. For plasma
chemical treatment, the bacteriostatic effect (23%) was shown after the treatment within 3 h. The bactericidal (bacte-
riostatic) effect of ozone treatment for water samples contaminated with mycobacteria of the species M. phlei was
only 65% at the treatment for 3 h. There was no bacteriostatic effect for plasma chemical treatment at any exposure.
When studying the fungicidal (fungistatic) properties of ozone treatment for aqueous solution contaminated with a
test culture of Aspergillus flavus, fungicidal properties were established (growth retardation by 95…98%). No fun-
gicidal or fungistatic properties were shown for plasma chemical treatment.
PACS: 52.80. Hc, 52.90.+z,52.75.−d
INTRODUCTION
The issue of clean water closely depends on the as-
sessment of the microbiological spectrum for surface
water used in water treatment systems. Species compo-
sition and quantity of microorganisms in drinking water
are the most important indicators of its quality. Water
contaminated with bacteria, viruses, micromycetes may
cause irreparable consequences for life and health of
animals and humans. Natural water may contain a large
number of different pathogens. Therefore, the issue of
non-harmful disinfection of water, i.e. using the meth-
ods that do not pose any danger to living organisms, is
timely and relevant [1].
Nowadays, alternative methods of water disinfection
(e.g., ozone treatment) become increasingly important.
This can significantly improve the quality of drinking
water and solve many issues that arise when using tradi-
tional methods (e.g., chlorination). It is known that more
than 1000 water supply stations in Europe (France,
Germany, and Switzerland) use ozone treatment as a
part of the overall process. Recently, ozone treatment
has been used in Japan, USA, and CIS countries (Mos-
cow, Kiev, Minsk, etc.) [2].
Due to high oxidative potential, ozone interacts with
many organic minerals, including the protoplasm of
bacterial cells, destroying them [3]. The biocidal action
of ozone is the result of its reaction with fatty acids in a
double bond in the cell walls and membranes of bacte-
ria, in the protein shells of viruses. In case of bacteria,
oxidation leads to the changes in cell permeability and
the transition of cell contents into solution. For viruses,
the change in the protein shell prevents them from being
captured by susceptible cells.
Ozone has a strong bactericidal, virucidal, sporicidal
and fungicidal action [4, 5]. In particular, the greatest
sensitivity to ozone was observed in both indicator bac-
teria and pathogens. But, at the same time, the sensitiv-
ity of viruses and protozoa to ozone is much lower.
Doses of residual ozone required for water disinfection
at different levels of its contamination, such as enterovi-
ruses (duration of contact 12 min) are the following: at
5…50 IU/dm3 0.2…0.3 mg/dm3; at 400 > 0.5 and at
4000…30000 > 0.8. The parameters of effective
modes depend on the quality of water, technology used,
structure of water treatment plant at specific sites, and in
each case should be specified [6 - 9].
However, for all its advantages, the ozone treatment
method has a number of disadvantages. Ozone is not
active enough in the destruction of phenolic compounds.
During ozone treatment, carcinogenic formaldehyde is
produced, the amount of which should be controlled.
Ozone belongs to the high hazard class of substances, so
it should be used in compliance with all the technologi-
cal rules [10].
Therefore, the search for new methods of water puri-
fication to reduce the disadvantages of ozone treatment,
which could replace or supplement the existing meth-
ods, is an urgent task, especially with the pandemic
caused by the virus COVID-19 in the background.
MATERIALS AND METHODS
In connection with the abovementioned and in order
to study the biocidal effect of ozone and plasma
chemical (PH) treatment, the pilot studies were con-
ducted on the treatment of water with artificially intro-
duced test cultures: infectious bovine rhinotracheitis
(IBR) of the strain “Moldavian”, Escherichia coli ATCC
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 178
25922, atypical mycobacteria of the species M. phlei
and museum strain Aspergillus flavus (A.X.5).
The research was conducted on two specially de-
signed and manufactured experimental stands for ozone
and plasma chemical treatment of solutions. On the ex-
perimental stand for ozone treatment of solutions, ozone
synthesis was carried out in laboratory air using the bar-
rierless ozone generator. Then the resulting ozone-air
mixture was bubbled through the solution. On the ex-
perimental stand for plasma chemical treatment of solu-
tions, the gas discharge was ignited directly above the
surface of the solution, i.e. the solution was the anode.
The first stand (Fig. 1) included the following func-
tional units: Secoh sangyo air compressor (Japan) with
the capacity of 50 l/min and the maximum pressure of
up to 12.7 kPa, gas flow meter (PM-4 GU3), “StreamO-
zone” ozone generator, Teledyne instruments (USA)
454H ozone monitor with the range of ozone concentra-
tion measurement of 0.1…100 g/m3, laboratory mattress
to accommodate samples of the test solution and ozone
destructor. The volume of solution in the bubbling con-
tainer was 2 l. Ozone concentration in the ozone-air
mixture was 5 g/m3 at the flow rate of 8 l/min.
Fig. 1. The system for ozone treatment of the solution
under study
Fig. 2. The system for plasma chemical treatment
of solutions
The second experimental stand (Fig. 2) included: a
specially designed plasma chemical reactor for dis-
charge formation with one liquid electrode, HV pulsed
power supply with the maximum capacity of 150 Wh,
1000-ZB water pump with the capacity of 60 l/h, Sun-
Sun ACO-003 air compressor with the capacity of
38 l/min to generate air flow through the discharge gap,
flattened bottle for the samples of the test solution, and
destructor. The HV pulsed power supply generates high-
voltage pulses of microsecond duration (1300 ns) with
the pulse repetition rate of 1…15 kHz and the amplitude
of up to 12 kV. The pulse rise time is 500 ns. The vol-
ume of solution in the system was 4 l.
To correctly compare the experimental results on the
biocidal effect of these treatment methods, the parame-
ter of the same input power per unit volume of the solu-
tion at the level of 20 W/l was selected and kept con-
stant throughout the experiment.
Determination of biocidal properties was performed
by bubbling ozone through the aqueous solution and
using high-voltage discharge on the liquid surface. The
volume of the solution was 2 and 4 dm3, respectively,
with a certain working dilution of each test culture. The
study was performed at room temperature
(18.5 ± 0.5)ºC with exposure for 1, 2, and 3 h.
When determining the virucidal effect of ozone and
plasma chemical treatment on viral infection, the adap-
tation and restoration of biological properties for the
transplanted calf kidney culture (NT) was carried out as
well as the restoration of infectious activity for IBR
(IRT cattle, BHV-1) of the strain “Moldavian” after a
long-term storage at -70C. Standardization of the IBR
viral suspension (made on saline) was performed in ac-
cordance with the infectious activity of the virus.
After each time range, aliquots (2.0 cm3) were taken,
the treated virus-containing mixture was applied to the
cell culture monolayer and co-incubated at
(37.0 ± 0.5)C for 60 min. Then, the virus-containing
mixture was removed from the cell culture monolayer,
the growth medium (2.0 cm3) was added, and the sam-
ples were incubated at (37.0 ± 0.5)C until the charac-
teristic cytopathic changes occurred in the control sam-
ples. Determination of the effectiveness for different
treatment variants of virus-containing mixture was per-
formed by evaluating the development of virus-induced
cytopathic effect (CPE) on sensitive cell culture. The
results of the study were analyzed in accordance with
the results of 100% CPE of the virus in monolayer cells
of the control samples. The monolayer state, its integ-
rity, changes in cell morphology for the appropriate
controls and test tubes containing different variants and
exposures of pathogen treatment were taken into ac-
count [11 - 17].
Determination of bactericidal (bacteriostatic) proper-
ties of ozone and plasma chemical treatment was stud-
ied using the reference strain of Escherichia coli ATCC
25922, which was stored at low temperature (-70C). To
prepare the test sample from cryopreserved bacteria, the
working inoculum of Escherichia coli ATCC 25922 was
prepared with the concentration of 1.0×108 colony-
forming units/ml by successive inoculations on nutrient
media. The results were analyzed using parallel bacte-
rial inoculation of inoculum samples exposed to ozone
and plasma chemical discharge at the abovementioned
time parameters. The bacterial inoculum sample taken
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 179
prior to the experiment and stored unchanged was used
as the control sample.
The research to determine the bactericidal properties
of ozone and plasma chemical treatment against atypical
mycobacteria of the species Mycobacterium phlei was
conducted using a five-day bacterial mass of M. phlei
living culture at the concentration of 200 million/cm3.
The experimental and control samples of water from
each individual flattened bottle taken after the treatment
were studied by the culture method for the presence of
viable colonies of M. phlei [18].
Research on the study of fungicidal (fungistatic) ef-
fects of ozone and plasma chemical treatment on the test
culture of Aspergillus flavus, previously introduced into
aqueous solutions (working dilution ≈ 120 spores in
1/5 mm2), was conducted in accordance with generally
accepted and developed laboratory methods [19 - 21].
To count the number of spores that survived after the
treatment, 3.0 cm3 of micromycete-contaminated solu-
tion was inoculated in labeled Petri dishes with Chapek
agar medium and incubated at 25…27C at the above-
mentioned time. The colony counts were performed on
days 3, 5, and 7. After the cultivation, in the abovemen-
tioned terms, a macroscopic study of the cultures and
comparison with the colonies of museum strains were
carried out. The experimental parameters, in which the
death of spores for the test cultures was ensured by
95…98% in the presence of their growth in the control
sample, were considered to be effective [22].
EXPERIMENTAL RESULTS
When determining the virucidal action of ozone and
plasma chemical treatment, the biological properties for
the transplanted culture of calf kidney (CK) cells was
first adapted and restored, and the activity of IBR virus
in cattle (IBR, BHV-1) of the strain “Moldavian” was
confirmed.
The infectious activity of IBR virus in HT cell cul-
ture was (7.6 lgTCD 50/cm3). The specified indicator is
defined as a start when studying the efficiency of the
activator disinfection methods.
Determination of antiviral efficiency of ozone and
plasma chemical treatment for the pathogen IBR in vitro
was performed 20 h after the application of appropriate
materials to the cell monolayer and infection with the
virus; the changes in cell morphology and monolayer
detachment at the level of 100% were observed in control
samples (CS). During this time, the cell morphology and
monolayer integrity for the control samples of NT cell
culture remained unchanged (Table 1).
Table 1
Analysis of the results for CPE development in 20 h after infection of CK cell culture with IBR
Ozone PCR №
Sample CC CS
CS
1 h
CS
2 h
CS
3 h 1 h 2 h 3 h 1 h 2 h 3 h
1 ++++ ++++ ++++ +++
2 ++++ ++++ ++++ +++ ±
3 ++++ ++++ ++++ ++++ + ±
4 ++++ ++++ ++++ ++++ ± +
5 ++++ ++++ ++++ ++++ ±
М 0 100 100 100 90 0 1.00 5.00 1.00 2.00 5.00
m 0 0 0 0 6.12 0 1.00 5.00 1.00 1.22 5.00
Note: “” no CPE of the virus; “±” CPE of the virus is at the level of 5%; “+” CPE of the virus is at the
level of 25%; “++” CPE of the virus is at the level of 50%; “+++” CPE of the virus is at the level of 75%;
“++++” CPE of the virus is at the level of 100%.
With regard to the control samples to determine the
virus viability in saline under the conditions of storage
for 1, 2, and 3 h, as in case of infecting the monolayer
cells with IBR, the damage to monolayer cells and their
detachment from glass were observed at the level of
100%. Some decrease in the reproduction intensity of the
pathogen on NT cells was observed for some samples
after the virus was added to saline and stored for 3 h.
As for the samples of the virus-containing fluid
treated with ozone for one hour, its introduction into the
transplanted culture of NT cells did not cause any
changes in cell morphology, death or exfoliation of the
monolayer, which shows the absence of virus reproduc-
tion at the time of registration. Treatment of the virus-
containing fluid by the abovementioned method for 2
and 3 h with the following application of the obtained
samples to the monolayer of NT cell culture resulted in
the damage of monolayer cells for the individual sam-
ples at the level of 5 and 25%, respectively. In general,
under the conditions of using the specified mode of
sample treatment for 2 and 3 h and subsequent applica-
tion of the samples to the monolayer, the average pres-
ervation of NT cells was (99.0 ± 1.0) and (95.0 ± 5.0)%,
respectively.
As for studying the effect of plasma chemical treat-
ment on the reproduction of IBR virus after its treatment
in saline for 1, 2, and 3 h, the results similar to those
described above were obtained. Thus, plasma chemical
treatment for 1 hour led to the inhibition of virus repro-
duction and preservation of the monolayer integrity for
NT cell culture at the level of (99.0 ± 1.0)%. Discharge
exposure of the virus-containing fluid for 2, and 3 h
resulted in a virostatic effect, which was characterized
by the preservation of cell morphology and monolayer
integrity at the level of (98.0 ± 1.22) and (95.0 ± 5.0)%,
respectively. It should be noted that, as in case of ozone
treatment, the damaged cells were observed for individ-
ual samples (1-2 of 5), which requires further study. In
addition, the lack of direct correlation between the
treatment time of the virus-containing fluid and the level
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 180
of virus reproduction inhibition encourages further ad-
vanced research in this direction.
When determining the bactericidal (bacteriostatic)
properties of ozone and plasma chemical treatment in
relation to the reference strain Escherichia coli ATCC
25922, it was found that ozone at all stages of exposure
affected the growth of Escherichia coli: no growth was
observed neither in liquid nor in solid culture media. In
comparison with the control for liquid medium, a uni-
form turbidity was noted, which shows the presence of
bacterial growth. As to the control for dense medium, a
significant growth of small colonies was observed over
the entire surface of the agar.
When studying the effect of plasma chemical treat-
ment at the exposure for 1 h, a dense uniform turbidity
was observed on a liquid culture medium, and a signifi-
cant bacterial growth was observed in a solid medium
over the entire surface of the agar. After 2 h of expo-
sure, a noticeable uniform turbidity of the liquid me-
dium was observed, and the growth of single bacterial
colonies was observed in a solid medium. After the ex-
posure for 3 h no growth of bacteria was observed in
either liquid or solid culture medium in comparison with
the continuous growth in the control for both liquid and
solid cuture medium.
When determining the bactericidal properties of
ozone and plasma chemical treatment against mycobac-
teria of the species M. phlei, the results shown in Ta-
ble 2 were obtained.
Table 2
The results on the study of the bactericidal effect of ozone and plasma chemical treatment on M. phlei
The growth of mycobacteria colonies, days
№ Treatment
method
Exposition,
h 1 2 4 5 12 19 26
1 - - +++ ++++ ++++ ++++ ++++
2 - - - ++ +++ ++++ ++++ 1 Ozone
3 - - - + ++ ++ ++
1 - - +++ +++ +++ ++++ ++++
2 - - +++ +++ +++ ++++ ++++ 2 Plasma chemi-
cal discharge 3 - - - ++ +++ ++++ ++++
3 Control 1 - + ++++ ++++ ++++ ++++ ++++
Notes: “-” no growth; “+” growth of 1…10 colonies; “++” growth of 10…20 colonies; “+++” growth
of 20…50 colonies; “++++” more than 50 colonies
In accordance with the results (see Table 2) of ozone
treatment of water samples contaminated with mycobac-
teria of the species M. phlei at the concentration of
200 million/cm3, the bactericidal effect of ozone was
established only at the exposure of 3 hours.
No bactericidal or bacteriostatic action was found
during the plasma chemical treatment of water samples
contaminated with mycobacteria M. рhlei at the concen-
tration of 200 million/cm3 and exposures of 1, 2, and 3 h.
When studying the fungicidal (fungistatic) properties
of ozone and plasma chemical treatment of water con-
taminated with standardized by the number of spores
test culture of Aspergillus flavus at the temperature of
(18.0 ± 0.5)°C and exposure time of 1, 2, and 3 h, the
results presented in table 3 were obtained.
Table 3
The results of mycological studies of tap water, artificially contaminated with Aspergillus flavus, treated with ozone
and plasma chemical discharge
Ozone treatment PCR
Time period for calculating the growth
of colonies for A. flavus (days) № of samples and exposure
3 5 7 3 5 7
Sample № 1 1 h - 5 5 + + +
Sample № 2 2 h - 3 3 + + +
Sample № 3 3 h - 4 4 + + +
Positive control (untreated water with A. flavus culture) + + + + + +
Negative control (untreated water with A. flavus culture and
nystatin added to the nutrient medium (100 thousand IU per
100.0 cm3 of nutrient medium)
- - - - -
In accordance with the results of Table 3, ozone
treatment has fungicidal properties against the test cul-
ture of A. flavus; at the same time, exposure for 1, 2,
and 3 h did not significantly affect the number of new
colonies, which was 5, 3, and 4, respectively, in com-
parison with the continuous growth of A. flavus in the
positive control and its absence in the negative.
When determining the fungicidal (fungistatic) action
of plasma chemical treatment, it was found that this
treatment did not affect the growth inhibition of the test
culture in water. The continuous growth of A. flavus
test culture was observed for all the experimental time
exposures.
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 181
CONCLUSIONS
1. Pilot studies were conducted to determine the bio-
cidal effect of ozone and plasma chemical treatment on
IBR virus of the strain “Moldavian”, reference strain of
Escherichia coli ATCC 25922, atypical mycobacteria of
the species Mycobacterium phlei and museum strain of
Aspergillus flavus artificially introduced into the water.
2. It was found that both treatments of aqueous solu-
tion contaminated with IBR virus of the strain “Molda-
vian” had virucidal properties at the level of 95…100%,
regardless of the treatment time.
3. Studies on the bactericidal (bacteriostatic) effi-
ciency of ozone treatment for the aqueous solution con-
taminated with the reference strain of Escherichia coli
ATCC 25922 show 100% bactericidal action for all the
time parameters. For plasma-chemical discharge, the bac-
teriostatic action (23%) is shown at 3-hour treatment.
4. Studies on the bactericidal (bacteriostatic) effi-
ciency of ozone treatment for water samples contami-
nated with mycobacteria of the species M. phlei, show
bacteriostatic properties by 65% only at the treatment
for 3 hours. Plasma chemical treatment show no bacte-
riostatic effect at any time of treatment used in this ex-
periment.
5. When studying the fungicidal (fungistatic) proper-
ties of ozone treatment for the aqueous solution con-
taminated with the test culture of Aspergillus flavus, it
was found that ozone had fungicidal properties against
the test culture of Aspergillus flavus: the growth inhibi-
tion by 95…98% was observed. Plasmochemical dis-
charge had neither fungicidal nor fungistatic properties;
the continuous growth of Aspergillus flavus was shown
at all the experimental parameters.
6. The obtained preliminary results show a significant
effectiveness of both methods on viruses and bacteria.
However, the effect of plasma chemical treatment re-
quires further research. The combined action of ozone
and plasma chemical treatment of water to achieve a bio-
cidal effect and reduce treatment time seems promising.
REFERENCES
1. L.F. Dolina. New methods and equipment for disin-
fection of wastewater and natural waters. Dne-
propetrovsk: “Continent”, 2003, 218 p.
2. V.V. Goncharuk, N.G. Potapchenko. The current
state of the problem of water disinfection // Water
chemistry and technology. 1998, v. 20, № 2, p. 190-
213.
3. G.V. Taran, V.A. Breslavets, A,A. Zamuriev,
M.O. Yaroshenko, P.O. Opalev, O.V. Maiboroda.
Plasma-chemical methods for control of biotic con-
taminants // Problems of Atomic Science and Tech-
nology. Series “Plasma Electronics and New Meth-
ods of Acceleration”. 2019, № 4, p. 198-202.
4. V.I. Golota, G.V. Taran, A.A. Zamuriev, et al. The
use of ozone technologies in grain storage // Prob-
lems of Atomic Science and Technology. 2018,
№ 4(116), p. 185-188.
5. G.V. Taran, S.G. Pugach, A.A. Zamuriev,
P.O. Opalev, M.O. Yaroshenko. Plasma-chemical
method of grain fungal contamination control //
Problems of Atomic Science and Technology. 2020,
№ 6 (130), p. 127-130.
6. A. Poisson, A.V Chepurnov, V.P. Shchipetilnikov.
“Ozonia” ozone generators of the fourth generation
// Water supply and plumbing. 2000, № 1, p. 29-32.
7. D.А. Reckhow, Р.С. Singer. Chlorination By prod-
ucts in drinking water from formation potentials to
finished water concentrations // J. AWWA. 1990, is-
sue 82, № 4, р. 173-180.
8. G. Hageskal, A.K. Knutsen, P. Gaustad, et al. //
Appl. Environ. Microbiol. 2006, issue 72, № 12,
p. 7586-7593.
9. M.S. Dogget // Ibid. 2000, issue 66, № 3, p. 1249-
1257.
10. O.V. Mosin. The use of ozone in water treatment //
Plumbing, heating, air conditioning. 2011,
№ 9(117), p. 40-43.
11. DSTU 4483:2005. Veterinary immunobiological
preparations. Methods for determining bacterial and
fungal contamination. Derzhspozhyvstandart of
Ukraine. Kiev. 2006
12. S.N. Vishelessky. Guidelines for the study of cul-
tural, antigenic, genetic properties and infectious
activity of production and epizootic strains of bovine
coronavirus. Institute of Experimental Veterinary
named after. 2016, 22 p.
13. B.T. Stegniy, A.P. Gerilovich, O.Yu. Limanskaya, et
al. Polymerase chain reaction in the practice of vet-
erinary medicine and biological research. Scientific
and methodical manual. Kharkiv, 2010, 227 p.
14. Determination of virucidal action for disinfectants.
Guidelines. Order of the Ministry of Health of
Ukraine. 08.04.2009, № 231.
15. Guidance for Industry Antiviral Product Develop-
ment Conducting and Submitting Virology Studies
to the Agency. Center for Drug Evaluation and Re-
search (CDER). https://www.fda.gov/media
/71223/download.
16. V.N. Surin, B.N. Belousova, N.V. Fomina. Veteri-
nary virology. M.: “Kolos”, 1984, 376 p.
17. О.В. Shemendyuk, L.G. Zholner, N.M. Zholobak,
М.Ya. Spivak // Antiviral and interferon-inducing
action of aminoethocidiphenyls. Science news of
NTUU “KPI”. 2015, № 3, p. 84-90.
18. Guidelines on the diagnosis of tuberculosis in ani-
mals and poultry, SOP T-13B-2015 Conducting a
cultural study of biological material for tuberculosis.
DSTU ISO / IEC 17025.
19. S.M. Semenov. Laboratory media for actinomycetes
and fungi. M.: “Agropromizdat”, 1990, p. 172-173.
20. V.I. Bilay, E.Z. Koval. Aspergillus: determinant. K.:
“Naukova Dumka”, 1988, 204 p.
21. G.L. Simbera. Large practicum on microbiology.
M.: “Higher school”, 1962, p. 106-112.
22. Methodical recommendations. Determination of
fungicidal properties and optimal modes of disinfec-
tant application on test cultures of the species As-
pergillus. Approved by the State Committee of Vet-
erinary Medicine of Ukraine, prot. № 1, 23-
24.12.2009.
Article received 16.06.2021
ISSN 1562-6016. ВАНТ. 2021. № 4(134) 182
ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПЛАЗМОХИМИЧЕСКОЙ И ОЗОНОВОЙ ОБРАБОТКИ
НА ИСКУССТВЕННО ВНОСИМУЮ МИКРОФЛОРУ В МОДЕЛЬНЫХ ВОДНЫХ РАСТВОРАХ
Г.В. Таран, Д.В. Кудин, А.А. Замуриев, П.О. Опалев, М.О. Ярошенко, О.М. Корнейков, В.Л. Арефьев,
М.В. Калашник
Проведены пилотные исследования по определению биоцидного воздействия озона и плазмохимическо-
го разряда в течение 1, 2 и 3 ч на вирус инфекционного ринотрахеита штамма «Молдавский», референтный
штамм кишечной палочки Escherichia coli ATCC №25922, атипичные микобактерии вида Mycobacterium
phlei и музейный штамм Aspergillus flavus, искусственно внесенные в воду. Показано, что обе обработки
водного раствора, контаминированного вирусом инфекционного ринотрахеита, обнаружили вирулецидные
свойства на 95…100%. Установлено, что бактерицидная (бактериостатическая) эффективность озонирова-
ния воды с кишечной палочкой составляла 100% для всех временных параметров, а для плазмохимического
разряда бактериостатическое действие (на 23%) проявилось при обработке в течение 3 ч. При этом бактери-
цидная (бактериостатическая) эффективность озонирования проб воды, контаминированных микобактерия-
ми вида M. рhlei, составляла 65% только для экспозиции 3 ч. Обработка плазмохимическим разрядом не
выявила бактериостатического эффекта при экспозиции. При изучении фунгицидных (фунгистатических)
свойств озоновой обработки водного раствора, контаминированного тест-культурой Aspergillus flavus, уста-
новили фунгицидные свойства – обнаружили задержку роста на 95…98%. Плазмохимическая обработка не
проявила ни фунгицидных, ни фунгистатических свойств.
ДОСЛІДЖЕННЯ ВПЛИВУ ПЛАЗМОХІМІЧНОЇ ТА ОЗОНОВОЇ ОБРОБКИ
НА ШТУЧНО ВНЕСЕНУ МІКРОФЛОРУ В МОДЕЛЬНИХ ВОДНИХ РОЗЧИНАХ
Г.В. Таран, Д.В. Кудін, О.О. Замурієв, П.О. Опалєв, М.О. Ярошенко, О.М. Корнєйков, В.Л. Арєфєв,
М.В. Калашнік
Проведено пілотні дослідження щодо визначення біоцидного впливу озону та плазмохімічного розряду
впродовж 1, 2, та 3 год на вірус інфекційного ринотрахеїту штаму «Молдавський», референтний штам киш-
кової палички Escherichia coli ATCC №25922, атипові мікобактерії виду Mycobacterium phlei та музейний
штам Aspergillus flavus, які штучно внесені до води. Показано, що обидві обробки водного розчину, конта-
мінованого вірусом інфекційного ринотрахеїту, виявили віруліцидні властивості на 95…100%. Встановлено,
що бактерицидна (бактеріостатична) ефективність озонування рідини з кишковою паличкою становила
100% для всіх часових параметрів, а для плазмохімічного розряду бактеріостатична дія (на 23%) проявилося
при обробки впродовж 3 год. При цьому бактерицидна (бактеріостатична) ефективність озонування проб
води, контамінованих мікобактеріями виду M. рhlei, складала 65% тільки за експозиції 3 год. Обробка плаз-
мохімічним розрядом не виявила бактеріостатичного ефекту за жодної експозиції. При вивченні фунгіцид-
них (фунгістатичних) властивостей озонової обробки водного розчину, контамінованого тест-культурою
Aspergillus flavus, встановили фунгіцидні властивості – виявили затримку росту на 95…98%. Плазмохіміч-
ний розряд не виявив ні фунгіцидних, ані фунгістатичних властивостей.
|